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ABSTRACT 

This paper finds payoff frequency distributions for valuing European and 
American fixed strike average options on a discrete time, recombining multi- 
plicative binomial asset price process. In comparison to other discrete valuation 
methods the distributions, obtained analytically from a generating function, 
greatly reduce the computational requirements needed for accurate valuation. 
Less data are needed to value geometric than arithmetic averages, but the 
magnitude of calculations is similar for both instruments. Calculations of  order 
T ~ are needed to value European instruments, of  order T 4 to value their 
American counterparts. A frequency distribution of a quantity called pathsums is 
used to value geometric average options, and a joint distribution of path sums 
and realized prices is used to value arithmetic average options. The frequency 
distributions give an exact value for geometric average, an approximate value for 
arithmetic average instruments. The method obtains additional information from 
the generating function to estimate approximation errors relative to the exact 
binomial solution. If  the errors are significant they can be reduced using still 
further detail from the generating function. Error reduction can be performed 
selectively to minimize additional calculation. 

K E Y W O R D S  
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I .  INTRODUCTION 

Average options are instruments whose payoff depends on the average price of  
the underlying asset, determined over a prespecified period. The averages may be 
either arithmetic or geometric, and there are both fixed strike and floating strike 
average options, with the former being by far the most common. Jarrow and 
Turnbull (1996: 651: hereafter JT) state that average options are used in foreign 
exchange and commodity trading as well as in interest rate contracts. Commodity  
based options are written on such assets as oil or aluminium. JT note that the use 
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of an average price reduces an option's sensitivity to price changes in the 
underlying commodity, especially to price changes occurring at or near contract 
maturity. Reduced sensitivity to prices can prove especially important in the case 
of illiquid commodities. 

Because of their path dependence, average options are generally regarded as 
difficult to value, despite the following considerable progress. European fixed 
strike geometric average options have known analytic solutions for both 
continuously and discretely determined averages. Valuing European arithmetic 
average options on a continuous time process is more difficult, mainly because the 
conventional choice of process is a geometric diffusion for which the distribution 
of prices' arithmetic averages is not lognormal. Nevertheless, analytic solutions 
for European arithmetic average options have been found for continuously 
determined averages by Yor (1992), and Geman and Yor (1993); Geman and 
Eydeland (1995) report computational experience with these methods. 

There are no analytic solutions for continuous time models with discrete 
averaging, although Turnbull and Wakeman (1991), Levy (1991), and Curran 
(1992) offer approximate solutions. Neither have discrete time models been 
studied analytically. Hull and White (1993) approximately value arithmetic 
average instruments on a binomial process. Neave (1993) uses a binomial model 
to calculate values for European and American arithmetic average options. Ho 
(1992) and Tilley (1993) propose simulation with bundling techniques for 
reducing calculations, and Tilley uses his approach to value both European and 
American average options. Ritchken, Sankarasubramanian and Vijh (1993) 
approximately value European arithmetic average options with up to 64 reset 
points, American options for up to 16 reset points, and compare their 
approximations to values obtained by simulation. 

Methods such as Turnbull and Wakeman's are sufficiently accurate for 
processes with an annual volatility of 0.40 or less, but some price processes (e.g., 
those for alumint, m and crude oil) exhibit higher volatilities. Moreover, for a 
fixed number of time periods T convergence of approximate to exact values 
becomes slower as volatility increases.This paper reduces the computational tasks 
in valuation for any volatility, it both offers new approximation methods with 
greater accuracy than those in the literature, and shows how the approximations 
can be amended to find exact valuations. It achieves these goals by organizing the 
data along lines indicated by a generating function. 

While less data are needed to wdue geometric than arithmetic average 
instruments, in both cases the calculations are of order T 3 for European 
instruments, of order 7 ~ for American instruments, where T is the number of time 
periods. (Both n and T are used to denote time in the literature; T is used in at 
least two recent texts.) The calculations employ sets of paths called bundles, 
where a bundle is defined as the set of all possible paths of the same length and 
having a common end point. Each bundle can be broken into sub-bundles, where 
a sub-bundle consists of the paths in st bundle that have the same pathsum, the 
latter being defined as the sum of path price indices. The number of paths in each 
sub-bundle is described by the so-called Gaussian binomial coefficients, for which 
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analytic formulae are available. Distributions of path sums can be used to value 
European and American geometric average options exactly, the latter by recursive 
methods. 

Another description of path characteristics, the joint frequency distribution of 
path sums and realized prices, is obtained from the same generating function in 
this paper. The joint distribution can be used to obtain good approximate values 
of both European and American arithmetic average options. In the European 
case, exact solutions can be found from the approximations with relatively little 
additional computing. Further experimentation is needed to determine the best 
way of refining the approximations to obtain exact values of the American 
options. 

The methods can be applied to a variety of options, but for illustrative 
purposes the paper only values fixed strike average calls. The discussion is 
organized as follows. Section 2 specifies the asset price process and defines the 
options. Section 3 describes the problem structure, defines the generating 
function, and specifies the frequency distributions. Section 4 values a European 
and an American geometric average call. Section 5 values the corresponding 
arithmetic average calls; Section 6 concludes. Appendices detail some features of 
the methods. 

2. THE PRICE PROCESS AND THE OPTIONS 

This section defines the price process and formulates European call valuation 
problems. A recursive form of the European valuation problem is developed to 
show how bundling methods can be extended to value American as well as 
European instruments. 

2.1. The Process and its Averages 

Let So = 1, and define {S,}, the asset price process, by: 

S, = US,_i; 

where for t E {I, 2, ..., T}, 

(2.1) 

U =  {u; p u-I; q 

with u > 1. The realized price cannot become negatDe, and remains finite for 
finite values of T and u. Cox and Rubinstein (1985) show that one continuous 
time limit of the binomial process is the lognormal; Feller (1957) provides 
parameter values for which the limiting distribution is the Poisson. 

