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ABSTRACT 

This paper is concerned with two methods to estinaate the parameters of the 
Poisson-Goncharov distribution introduced recently by Lef6vre and Picard 
(1996). These methods are applied to fit, inter alia, the six observed claims 
distributions, from automobile insurance third party liability portfolios, studied 
by Gossiaux and Lemaire (1981) and analysed afterwards by several authors. 
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I .  I N T R O D U C T I O N  

The importance of the third party liability automobile insurance has not to be 
demonstrated, in most of the industrialized countries, this branch represents a 
considerable share of the yearly premium collection (for instance, in Belgium, 
29.5% during the year 1993). In view of this, many attempts have been made in 
the actuarial literature to find a probabilistic model for the distribution of the 
number of auto-accidents (see the review contained in Section 3). Our purpose 
here is to show that the Poisson-Goncharov distribution introduced recently by 
Lef6vre and Picard (1996) provides an appropriate probability model to describe 
the annual number of claims incurred by an insured motorist. We will then 
propose two methods to estimate the parameters and we will apply them to fit the 
six observed claims distributions in Gossiaux and Lemaire (1981), as well as 
recent data sets from Belgium. 

Let us briefly survey the paper. In Section 2, we will shortly present the 
Poisson-Goncharov distribution, establishing two new properties of it. In Section 
3, we will first introduce the problem under study and then bring up the Poisson- 
Goncharov model for the number of claims in automobile insurance. Section 4 
will be devoted to the Maximum Likelihood method to estimate the parameters of 
the Poisson-Goncharov distribution. We will see that this method usually yields 
implicit Likelihood equations which have to be solved numerically. The starting 
values of the parameters will be obtained using the so-called "Ad Hoc" method 
developed in Panjer and Willmot (1992). In Section 5, we will propose a specific 
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Least Squares type estimation method, specially built for the Poisson-Goncharov 
distribution. We will see that this method provides explicit expressions for the 
estimators and, in most of the cases, accurate fits. Section 6 will be concerned with 
concluding remarks. Finally, Appendix will take all the numerical illustrations up. 

2. THE POISSON-GONCHAROV DISTRIBUTION 

Recently, Lef6vre and Picard (1996) introduced a new discrete probability 
distribution on the set of the non-negative integers (subsequently denoted by IN), 
called the Poisson-Goncharov law, which is constructed in terms of Abel- 
Goncharov polynomials and which extends the classical Poisson law as well as the 
Generalized Poisson distribution proposed by Consul and Jain (1973). 

Very briefly, le U = {ui, i E IN} be any given family of real numbers. To Uis 
attached a unique family of AbeI-Goncharov polynomials, {G,,(x]U),  n E hV}, of 
degree n in x, defined recursively, starting from Go(x[U) =- I, by 

A~ n-I  t.t~_~ 
G"(xIU)  = n'- '~ - , o  G / x l U ) ,  ,1 _> 1. (2.1) 

The reader is referred to Oskolkov (1988) (and the references therein) for a 
presentation of these polynomials ( A G  polynomials, in short). Note that the only 
particular case in which an explicit expression is known for the G,,(x[U)'s  is the 
Abel one. Specifically, if tti = a + bi, i E IN, a and b being real constants, then 

c,,(.¥] u )  = (x - (x - ,  - , ,b)"- '  n! , I1 E IN.  ( 2 . 2 )  

When u~ = a, i E W, (2.2) reduces to G,,(xIU) = (x - a)"/n!, n > 0. In order to 
have all the G,,(.r I U) 's  positive for x > 0, it suffices for U to be negative and non- 
increasing, i.e. 0 > uo >_ ul >_ ... _> ui _> ui+t _> ... (this condition will be retained 
subsequently). Now, the Poisson-Goncharov distribution associated with U, 
negative and non-increasing, is the family {'RG,,(U), n E iN} defined by 

"RC,,(U) = G,,(OIU)e",  n E IN. (2.3) 

It is denoted by "PC(U). 
As announced earlier, the PC(U) law can be viewed as a distribution of 

Poisson-type. I f the  ui's are linear in i, ui = - 0  - iA say, with 0 E ~ -  and A E /R +, 
then, using (2.2), 

PC,,( U) 0(0 + ,,~,)"-' 
- e - ° - ' ' ~ ,  n E / V .  ( 2 . 4 )  

n! 

The distribution (2.4) is nothing else than the Lagrangian or Generalized Poisson 
law introduced by Consul and Jain (1973) (see the book by Consul (1989)). | t  is 
non-defective if and only if X E [0, I]. In particular, if all the u,'s are equal to -0 ,  
say, with 0 E /R~, then PC(U) becomes the usual Poisson distribution with 
parameter 0. 
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[t is worthwhile recalling that the Generalized Poisson law belongs to the wide 
class of discrete Lagrangian probability distributions, defined by Consul and 
Shenton (1972), by means of the Lagrange expansion formula. Moreover, it is 
also part of the Abel series distributions family introduced by Charalambides 
(1990). It has various fields of applications, in particular biostatistics (see, e.g., 
Janardan et al. (1979)) as well as actuarial sciences where it has been proposed 
initially by Consul (1990), and then by Ter Berg (1996), to model the annual 
number of accidents incurred by a motorist. See also Gerber (1990) for an 
application linking to the ruin model. We mention that recursive algorithms to 
evaluate compound Generalized Poisson probabilities have recently been 
developed, e.g. by Goovaerts and Kaas (1991) and Sharif and Panjer (1995). 

Coming back to the 7~G(U) law, this corresponds typically to the distribution 
of the first crossing level L of a Poisson process ./V" = {N(t), t E IR +} (with 
parameter I, say) in a lower non-decreasing boundary/3u (such as represented in 
Figure 2. l). More precisely, we first observe that/3u may be reduced to the set of 
points that are eligible as levels of first-crossing, i.e. points with integer ordinate. 
Denoting this set of points by {(-ui, i),i E hV}, where U = {ui, i E £V} is 
negative and non-increasing, it can then be proved that the law of L is provided 
by (2.3) (see Lef6vre and Picard (1996)). We notice that the Poisson law for L is 
obtained when/3u is vertical, and the Generalized Poisson law when/3u is linear. 
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FIGUI~.E 2.1. First-crossing level L of the Poisson process tiff" 
in Ihe lower boundary 13u 
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Lel~vre and Picard (1996) have also pointed out the relationship between the 
7~G(U) law and the number of customers served in the first busy period of a M~ 
D / I  queueing system in which customers arrive according to a Poisson process 
with rate 1, a unique customer is present initially in the queue and the service 
times are deterministic but differ from a customer to another (let -u0 be the 
service time of the initial customer and, for i >_ 1, Jet ui-~ - ui denote the service 
time of the i-th customer). In such a system, the number of new customers served 
during the first busy period is of law 79G(U). 

Now, the family U may represent any negative and non-increasing sequence of 
real numbers, so that the 7::'~(U) law may depend on a large, even infinite, number 
of parameters. For statistical estinaation, however, it is necessary to specify for the 
u;'s a simple analytical expression, depending on one, two or three parameters for 
example (like u, = 01 + 02i + 03 i2, i E ~V, OI < O, 02 _< O, 03 _< 0). 

It is possible to show that the 79G(U) law belongs to the Sundt's family, i.e. 
satisfies, for some fixed values of k and w, 

T'Gn(U) = ~ i +  79G,,_i(U), n = w + l ,  w + 2 ,  ... 
i =  I 

Indeed, starting from the following identity, 

7:'G,(U) = e -''° T '~ (U)  - l 7:'G,,-~(U), n >_ l, (2.6) 
i =  I 

we obtain (2.5) with k = n ,  w = 0  and, for i_> I, czi=-e'"-"°Gi(OlU),  
gi = 2ieU'-U°Gi(O[ U). These ai's and g/s  are in fact those suggested in Theorem 
3 of Sundt (1992). Nevertheless, if we desire to obtain the distribution of the 
compound T'G(U) sum, as pointed out by Panjer and Wang (1995), when k = n  m 
(2.5), the computing effort using Sundt's recursive formula is of the same order as 
that needed by a direct convolution approach (Sundt's recursion is interesting 
only when the claim frequency distribution satisfies (2.5) with small values for k 
and w). 