It is helpful to rewrite (2.1) as 

t 

S , = u S ' ; J , ~ - Z X , . ;  t =  I, 2, ..., V (2.2) 
s= I 
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where the X,., s = 1, 2 . . . . .  T are independent, identically distributed random 
variables: 

!; p 
Xs ~ - I ;  q. 

The values J , ,  t = O, 2 . . . . .  T are called n o d e  values. Since So ~ I, J0 ~ 0. The 
cumulative sums of node values 

I I 

v, _= ~ J.,. = ~ ( t -  s) x.,+. (2.3) 
s=O s=O 

are called p a t h  s u m s .  Define the process averages, geometric and arithmetic 
respectively, by 

= Lno,, ] ,,,,+,, 
(2.4) 

= uV,/(t+U 

and 

= [~ua ' ] / ( t+l )s=0 (2.5) 

Given u, (2.4) shows that the V, are needed to determine geometric averages, 
while (2.5) shows that the J . , . , s  = 0 . . . . .  t are needed to determine arithmetic 
averages. 

2.2. Standard Indices 

It is convenient to represent the possible outcomes of (2.1 as in Figure I. For 
T=  4, the Figure arrays successive periods' outcomes along the main diagonals, 
starting with t = O  in the lower left hand corner. Price increases are represented by 
upward moves, decreases by horizontal moves to the right. 
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FIGURE I: Original Indexing. 

Price paths can be described either by a sequence of realized prices or, as 
Figure I and the subsequent discussion suggest, by the timing and signs of  their 
first differences. For example, the path with price indices 

0 - 1 - 2 - 3 - 4  

is described by the vector of  first differences 

( X t  X2 X3 X4)'= ( -1  - I - l - l ) ' ;  

while the path with indices 

0 1 0 - 1 - 2  

is described by 

( X  I X 2 X 3 X'4) t =  (+1 - 1 - 1 - 1)'. 

The respective path sums - I  0 and -2  can be calculated either from the node values 
or, using (2.3), from the X,. Using (2.3), the path sum for the second path above is 

4 - 3 - 2 -  I = - 2 .  

Information regarding paths and path sums can be determined systematically 
from a generating function that recognizes the sign and timing of first differences. 
For example, when t = 4 a suitable generating function is 

4 

f 4°O ', w) = H 0'-' w-q + Y"J) = 
j=l  

y - 4 w - 1 0  + y - 2 ( w - 8  + w -6 -t- w -4  "1- W -2)  (2.6) 

+y°(w-4 + w -2 + 2w ° + w 2 + w 4) 

-}-y2 (W2 -I" 14 ,4 -1"- W 6 '1-W 8) q -y4wl0-  
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Tile terms y-~ in the first line of (2.6) record the effect on the time 4 price of any 
differences such X, = - 1 ,  while the terms y~ record the effect on the time 4 price 
of any differences such that X, = 1, t E {I, 2, 3, 4}. The terms w -5 record the 
effect on the path sum if X4+i-.,. = - I, while the terrns w 5 record the effect on the 
path sum if X4+1-.~ = I; s E {1, 2, 3, 4). 

Lines 2 through 4 of (2.6) suggest grouping paths according to powers of  3'. Let 
a bundle B(t,j)  be tile set of  all paths ending at (t,j).  For any given bundle 
defined by (2.6), the associated polynomial in w defines the distribution of path 
sums: powers of  w indicate the values of the sums, coefficients of  individual terms 
indicate the frequencies with which the sums are attained. For later use, let a sub- 
bundle B(t,j, V) be the set of all paths in B(t,j)whose indices sum to V. The 
number of  paths in each sub-bundle is given by the coefficients of  the appropriate 
polynomial in w. 

Function (2.6) and Figure I help both to structure valuation problems and to 
simplify path descriptions. With regard to structure, Figure 1 indicates that the 
attainable set of realized indices for paths in B(4,0) is defined by the rectangle 
with lower left-hand corner at (0, 0) upper righthand corner at (4, 0). The Figure 
can be used to verify that B(4. O) consists of  4!/2!2/ = 6 paths, all with the same 
probability of  occurrence, and that the maximal and minimal path sums in 
B(4, O) are 4 and --.--4 respectively. Accordingly, the set of  possible values for path 
sums in B(4,0) is 

- 4 - 2 0 2 4 ,  

and (2.6) shows these wdues respectively occur with the frequencies 

1 1 2 1 1 .  

With regard to simplifying path descriptions, the paths in a given bundle are 
distinguished by different orderings of price increases and decreases, but the 
timing of the increases implies the timing of the decreases. For example, since all 
paths in B(4, O) have two increases and two decreases, the path for which 
X~=X2= I must also have X3:X4=-I, from which it follows that the path's node 
values are 

0 1 2 1 0 .  

Generalizing the example, the paths ill any bundle can be described fully just by 
specifying the values of  s, s E {1, 2, ..., t}, for which Xs = 1. More formally, 
path characteristics can be inferred from a standardized process which replaces S, 
in (2. 1) with S~, where 

f 

- ~ ;  ~ = ~ X~.~; (2.7) 
s =  I 

I ; X ~ .  = 1 I 
_= o ;  x l l  - . 
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A s tandard ized  process for t = 4 is d isp layed in Figure  2. 
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FIGURE 2: Standard Indexing. 
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where x =- v 2 and i, ~ it ,2. When using the s tandard ized  process the mult ipl icat ive  
cons tant  x':4) '-m is ignored and the generat ing function writ ten in the s impler  
form 

4 

ja(x, 1,)= H (~ +.,-1~)= 
j=l 

I + X ( V  I + I' 2 + 1,3 + V 4) 

+ x  2 (v 3 + v 4 + 2v 5 + 1,6 --t- I '7) (2.9) 

-I"x3 (I ~6 -{- 1,7 -{- I 's -'}- I '9) -t-X41 sl0 = 

1 +xv[(v 4 -  I ) / ( v - I ) ]  + \'2v3 [(v 4 -  l)(v 3 -  l)/(, '  2 -  i ) ( ~ - I ) ]  

'q--A'3V6 [(l  ' 4 -  l ) / ( l ' - - I ) ]  -I- X4p lO = 

=-- g4,0(v) + xvg4.i(v) + x2v3g4,2(v)+ 

X 3 v6g4,3 (V) --{- x4gl°g4,4 (v). 