Let us recall that, given two random variables X and Y valued in gV, Y is said 
to stochastically dominate X, denoted by X ~  tY, when P[X _< n] > 
P[Y _< n] 'Vn E #V (see, e.g., the recent books by Shaked and Shanthikumar 
(1994) and by Kaas et al. (1994)). It is well-known that X~,  r Y if and only if there 
exist two random variables A" and Y, defined on the same probability space, such 
that X and ,~', as well as Y and ]", are identically distributed, and P[A" _< )"] -- 1. 

It is easy to prove that, if X (resp. Y) is distributed according to the 79G(U) 
(resp. 'PC(V)) law, with ui > vi V i E IN, then X ~  Y. This follows immediately 
from a decomposition formula of the Raikov type, obtained by Lef6vre and 
Picard (1996), which states that it is always possible to decompose Y into the sum 
Zi + Z 2  such that ZI follows the T'G(U) law and the law of Z2, given 
Zt = j ,  j E hV, is PG(V( j ) ) ,  where V(j)  = {'o,(j),i E h~¢'} with -vi(j) = v'i+j - u j .  

Thus, with X a n d  Ydescribed above and using X = Z i  and Y = Z ~ + Z 2 ,  we 
have X ~ t  Y. 
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If we come back to the representation of the 7:'G(U) as the law of the first- 
crossing level L, the above result becomes obvious. Indeed, if X (resp. Y) is the 
first-crossing level of the Poisson process .A/" in the lower boundary 13u (resp. By ) 
described by U (resp. by V), and i fv i  < uiVi E IN (that is/3v lies on the right of 
/3u), it is clear that X~,.t Y (since X < Y almost surely). Choosing families like 
{-0,  i_>0} or { - 0 - i A ,  i>_0}, with 0 > 0  and AE[0,  1], yields straight 
corollaries for the Poisson or the Generalized Poisson laws. 

3. THE POISSON-GONCHAROV MODEL FOR THE NUMBER OF CLAIMS 

IN AUTOMOBILE INSURANCE 

Let us first introduce the problem under investigation in the present paper. In 
order to see if there exist some probability law applicable to claims distributions 
in automobile insurance third party liability portfolio, Gossiaux and Lemaire 
(1981) examined six observed claims distributions. Those came from five 
countries and were studied before by other researchers. Gossiaux and Lemaire 
(1981) fitted the Poisson distribution, the Generalized Geometric distribution, the 
Negative Binomial distribution and the mixed Poisson distribution to each of 
them by the Maximum Likelihood method and the method of Moments. They 
concluded that no single probability law seems to emerge as providing a good fit 
to all of them. Moreover, there was at least one example where each model gets 
rejected by a chi-square test (at the level 10%). Seal (1982) supplemented the 
paper by Gossiaux and Lemaire (1981) with an analysis of some automobile 
accidents data from California. He concluded that it supports the mixed Poisson 
hypothesis for the distribution of the number of claims. Kestemont and Paris 
(1985), using mixtures of Poisson processes, defined a large class of  probability 
distributions and developed an efficient method of estimating its parameters. For 
the six data sets in Gossiaux and Lemaire (1981), they proposed a law depending 
on three parameters and they always obtained extremely good fits. Wilhnot (1987) 
showed that the Poisson-lnverse Gaussian law deserves consideration as a model 
for the claims distribution due to its good fit to the data. Furthermore, this law 
enjoys abundance of convenient mathematical properties. Willmot (1987) 
compared the Poisson-lnverse Gaussian distribution to the Negative Binomial 
one and concluded that the fits are superior with the Poisson-lnverse Gaussian in 
all the six cases studied by Gossiaux and Lemaire (1981). See also the note by 
Lemaire (1991) about the confrontation between Negative Binomial and Poisson- 
Inverse Gaussian on the basis of six data sets not related to insurance. Ruohonen 
(1987) considered a model for the claim number process. This model is a weighted 
Poisson process with a three-parameters Gamma distribution as the structure 
function and is compared with the two-parameters Gamma model giving the 
Negative Binomial distribution. He fitted his model to some data that can be 
found in the actuarial literature and the results were satisfying. Panjer (1987) 
proposed the Generalized Poisson-Pascal distribution, which includes three 
parameters, for the modelling of the number of automobile claims. The fits 
obtained were satisfactory, too. Note that the Polya-Aeppli, the Poisson-lnverse 
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Gaussian and the Negative Binomial are special cases of this distribution. 
Willmot (1988) enumerated completely the class of claim frequency distributions 
discussed by Sundt and Jewell (1981). He demonstrated the good fit to 
automobile claim frequency data of one member (in fact, the Modified Extended 
Truncated Negative Binomial distribution), using the six data sets analyzed by 
Gossiaux and Lemaire (1981). Consul (1990) tried to fit the same six data sets by 
the Generalized Poisson distribution. Although the Generalized Poisson law is 
not rejected by a chi-square test, the fits obtained by Kestemont and Paris (1985), 
for instance, are always much better. Furthermore, Elvers (1991) reported that 
the Generalized Poisson distribution did not fit very well the data observed in an 
automobile third party liability insurance portfolio (the distribution hypothesis 
was, according to his note, in almost every case rejected by a chi-square test). 
More recently, Ter Berg (1996) considered a slightly different model, involving the 
Generalized Poisson, too. Moreover, he introduced a loglinear model, which is 
able to incorporate explanatory w~riables. The fits were found satisfactory. Islam 
and Consul (1992) suggested the Consul distribution as a probabilistic model for 
the distribution of the number of claims in automobile insurance. These authors 
approximated the chance mechanis,n which produces vehicle accidents by a 
branching process. They fit the model to the data sets used by Panjer (1987) and 
by Gossiaux and Lemaire (1981). Note that this model deals only with autos in 
accident. Consequently, the zero-class has to be excluded. The fitted values seem 
good. However, this has to be considered cautiously, due to the comments by 
Sharif and Panjer (1993). Indeed, these found serious flaws embedded in the 
fitting of the Consul model; in particular, the very restricted parameter space and 
some theoretical problems in the derivation of the Maximum Likelihood 
estimators. They refer to other simple probability models, as the Generalized 
Poisson-Pascal or the Poisson-lnverse Gaussian, whose fit were found quite 
satisfying. We end this brief review with two books. The first one is due to Panjer 
and Willmot (1992) in which Chapter 9 is devoted to the fitting risk model 
problem. In the second one, by kemaire (1995), Chapte," 3 focus on models for the 
claims number distribution. These authors give a remarkable account to the 
problem under investigation. 