The generat ing function for the s tandard ized  process is ob ta ined  by rewrit ing 
(2.6) as: 

4 

S°(y, '")= I10 ' - ' , , ' - '  + y"J) = 
s=, (2.8) 

4 
y - 4 W - 1 0 H  1 + X l d ) ,  

j=l 
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More generally, the generating function for the standardized process is: 

I 

:,(", ")= YI +-"")= 
j*=l 

! 

E gtd. (v)v/*0*+ 1)/2;*. (2. I0) 
.i*=0 

The functions gt.i,(v) in (2. 10), known as Gauss ianpolynomials ,  take the form 

r I  v'+ i-#" j* (2. I I ) 1 
g,,/*(v)= v ~ - I  ; 1 <  <t, 

i 

k=l 

and gt, o.(v) =- 1; cf. Berman and Fryer (1972). The coefficients of the gr (v), 
which can be written as polynomials, define the so-called Gauss ianbinomialcoe f -  

f ic ients .  In the present setting the Gaussian binomial coefficients gr.j. (v) describe 
the frequencies of V*, conditional on J* =j*. it is clear from comparing (2.6), 
(2.7) and (2.9) that 

Jt = 2 " 4  - t; . 
(2.12) 

V, = 2. ~ - t(t + I)/2. 

The possible values J; are the integers from 0 to t, those of ~ the integers from 
zero to t ( t  + 1) /2.  

The sub-bundles defined by (2.10) can be used directly to value European 
average options, but recursion relations between the sub-bundles are needed to 
value American options. As Section 3 will show in greater detail, the necessary 
relations can be determined fi'om (2.10) 

.D(x, ,,)=.l;_~(x, ,,)(i +.\-,,'), 

in conjunction with: 

gt,o " = g t - l , O ;  

g , , d=g~_ l . /+g t_ l , j _ l v l~ / ,  j =  I, 2, ..., t - -  I; 

gt ,  t ~ . g t - I ,  t - I  

2.3. European Fixed Strike Average Calls 

The payoff to a European fixed strike average call with exercise date T is 

CT ~ (AT-- K) + (2.13a) 
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where A r is a random variable representing either a geometric or an arithmetic 
average and X+ means max{X, 0}. The geometric average call uses A'r-- GT, 
where GT is defined by (2.4), and the arithmetic average uses AT =-- HT, where HT 
is defined by (2.5). Given a probability measure p, the time zero values o f t h e  
European options are 

Co - R -TE(A ' r -  K) + (2.13b) 

where E denotes expectation under p and R I _= (1 + r) ~ indicates the t-period 
accumulation of $1 at the single-period risk free interest rate r. Recursive 
approaches can be used with either a martingale or with objective probability 
measures; cf. Dixit and Pindyck (I 994). Schwartz (I 994) discusses the theoretical 
correctness of using the different measures. In consistency with option pricing 
theory, we assume no arbitrage opportunities, market completeness, and 
that transactions costs are zero. Then a unique martingale measure 
p * = ( R - u - i ) / ( u - u - ' )  can be obtained from the normalized process 
S~ = Si /R  ~. The paper uses p rather than p*, reserving the asterisks to denote 
standard indexing. 

To value the American analogues to (2.13a) and (2.13b), it is convenient first to 
formulate (2.13b) with the states defined as individual price paths.The methods 
will then be adapted to find recursions between slates defined as path sums. We 
first number paths according to 

T 

Z = - Z  ~.,..2 T-', (2.14) 
s= I 

and note the state variable Z can assume the realized values 
z E {0, 1, ..., 2 "/"- 1}. Identifying the paths using values of  z (2.13b) can be 
written: 

Co(z) - R-TE{(A(z) - K)+}, (2.15) 

where A(z )  indicates an average over path z. There are 2 r possible realized 
values of Z, making computation infeasible when T is large. The states are later 
redefined so that for computational purposes it is only necessary to recognize 
distinct values of  order T 3. Since H(z)>_ G(z) for sill z, (2.15) immediately 
confirms the restllt, first pointed out by Kemna and Vorst (1990), that the value of 
a European arithmetic average call is never less than the value of the 
corresponding geometric average call. 

A recursive formulation is not needed to solve problem (2.15), but will help 
relate our methods for valuing European options to those for their American 
counterparts. Suppose henceforth that the z are arranged in increasing order at 
time T i.e., 

O, I, ..., 2 7"- I. 
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Examination of Z shows the path numbers are lexicographically ordered by the 
signs of path first differences. For example, the pair of paths 2 r -  1 and 2 r - 2  
differ in the sign of the first difference taken between times T-I and T. The 
same is true for the pair 27"-3 and 2T-4, and for all remaining pairs of adjacent 
paths. After the expected value at time T-I is taken over pairs of paths that are 
adjacent in terms of z, the states then requiring to be distinguished are indicated 
by 

z E  {0, 2, ..., 2(2 T - ' -  l)}. 

Again adjacent pairs of the remaining paths differ in the sign of what is now the 
first difference between times T-I  and T-2. That is, tile remaining states are 

z E ( 0 ,  4, ..., 4(2T-2-- I)}. 

The process continues until time 0, when the single state denoted by z = 0 is 
reached. The path nurnbering method is further illustrated in Table 3 below. 

Using the relations between values of Z, (2.15) can be written recursively as: 

cT(z) -= (AT(z)-  K)+; 

z ~ {0, l, . . . ,  2 r -  l} ~z . r ;  

CT-I (Z) ~ R -I {pCT(.Z + l )  + qCr(z)}; 

z E { j . 2 : i = O ,  2, ..., 2 r - I - - l } ~ Z . r _ l .  (2.16a) 

In (2.16a) Cr(z) is the value of the European call at time T i f t h e  price path from 
time 0 time time T is described by z. In general, 

CT_,(z) -- R- '{pCr_t+l(z+2'- ' )  +qC'r_,+,(z)}; (2.16b) 

z E  { j . 2 ' : j = 0 ,  1, . . .2 " r - t -  I} =-Zr_,.  

When t = T, (2.16b) defines the time zero call value. 

2.4. American Fixed Strike Average Calls 

To write the recursion for the American call, (2.16) is arnended to recognize the 
effect of early exercise. Let D,(z) be the time t value of the call if the price process 
has followed path z from time 0 to time t: 

DT(Z) ~ CT(Z); 
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z E ZT; 

DT-,  (z) = max  { (AT- ,  (z) -- K) +, R -I [pD.r(z + 1) + qDT(Z)]}; 

and 

Z E ZT- i  ; 

(2.17) 

DT_,(z) =-- max{ (AT_ , ( z )  -- K) +, R -t  [pDT-t+i (z + 2 ' - ' )  + qDT-,+, (z)] }; 

z E Z.r_~. 

In conformity with the standard result that the value of an American call is never 
less than that of  its European counterpart,  equations (2.17) show immediately 
that D,(z) > C,(z) for all feasible values of z and t. 

Since they recognize 2 T distinct paths, computations based on (2.16) and (2.17) 
increase exponentially in T. To reduce computation, the rest of this paper defines 
state variable values as the values defining path sub-bundles. In the American 
case the paper further determines how sub-bundles at a given time point are 
related to sub-bundles for the immediately preceding time. This approach reduces 
the number of  calculations to cubic or fourth degree polynomials in T, according 
to whether European or American options are being valued. (The higher degree 
of polynomial for American options results from having to repeat the calculations 
at each of the T stages in the problem.) The approach gives exact values for 
geometric average options, approximate values for arithmetic average options. In 
the latter case, approximation error can be estimated and eliminated using 
relatively little additional calculation. 

3. PROBLEM DATA AND VALUATION METHODS 

This section states process parameters, then discusses how paths can be 
bundled for valuation purposes. The methods use properties of  (2.10) to adapt  
(2.16) and (2.17). 

3.1. Process Parameters; Option Specifications 

To enhance comparisons anaong different types of  instruments, the same process 
parameters are used to value examples of four options - European and American 
geometric and arithmetic fixed strike average calls. As specified in Table 2 below, 
the examples value instruments oil (2.1) with T =  6 quarterly time intervals, an 
annual volatility ~7 = 0.40, and a risk free rate i" = 0.10 per annum. The initial 
asset price is So = 1.00. Let k be defined as the solution to u k = K  and take K =  
1.00, so that k = 0. All options are assumed to expire at time T. If an option is 
exercised at time t, its path averages are defined over times 0 ..... t. For European 
options t = T, for American options the early exercise feature means t < T. 
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Section 6.1, reporting computational experience, values European arithmetic 
average calls for t E {6, 12, ..., 48}, a E {0.40, 0.60, and 0.80}, and the re- 
maining parameters as indicated in Table 2. 

T A B L E  2 

D A T A  FOR V A L U E  COMPARISONS 

A t  = 0 . 2 5 0 0 0 0  

T = 6 o- = 0 . 4 0 0 0 0 0  p e r  a n n u m  

7- = 0 . 1 0 0 0 0 0  p e r  a n n u m  

R = 1 . 1 0 0 0 0 0  -~r' = 1 . 0 2 4 1 1 4  p e r  q u a t e r  

.u = 1 . 2 2 1 4 0 3  = e x p  ( 0 . 4 0 0 0 0 0 / ( 0 . 2 5 0 0 0 0  .5) 

i, = 0.510051 = (R - ,r')/(,L - .,L -~) 
q = 0 . 4 8 9 9 4 9  = 1 - p /K = "u ° = 1 . 0 0 0 0 0 0  

3.2. Ordering and Bundling Paths 

Valuing a fixed strike average call involves finding a probability distribution of 
paths whose averages exceed K. These calculations' efficiency can be enhanced by 
organizing the data as indicated in Figure 3. Figure 3 shows the relations between 
a bundle and its sub-bundles, as well as the behaviour of the bundle's arithmetic 
averages when the paths are organized as shown. Each cell in Figure 3 represents 
a path in the bundle B(8,0), and the cell height indicates a path arithmetic 
average, in this case when a = 0.80. Each (horizontal) bar of cells represents one 
of the sub-bundles of  B(8, 0), with the length of  the bar indicating the number of  
paths ill the sub-bundle. The different heights within a bar indicate distinct sub- 
bundle arithmetic averages, the number of  which is generally very much less than 
the sub-bundle' s number of  paths. All the information conveyed by the graph can 
be obtained analyticaly, and all features of the graph except the cell heights are 
invariant with respect to volatility. Grouping paths into sub-bundles as indicated 
by the graph orders both the sub-bundle geometric means and the minima and 
maxima of sub-bundle arithmetic averages, properties used to advantage in the 
subsequent valuations. 