The probabilistic model for the number of claims incu,'red by a motorist 
introduced here extends both the classical Poisson and the Generalized Poisson 
models. We will use extensively the decomposition formula of the Raikov-type for 
the 7)Cj (U) recalled above. We split the total number of claims N,ol caused by an 
individual during a fixed period of time (say one year), which is distributed 
according to the 7 ~  (U) law, where ui = 01 + 02i + 03i 2, i E hV, Ot < O, 02, 03 <_ 0 
into Npo,sso,, and Nextra, that is 

Nto, = Neois.,,m + N~x,-,,, (3.1) 

where Nl'oi~: .... follows a Poisson law with parameter -01 and N~.,.,,.,, given 
Npo,.~.~,,,,=jl, is distributed according to a "P~ (V(/'j)) law, with v i ( j l )=  
0 2 ( i + j l ) + O 3 ( i + j l ) z ,  i EIN.  Note that [N,.,.tr, lNe,,~,.,.,,,,=jl] increases in the 
stochastic dominance with j~. By splitting up the extra claims, it is easily seen 
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that (3.1) consists in lhct in breaking up N,,,, into 

N(~) ~v(2) /v(3) Ntot = Npois ....... + --~'.,',,, + --,'.,v', + --ex,,', + " (3.2) 
( I )  . 

where N~.,.t,. . ,  given Npoisso,,:Ji. follows a Poisson law with parameter  
• .2 (2-) ' - "  Jr(I) = j2 ,  follows a Poisson law -J102 - J j  03, N,,,.,.,,, gwen NpoL ........ --Jl  and , ,~,.,.,,.0 

with parameter  - j202 - j ~ 0 3  - 2jr/20> and so on. Considering N,,,, as distributed 
according to the 72G (U) law comes thus down to distinguish among the claims 
whether they are produced by one or another  source, each source adduceing a 
number  o f  accidents condit ionnally distributcd as a Poisson law, so that the 
model (3.2) seems intuitively acceptable. 