Using the approach suggested by Figure 3, Table 4 organizes the data needed 
to obtain sub-bundle means of arithmetic averages inB(6, 0). Each line of  the 
Table 4 records, in the first thirteen columns, data needed to obtain such a sub- 
bundle mean. (Table 4 is shown with more columns than would normally be used 
in practice.) Column g indicates the numbers of paths in each sub-bundle, column 
V the path sum defining each sub-bundle, and column V* the standardized path 
sums. Column M/g calculated from the index frequency section of Table 4, 
defines the sub-bundle mean of path arithmetic averages. For example, in the row 
forB(6, O, -5) M/g = 6.126512, indicating the mean of the arithmetic averages of  
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t h e  t w o  p a t h s  in t h e  s u b b u n d l e  is 6.126512/7.  W h e n  t h e  s u b - b u n d l e s  a r e  o r d e r e d  

b y  V, t h e  v a l u e s  in c o l u m n  M / g  i n c r e a s e  m o n o t o n i c a l l y ,  a s  i l l u s t r a t e d  b y  t h e  

e x a m p l e .  

k 

::.~:~': ~ . . . . . . . .  :. ::i~::" .:~ . . . . . . .  

-6 

S 

2 u 
-,-4 
4.1 

4.1 
0 ""4 

FIGURE 3. Arithmetic Averages in B(8,0); o = 0.80. 

TABLE 4 

FREQUENCY DISTRIBUTIONS FOR B(6. 0) 

Indices 

-6  -5  -4  -3  -2  - I  0 1 2 3 4 5 6 g V V' M/g 

0 0 0 1 2 2 2 0 0 0 0 0 0 I -9  6 5.526912 
0 0 0 0 2 3 2 0 0 0 0 0 0 I -7  7 5.796831 
0 0 0 0 2 6 6 0 0 0 0 0 0 2 -5  8 6.126512 
0 0 0 0 2 7 I0 2 0 0 0 0 0 3 -3  9 6.504853 
0 0 0 0 0 6 12 3 0 0 0 0 0 3 - I  10 6.858864 
0 0 0 0 0 3 12 6 0 0 0 0 0 3 1 11 7,261537 
0 0 0 0 0 2 10 7 2 0 0 0 0 3 3 12 7.723644 
0 0 0 0 0 0 6 6 2 0 0 0 0 2 5 13 8.156035 
0 0 0 0 0 0 2 3 2 0 0 0 0 I 7 14 8.647860 
0 0 0 0 0 0 2 2 2 I 0 0 0 1 9 15 9.248576 



186 EDWIN H. NEAVE 

3.3. Frequency Distributions 

Let the vector gl, j. represent the coefficients g,,.i,(v). It follows fi'om (2.1 I) that 
gl.j. describes the frequency distributions of path sums for both B(t, j*, V*), and 
B(t, .[, V). Columns g and V of Table 4 can thus be written directly from the 
gt,j,(v). The index frequency data in the first thirteen columns of Table 4 can be 
obtained using two-fold convolutions of  (2. II). Consider each in turn. 

The function (2.10) generates the data in columns g and V directly. (Subscripts 
are omitted when the context permits.) ConsiderB(6, 0), i.e. B(6. 3*) in 
standardized notation. Using (2.10) and (2. I I), the range of values for V* is from 
6 to 15, and their frequencies are obtained from 

g6,3.(v) = (1/6- [)(I ' 5 -  ] ) ( F 4  l ) / ( I , - l ) ( 1 , 2 -  ])(1,3- [) 

= (,,, + ,,3 + ,,2 + , ,+  l) (,,3 + l) (,,2 + l) .  

Expanding the last line, it follows immediately that 

g6.0 = g6,3. = (I I 2 3 3 3 3 2 1 1)', 

the values reported in column g of Table 4. 
To derive the indices columns in Table 4, consider any price attained by one or 

more paths in B(6, 0), and any one of the times at which that price can be 
attained. Then, consider the twofold convolution describing how those time-index 
combinations are related to the path sums at time T. A term from this 
convolution gives a frequency distribution of path sums for paths attaining the 
given time-price combination. Finally, since a given price can be attained at more 
than one point in time, the frequency distributions are summed across time to find 
the frequency distribution of path sums associated with the price index. 
Calculating these distributions for all attainable prices gives the joint frequency 
distribution for the bundle. The frequency data are generated column by column, 
as shown in Appendix II. Effectively, this rnethod circumvents the analytical 
difficulty that the sum of Iognormal variables is not lognormal. 

In practice the data of  Table 4 are computed using a forward recursion.The 
manner of  constructing the data means they remain the same for all options of  the 
type discussed here, so the valuation problem involves a setup cost that only 
needs to be incurred once. 

4. VALUING GEOMETRIC AVERAGE CALLS 

This section values the European and then the American geometric average call. 



A FREQUENCY DISTRIBUTION METHOD FOR VALUING AVERAGE OPTIONS 187 

4 .1 .  V a l u i n g  the  E u r o p e a n  G e o m e t r i c  A v e r a g e  C a l l  

European geometric average options can be valued from just columns g and V of  
arrays like Table 4. Table 5, organized in a fashion similar to Table 4, shows all 
the data needed to value the European geometric average call. That  is, Table 5 
displays the frequency distributions for all sub-bundles 

B(6, j, V) ; jE  { - 6 ,  - 4 ,  ..., 6); VE  { -21 ,  - 1 9 ,  ..., 21}. 

As in Table 4, blanks indicate unattainable combinations.  