4 M A X I M U M  I . I K E L I H O O D  ESTIMATORS 

4.1 A genera l  a p p r o a c h  

Let us suppose that the uits, i E P¢, depend on m parameters,  i.e. 
ui = u,(O~, ..., 0,,,), where (01, ..., 0,,) ¢ O i  x ... x ®,,, _C 9~'". We want Io find 
the Maximum Likelihood estimators ( M L E ,  in short) of  the parameters 
~91, ..., t~,,,. 

Let a random sample of  size n, (XI, ..., X,,), be taken from a populat ion with 
the 720 , (L0 law. The corresponding observations are (xl, ..., x,,). Let k m a x  be 
the largest observation; nk, 0 < k < k m a x ,  the number  of  occurences for k; and 

f~. = nk /n ,  0 < k < kma.v,  the observed fi'equencies for the different classes. The 
Likelihood function is 

klHil.v 

L< . . . .  o,,, (,to, ..., n6- ........ ) = ]F I (e"~Gk(OI U))"". (4. I )  
k=O 

The M L E  ,01, ..., 0,,, of  the parameters 0~, ..., 0,,, are such that they maximize the 
Log-Likelihood function. This leads to the Likelihood equations 

0 = E ,76- 
6=0 Lo°'A (0l . . . . .  0m)=( 0I . . . . .  ('~'n) -}- 

6 ....... Fr , (01u)] 
,,k , l < j <_ m ,  (4 .2 )  

k = 0  L~6/~J/0, . . . . .  . , , , /= (0 ,  . . . . .  ,i,,,) 

where ~ji ~(xIU)] 0 ( k ( k ]]~[l.v , I ~ j  ~ ]~] denotes the first partial derivative o f  
Gk(xiU) with respect to the parameter  0j. From (2. I), we see that the F/,6.(01U)'s 
satisfy the following recurrence relations: starting from Fj,0(0IU ) = 0, I <_j _< m, 
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we have that 

k- I  Zt~-t-I Otli lti _ \ 

i=0 

(4.3) 

which allow us to compute them rect~rsively. 
Unfortunately, the MLE (Ol, ..., 0 .... which are solutions of (4.2) cannot be 

obtained in a closed form (except in the Poisson case). Hence, they are computed 
via numerical maximization of  the Log-Likelihood function. Let us quote in the 
next subsection some particular cases of special interest. 

4 .2  P a r t i c u l a r  c a s e s  

4 . 2 . 1 .  If U =  {-Oi, i •^IN},Oi > 0 ,  then Gk(OIU) = (~'/k!,Fl,k(OIU) = O~-I / 
(k - 1)!, and (4.2) gives Oi -- ~, which is the classical result for the Poisson law. 

4.2.2. If U = {0~ + 02hi (i), i •/TV}, 01, 02, and hi (.) such that U is negative and 
non-increasing, let us establish the two following results, which will give us 
expression for Pt.k(x[U) and F2.k(x[U),kE IN. First of all, we recall two 
interesting operational properties of the AG polynomials. For any integer , ,  

elk G,,(xIU) = f G"-k(xlEkg)'  if n >_ k, (4.4) 
d.x a [ 0, otherwise, 

where E#U = {uk+~,i • hV} denotes the family U without its first k elements. We 
also have that, for a, b • IR, and for n • IN, 

G,,(ax + blaU + b) = a"G,,(x I U), (4.5) 

where aU + b = {aui  q- b, i • IN} .  

L e m m a  4.1 For a, b • IR and n • IN, 

{ - G , , _ , ( x l { a + t ~ f ( i + l ) , i • i N } ) ,  i f  n >  1. 
G " ( x l { a + b f ( i ) ' i • i N } ) =  0, /f n = 0 .  

Proof. The result is obvious for n = 0. For n > 1, using (4.4) and (4.5) yields 

- -~ -a , , ( x l~a+bf ( i ) , i • r  IN}) = a , , ( . v - a l { ~ / ( i ) , i •  ~V}) Oa 

= -O, ,_ ,  (.v - a l {b f ( i  + I), i • IN}) 

= - G , _ t ( x [ { a + b f ( i +  1),i E IN}), 

hence the announced result. [] 
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L e m m a  4.2 For a, b E IR and n E IN, 

[' ~ G~_(~.~iI{a + bf ( i ) , i  E hV}) 

0 G , , ( x l {a+b f ( i ) , i  E /N)) = l, 0, t fn  = 0 .  O-b ~ + ~ G , , _ , ( x l { a + b f ( i + l ) , i E g V } ) ,  i f n >  I, 

Proof. The result is obvious when n = 0. For n >_ I, using (4.4) and (4.5) yields 

o [b"G t i" x" o#° G"(xl{a + b f ( i ) , i  E IN}) = "~t ,,,,~: - a ) / b l { f ( i ) , i  E P¢})] 

= nb" - IG, , ( ( x -  a) /b l{ f ( i ) ,  i E / N } )  

+ b " - 2 ( a  - - a) /b l{f ( i  + l ) , i  ev}), 

and this achieves the proof by (4.5). [] 

From (4.2) together with Lemma's 4.1 and 4.2, the M L E  Oi and t92 of the para- 
meters 01 and 02 are thus solutions of the following system: 

,, = , ,k ' ( 4 . 6 )  

Oi = -Oz H i - 2 ,  

i ~ kma.v n k - -  1 ~ k,,,o,.n h where Y=~Z_.,k=t k and Hj =7, Z..,~=0 k i(k). The second equation of(4.6), 

with h , ( i ) =  i, gives 0, = -7(02 + 1), which is the one obtained by Consul and 

Shoukri (1984) for the Generalized Poisson distribution. On the other hand, it is 
possible to show that, when ht(i) = i, 0t < 0 and 02 E [-1, 0], the system (4.6) is 
equivalent to the one derived by these authors. 

The first equation of (4,6), which provides the M L E  for the parameter 02, is 
implicit. So, we have to use numerical methods to obtain the solution. To get the 
initial approximation of 02, we refer to the method described in paragraph 4.2.3. 

4.2.3. If U = {01 +02hi(i)+03h2(i) ,  i E #V}, 0t, 02, 03, hi(.), ]/2(.) such that U 
is negative and non-increasing, it is possible to obtain numerically the M L E  of 
Oi, 02 and 03, for instance using the method of Scoring, that can be found, e.g., in 
Panjer and Willmot (1992), pp. 326-328. We will utilize the starting values 
obtained by the "'Ad Hoc" method (ibidem, pp. 303-305). The idea of "Ad Hoc" 
estimation is to equate sample statistics where "most of probability" is to 
corresponding theoretical quantities. Since there is a high proportion of zeros in 
the data sets concerning automobile claims, we propose estimators based upon 
lower classes frequencies, that is we equate the observed lower cla..sses..freque.n.cies 
with the corresponding probabilities. The "Ad hoc" estimators 01, 02 and 03 of 
the parameters 0j, 02 and 03 are given by 
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/~-h~(li,)-~/~(hz(I)-h:(o)). 
Oi = /n 0~) - 02hi (0) - 03112(0); 02 = h,(I)-h,(O) , (4.7).  

0"~ = ('~-I"If°))(h'(~)-h~(O))+(h'(O/h~(Z))("-Z"~O) 
- ( h 2 ( l ) - h 2 ( O ) ) ( h l ( O ) - h t ( 2 ) ) + ( h z ( 2 ) - h 2 ( O ) ) ( h , ( I ) - h l ( O ) ) '  

where  c~ = In(f,) - In(-  In01~)) and f l  = In( f2)  - /n [ - 0 . 5 ( / n ( f o ) ) 2 + c 2 / n ( f o ) ] .  

5.  LEAST S Q U A R E S  TYPE E S T I M A T O R S  

Let us first establish the following result. For  any discrete observed distribution 
defined on a subset o f  W, {J~., 0 < k < kmax},  such that ./~. > 0 for all k, there 
exists a unique family O' such thatJ~- = e~G~-(0] ~J), for k = 0, 1 . . . . .  k m a x .  The 
i~i's are defined recursively as hi = lll Oq) - In(Gi(O[ U))  i = 0, I . . . . .  k m a x  (let us 
quote  that, by definition, the A G  polynomial  G~(x]U) depends only on 
h0, /li, ..., hi-i).  Note  that  U built above is not always negative and non- 
increasing. In practice, it is often preferable to only consider those iti's which form 
a negative non-increasing family. 