TABLE 5 

NUMBERS OF PATHS BY SUB-BUNDLE 

V/J -6 -4 -2 0 2 4 6 

-21 
-19 
-17 
-15 
-13 
-II  
-9 
-7 
-5 
-3 
-I 

1 
3 
5 
7 
9 

II 
13 
15 
17 
19 
21 

I 
1 
2 
2 I 
3 I 
2 2 
2 3 
I 3 
1 3 

3 
2 
I 
1 

Totals I 6 15 20 15 6 

The Table 5 data and the parameters o f  Table 2 are used to calculate the call 
payoffs shown in Table 6. For  example, the contr ibution to call value orB(6,0.5)  
is: 

( )* 2.  1.2214035/7- 1, 0 =0.307130.  

The 2 is the number  of  paths in B(6,0, 5), 1.221403 is the value of  u, 5/7 is the 
index of  the geometric average over the periods 0 through 6, and 1 is the exercise 
price. 

The entries in each column of  Table 6 are summed and multiplied by the 
appropria te  probabilities as shown in the Table 's last three lines. For  example, 
column 2 adds to 3.489205 and the probabili ty for each of  its paths is p4q2 = 
0.016246 when p = .510051  and q = 1 -p .  The third line, the product  of  sums 
and probabilities, is summed over all columns and multiplied by R -6 to obtain the 
time 0 discounted call value o f  0.12 t 869. 
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TABLE 6 

EVALUATING THE EUROPEAN GEOMETRIC AVERAGE CALL 

V\J -6 -4 -2 0 2 4 6 

-21 0.000000 
-19 0.000000 
-17 0.000000 
-15 0.000000 0.000000 
-13 0.000000 0.000000 
- I I  0.000000 0.000000 

-9 0.000000 0.000000 
-7 0.000000 
-5 0.000000 
-3 0.000000 
-1 0.000000 

I 0.028984 
3 
5 
7 
9 

II 
13 
15 
17 
19 
21 

Column Sums 
0.000000 0 .000000 0.028984 

Probabilities 
0.013833 0.014400 0.014991 

Expected Values at Time 6 
0.000000 0.000000 0.000343 

European Geometric Average Call 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.086951 
0.268485 
0.307130 
0.221403 
0.293230 

0.000000 
0.028984 
0.178990 
0.307130 
0.664209 
0.586460 
0.738563 
0.449805 
0.535064 

0.293230 
0.369281 
0.449805 
0.535064 
0.625336 
0.720918 

0.822120 

1.177199 3.489205 2.993634 0.822120 

0.015606 0.016246 0.016913 0.017607 

0.018371 0 .056687 0.050631 0.014475 

] 0.121869 ] 

4.2. Valuing the American Geometric Average Call: Recursions 

The  A m e r i c a n  geomet r ic  average call is valued us ing a specialized vers ion o f  
(2.16) that  defines recurs ions  be tween  sub -bund le s :  

DT-,(/ ' ,  z) ~ gr-,,j.: m~x{(Gr_ , ( / ' ,  z) - K) +, 

R - I  [pDT-t+I(]  + 1, z + j +  I)/gT-,+l,j+l, : + j + l +  

+qDr-,+lO-- 1, z +.j-- l)/gT-t+l..i-t.z+i-I]}; (4.1) 

j E  { - ( T - t ) , - ( r - t ) + 2 ,  ..., T - l } ;  

z E {VT- t , j} ;  t E {0, ..., T}, DT+i(') --z O, 

where  gr-t.j,z is the n u m b e r  o f  pa ths  in B(T-t , j ,  z) and  {VT-t,j} is the set o f  
values  def ined by the coefficients o f  gT-t,j.. The  recurs ion  re la t ions  be tween sub-  
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bundles can be derived from (2.10). For example, time 6 and time 5 frequency 
distributions are related by: 

f 6 ( x ,  v) = 

5 
(I + xv 6) Zgs,j .(v)vg(r+')/2x j" . (4.2) 

) '=0 

A bundle defined at time 6 combines paths from adjacent end points at time 5. In 
terms of standard notation B(6, .j*), has a distribution of path s u m s  g6:.j, 

determined by summing the generating function t e r m s  v6g5. (j-I). and g5,j.. A 
backward recursion to a bundle at time 5 must employ the relevant path sums and 
their frequencies taken from adjacent end points at time 6; again cf. (4.2). To 
perform the backward induction calculations at time 5 for an American option, 
the time 5 payoffs (with frequency distribution g 5 , j , )  a r e  compared with the 
expected value of the time 6 payoffs (with frequency distributions determined by 
v6gs.j, and gs,j. respectively). 

To illustrate the recursions using the original indices, consider B(5 , -5 , -15 ) .  
This subbundle's single path extends to the single path in B(6, -6 , -21)  if the price 
decreases between times 5 and 6, to a path in B(6 , -4 , -19)  if the price increases. 
(Remaining paths in B(6 , -4 , -19)  are reached from B(5, -3) ,  and form a part of 
the calculation of expected payoffs for B(5, -3) . )  For B(5, -5 , -15) ,  the payoff to  
holding the option is the expected value of the payoff from proceeding either to 
B>(6,  - 6 , - 2 [ )  or to B(6, -4 , -19) .  The payoff to immediate exercise for B(5,-5, 
-15) is zero, determined by comparing the geometric average u -t5/6 to the exercise 
price of u °. In this case no further calculation is necessary: the expected value of 
continuing from B ( 5 , - 5 , - 1 5 )  cannot be less than the value of immediate 
exercise, and therefore it is only necessary to record the expected value of 
continuing. Table 7 shows in greater detail how the frequencies at time 6 are 
generated from the relevant frequencies at time 5, and thus also shows how time 6 
frequencies can be divided to carry out the backward inductions just described. 