The idea is to minimize the function $(0j ,  ..., 0,,,) defined by 

1 # ~ x  
6'(0~, ..., 0,,,) = ~ ~ n~.(uk(0~, ..., 0,,,) - zk.) 2, 

k 0 "= 

where U is the opt imal  family constructed above.  The Least Square type 
es t imators  ( L S T E ,  in short) proposed here are thus those which minimize 
,5'(01 . . . .  , 0,,,), the weighted sum of  the squared differences between the hi'S and 
the u,'s having a specified parametr ic  form. Let us mention that if we want to fit 
an observed distr ibution {(k, nk), 0 < k < k m a x } ,  we must  at first group the 
classes in order  to have all the nk's positive. 

The main advantage  of  this method is that  it often provides explicit 
expressions for the est imators ,  as we[[ as accurate  fits. We give below the 
estinaators in the case U = {01 + Ozhl(i) + 03h2(i), i e / N } ,  parameters  01, 02 and 
03, and functions hi ( . ) a n d  h2(.) such that U is negative and non-increasing. The 
est imators  Ol, [92 and 03 of  the parameters  0~, 0z and 03 are those which minimize 

I k m a . v  

3(0l: 02, 03) = ~ ~ nk(OI-'F 0 2 h i ( k )  J r  0 3 1 1 2 ( # )  - /'lk) 2. H 

They are given by 
% 

03 = H,2t'I , , ,- HI ,H2, ,  O~ = -03H] i '~+iH]  5" O, = U - 0 2 H 1 -  ()3"H'% (5.1) 
( H i 2 ) 2 _ H i i H 2 2  - , _ 

where -U ~ ~--,k ....... - ~ i ,~--.k,,,,.,. . . . .  1 x -'k ....... " = 2..,i=0 nit6; H j  = 1, "); Hj×k ;72~i=0 n,njld),J = - : ,,z--,,=O 
I ,¢'-' . ,kma.v i / .~ ~ n ih j ( i )hk( i ) . j . k= l ,2 ;  Hix , ,  = 7,2_,~=o n in jL0u~,J  = 1 ,2 ;  Hjk = Hjxa.- 

ItjH~., j ,  k =  I,  2; Hj,, = Hjx, , -  HjU, j =  1,2 .  
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6. C O N C L U D I N G  R E M A R K S  

Looking at the numerical results presented in Appendix, we could say that the 
7z'G (U) law seems to be suitable to fit the discrete data sets met in automobile 
insurance. The fits are more accurate than most of the ones discussed before, and 
applied to recent data sets coming from Belgium, the methods proposed here 
provide good fits. Moreover, the underlying probabilistic model is intuitively 
acceptable. Nevertheless, other authors, like for instance Kestemont and Paris 
(1985), also provided accurate fits, but sometimes with more intricate models. On 
the other hand, the Least Squares type method is easy to understand and provides 
explicit expressions for the estinaators of the parameters, while it yields satisfying 
results. We also mention that the simulation method proposed in Devroye (1992), 
which consists in the partial recreation of the queueing system described in 
Section 2, can easily be used to simulate the number of claims that affect some 
automobile insurance portfolio. 
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APPENDIX:  N U M E R I C A L  RESULTS 

The reader will find here the fits of  the six data sets in Gossiaux and Lemaire 
(1981), as well as of two recent belgian data sets, obtained with the PG (U), 
U = {Oj +02i+03 i2, i E/~V}. To measure the goodness-of-fit, standard X 2- 
statistics is used, with the following grouping procedure: the outside classes are 
gathered together in order to get theoretical class sizes greater or equal to 5 (that 
is, Rule B in Lemaire (1995)). 

Belg ium 1975-76 Za' ire 1974 

M L E :  0~ = - 0.0981, 02 = - 0.0250: (0:~ = - 0.0037 

LSTE:  01 = - 0.0981; 0., = - 0.0212.0~ = - 0.0069 

k n,k M L  L S T  

0 96 978 96 978.16 96 975.53 
I 9 240 9 244.4 9 252.45 
2 704 693.27 684.44 
3 43 53.19 55.48 
4 9 4.50 5.37 

> 5 0 0.49 0 .73  

0 .82  4 .76  

M L E .  01 = - 0.0728; 0e = - 0.1546; 83 = - 0.0005 

LSTE:  01 = - 0 0728; 0,! = - 0.1429; 0.~ = - 0.0110 

2 
Xo~ 

k D4., 

0 3 719 
1 232 
2 38 
3 7 
4 3 
5 I 

> 6  0 

X2b.~ 

M L  ~ L S T  

3 719.00 3 719.06 
231.98 232.22 

38.00 37.06 
8.22 8.27 
2.03 2.26 
0 .55  0.71 
0.22 0.43 

0 .00  0.06 
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7/t k 

7 840 
I 317 

2 239 

43 42 
14 

5 4 
6 4 

, 
-> o 

2 

B e lg ium 1958 G r e a t - B r i t a i n  1968 

MLE: 01 = - 0.1839:02 = - 0.1045; 0~ = - 0.0078 

LSTE: 01 = - 0.1883; 0, = - 0 0699; 0:3 = - 0.0337 

MLE: O] = - 0.1285:07 = - 0.0182: 0.~ = - 0.0048 

LSTE: 01 = - 0  1289; (J2 = -0 .0183;  0:~ = -  0.0048 

ML L S T  

7 840.00 7 836.81 
I 316.97 I 330.77 

239.00 221.81 
49.31 48.47 
11.48 13.77 
2.98 4 .84  
0.85 2.01 
0 .26  0.95 
0.14 1.57 

k 71/,, 

0 370 4i2 
1 46 545 
2 3 935 
3 317 
4 28 
5 3 

->6 0 

3.38 I 2.36 X ~  
L 

S w i t z e r l a n d  1961 G e r m a n y  1960 

ML L S T  

370 444.17 370 412.38 
46 519.72 46 544.74 

3 928.66 3 934.60 
316.79 317.53 

27.60 27.68 
2.71 2.72 
0.35 0.35 

0.03 0 .00  

MLE: 01 = - 0.1447:07 = - 0.0555; 0,~ = - 0.0099 

LSTE: ~j = - 0.1447:02 = - 0.0571: 0:j = - 0.0078 

k ~.~ 

Q 103 7o4 
I 14 075 
2 1 766 
3 255 
4 45 
5 6 
6 2 

->7  0 

MLE." O] = - 0 1359; 07 = - 0.0387; 0:~ = - 0.0154 

LSTE: 0~ = -0 .1358:  0.~ = -0 .0414;  0~ = - 0 . 0 1 3 0  

ML ] L S T  

103 706.62 103 708.19 
14 056 .34  14 061.18 

I 778.12 1 781.10 
256.80 251.79 

43.68 40.95 
8.69 7.64 
1.99 1.62 
0 .72  0.53 

1.17 0.91 

k 72k 

0 20 592 
I 2 651 
2 297 
3 41 
4 7 
5 0 
6 I 

>_7 0 

,y2 
• o b . s  

ML L S T  

20 592.00 20 593.44 
2 650.60 2 648.58 

297.19 298.96 
40 .30  39.76 

6.90 6.52 
1.46 1.30 
0.37 0.31 
0.18 0.13 

0. I I 0 .06  

Be lg ium 1993 Be lg ium 1994 

MLE" 01 = -  0.1017; 0~ = - 0.0165:03 = - 0.0185 

LSTE: 0~ = - 0.1017:02 = - 0.0183; 00;~ = - 0.0168 

k 7~ ML L S T  

0 
I 
2 
3 
4 

2 5  

2 

MLE ~Ji = - 0.1000; 02 = - 0.0253:03 = - 0.0095 

LSTE: 0~ = - 0.1000; 07 = - 0.0243; 0:~ = - 0 0091 

57 178 
5 6 1 7  

446  
50 

8 
0 

57 178.02 
5 615.00 

448 .56  
48.25 

7.22 
1 .95  

0.23 

57 179.55 
5 613.30 

450.23 
47.39 

6.82 
1 .72  

0 .22  

k ] 7£/. 

0 I 18 700 
I 11 468 
2 930 
3 70 
4 14 

_>5 0 

ML L S T  

I 18 698.38 I 18 697.78 
I I 463.87 11 481.01 

921.22 908.95 
86.61 83.24 
10.13 9.43 

1.77 1.59 

3.64 3.41 
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