Sub-bundles can contain many paths, but examining (4. I) for T, T-1 ..... 0 
shows that each sub-bundle is defined to contain only paths whose payoffs are the 
same (for geometric average instruments) regardless of time point or nature of 
optimal policy. (The result is not true for arithmetic average instruments; see 
Section 5.) Thus bundling methods can be used for valuing both European and 
American geometric average options, in the latter case, for each of the two time 6 
parts of Table 7, a payoff table similar to Table 6 is constructed. The payoff tables 
for time 6 are then used to construct a table of expected discounted payoffs at 
time 5, and these are compared to the payoffs for immediate exercise at time 5. 

For example, there is one path ending at (6, 4) with a path sum of 19 and one 
path ending at (6, 6) with a path sum of 21. Both these paths emanated from a 
single path at (5, 5) with a path sum of 15. Since the payoffs at time 6 are 
O. 720918 and 0.822120 respectively, the expected discounted payoff at time 5 is 

.754346 = [(.489949)(.720918) + (.510051)(.822120)]/I .024114 
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TABLE 7 

RELATIONS BETWEEN PATH SUMS, TIMES 5 AND 6 

V\J -5 -3 - I  I 3 5 

-15 
-13 

- I I  
-9 
-7 
-5 
-3 
-1 

1 
3 
5 
7 
9 

II  
13 
15 

I 
I 
2 
2 I 
2 1 
1 2 
I 2 

2 1 
I 1 
1 I 

I 
I 

F r e q u e n c i e s  a t  time 6 

V\J -6  -4  -4  -2 -2 0 0 2 2 4 4 6 

1 -21 
-19 
-17 
-15 
-13 
- I I  

-9 
-7 
-5 
-3 
- I  

1 
3 
5 
7 
9 

II 
13 
15 
17 
19 
21 

| 
I 
I 
1 
I 
I 

l 
I 
I 1 
I I I 
1 2 I 

2 2 
2 2 

2 
I 
I 

I 
I I 
2 I 
2 2 
2 2 
I 2 1 
I 1 I 

I I 
I 
I 

I 
I 

To allow for early exercise, these expected values are compared to the values of 
immediate exercise at time 5, and for each comparison the maximum is recorded. 
In the present example, the payoff to B(5, 5, 15), 0.648722, is calculated just as in 
Table 6. Since 0.648722 < 0.754346, the optimal policy for this sub-bundle is not 
to exercise, and the value of 0.754346 is recorded in the payoffs to the optimal 
policy at time 5. 
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The complete set of  time 5 optimal decisions is given in Table 8, where C means 
it is optimal not to exercise, X means it is optimal to exercise immediately, and 0 
means the payoff  is zero whether the option is exercised or not. (The zero payoffs 
are recorded to display the form of  the time 5 optimal policy for all time 5 sub- 
bundles.) Note  that while the paths in B(5, 1,-1) have an immediate payoff  of  
zero - their time 5 geometric average is less than the strike price - there is still a 
positive payoff  to continuing, as shown by the C in the position (-1, 1), referring 
to the payoffs to B(5.1,-1). 

TABLE 8 

OPTIMAL DECISIONS AT t = 5 

V\J -5 -3 -I I 3 5 

-15 
-13 
-11 
-9 
-7 
-5 
-3 
-I 

I 
3 
5 
7 
9 

II 
13 
15 

0 
0 
0 0 
0 0 
0 0 

0 
0 
x 
x 

0 
C 
C 
C 
C C 
x C 
X C 

C 
C 

To continue with the backward induction, a time 5 frequency distribution, 
organized as in the second part  o f  Table 7, is used to divide the optimal payoffs at 
the prices -3,  - I ,  I, and 3 into payoffs for upward and downward  moves. (As 
before extreme prices are reached in only one way; price -5 by a downward  move, 
price 5 by an upward move.) The backward induction then proceeds from time 5 
to time 4, now compar ing  the discounted expected value o f  the optimal payoffs at 
time 5 with the payoffs to immediate exercise at time 4. Continuing the backward 
induction procedure until time zero is reached, choosing an optimal exercise 
policy at each time, gives a value for the American call o f  .126932. 

European Geometr ic  Average Call 0.121869 

American Geometr ic  Average Call 0.126932 
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5. VALUING ARITHMETIC AVERAGE CALLS 

Both European and American arithmetic average calls can be valued 
approximately using the joint frequency distribution of Table 4. The approxima- 
tion error can then be estimated, and if it is small enough no further calculation 
will be needed. If greater accuracy is desired some parts of the joint distribution 
must be elaborated. Obtaining further detail requires the procedures described in 
Appendix l, but can be done selectively and typically does not require extensive 
additional calculations. 

5.1. Initial Approximate Solution for the European Arithmetic Average Call 

Approximate values of  arithmetic average options can be obtained by using the 
kinds of data reported in the body of Table 4. Each line of  Table 4 is be used to 
find the mean of the arithmetic averages for all paths in a given sub-bundle. The 
approximation is based on assuming that the arithmetic average for each path in a 
given sub-bundle is exactly equal to the sub-bundle mean. With this approxima- 
tion, both European and American arithmetic average instruments can be valued 
in a manner analogous to that used for geometric average instruments in Section 
4. Of  course, the assumption introduces approximation error, but the error can be 
estimated and reduced with relatively few additional calculations as discussed in 
the next section. 

To obtain the approximate value of a European arithmetic average option, the 
methods of section 4 are adapted as illustrated in Table 10. The only difference 
between Table 6 and Table 10 is that the latter now contains payoffs determined 
from the means of sub-bundle arithmetic averages. The analogous payoffs in 
Table 6 were determined from geometric averages, known to be equal for all 
paths in any given sub-bundle. 

Table l0 shows a positive value for B(6, 2, -1), whereas the corresponding 
value in Table 6 was zero. The difference reflects the fact that arithmetic averages 
exceed geometric averages. The path in question is 0-1-2-1012, and has an 
arithmetic average of 1.003001 for u = 1.221403. 

European Geometric Average Call 0.121869 

American Geometric Average Call 0.126932 

European Arithmetic Average Call 0.136520 K 

Approximate Value 
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TABLE 10 

APPROXIMATE VALUE. EUROPEAN AVERAGE CELL 

193 

-6 -4 -2 0 2 4 6 

-21 0.000000 
-19 0.000000 
-17 0.000000 
-15 0.000000 
-13 0.000000 
-11 0.000000 

-9 0.000000 
-7 
-5 
-3 
-1 

I 
3 
5 
7 
9 

11 
13 
15 
17 
19 
21 

Column Sums 
0.000000 0.000000 

Probabilities 

0.000000 
0.000000 
0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.060526 0.112087 

0.310133 
0.330296 
0.235409 
0.321225 

0.013833 0.014400 

Time 6 Expected Values 
0.000000 0.000000 0.000907 0.020431 

Time 0 Approx Value of European Arithmetic Average Call 

0.003O01 
0.050O98 
0.215246 
0.343032 
0.734518 
0.626894 
0.782972 
0.477303 

0.368517 
0.426042 
0.496303 
0.582119 
0.686936 
0.814960 

0.060526 1 . 3 0 9 1 5  3.815184 3.374877 

0.014991 0.015606 0.016246 0.016913 

0.061983 0.057079 

0.971328 

0.971328 

0.017607 

0.017102 
0.136520 

5.2. Assessing and Reducing Approximation Error 

Approximation errors can be introduced by the methods of 5.1, because the 
arithmetic averages of  paths in a sub-bundle do not generally equal their mean. 
The present method could be expected to give good approximations even without 
additional refinements. First, it can only introduce error in a limited way, as the 
next section shows in greater detail. Second, the approximation itself should be at 
least as accurate as that of  Curran (1992). The present approximation is actually 
based on both geometric averages and path end points, whereas Curran's  is only 
based on the former. Some computational experience supporting the claim is 
given in section 6.1. 

More importantly, the approximation can only introduce error for a limited 
number of  sub-bundles. Whenver the maximal path average in a sub-bundle is less 
than the strike price, the subbundle contributes nothmg to the value of a 
European call and can be ignored. Whenever the minimal path average in a sub- 
bundle exceeds the strike price, every path in the sub-bundle contributes to the 
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value of  the European call, and using the mean of  sub-bundle arithmetic averages 
introduces no error. Since all paths in a sub-bundle have equal probability, the 
sum of  the individual path averages is n times their mean, where n is the number  
o f  paths in the subbundle. Thus the individual paths '  contributions to option 
value are n times the contr ibution calculated using the sub-bundle mean. 

The only sub-bundles for which error can be introduced in a European option 
are those for which the maximal path average exceeds the strike price and the 
minimum falls strictly below it. Such sub-bundles (which must have more than a 
single path) are said to be cut by the strike price. The number  o f  sub-bundles 
which can be cut by the strike price is relatively small, and the subbundles in 
question can readily be identified; see Neave and Stein (1997) for a method. To 
eliminate all approximat ion error, it is necessary to examine the sub-bundles 
which are actually cut by the strike price, and to correct the approximat ion 
calculations for those cases. 

To illustrate error estimation and reduction, consider B(6, O,-1) .  The 
aggregate data reported in Table 4 are: 

g V M/g 
Indices - I  0 1 
Frequencies 6 12 3 3 -1 6.858864 

The wdue of  M in the above extract from Table 4 is found using 

M = 60u -I + 12u ° + 3u I = 20.576593 

when u =  1.221403. Since all three paths in B (6.0,-1) have the same probability, 
the mean of  the sub-bundle arithmetic averages is M/3g = 0.979838. 
Approximat ion  error could arise if one or more of  the paths in B(6.0,-1)  had 
an arithmetic average in excess o f  I, the strike price. 

To eliminate approximat ion error, it is necessary to determine the frequency 
distribution o f  distinct arithmetic averages in any sub-bundle which can be cut by 
the strike price. Using the methods o f  Appendix I, it can be shown that the 
maximal path average in B(6, O,-l) is less than the strike price, which eliminates 
any need to examine it further. Nevertheless, to illustrate the issues more fully, it 
is useful to write out the individual paths according to rnethods outlined in 
Appendix I: 

Indices -1 0 I z V N 

Frequencies 2 4 I 37 -1 6.858864 
2 4 1 25 -1 6.858864 
2 4 I 21 - I  6.858864 

In this case the sub-bundle has only one distinct arithmetic average. However, if 
the sub-bundle had more than one distinct average, and if it were cut by the strike 
price, only the averages above the price would contribute to call value and the 
original approximat ion would have to be corrected. In the present example, 
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checking the remaining sub-bundles shows that no other subbundle can actually 
be cut by the strike price, and the exact value of the European arithmetic average 
equals the approximate value determined earlier. 

European Geometric Average Call 0.121869 

American Geometric Average Call 0.126932 

European Arithmetic Average Call 0.136520 1.2 

Approximate Value 2 Exact Value 

5.3. Initial Approximate Solution for the American Arithmetic Average Call 

The approximate value of the American arithmetic average call is obtained by 
using the methods of 5.2 recursively. A recursion relation identical to (4.1), except 
in its use of arithmetic averages, is used: 

Dr_,(/, z) -_- g r _ t . . i , : m a X { H T _ , ( j ,  Z) -- K) +, 

R-I[pDT_,+t(,i + 1, z + j + I)/gT-I+l,j+l.:+i+l+ 

+ q D r - t + l ( j -  I, z + j - I)/gr-;+l,./-I._.-/-I;]} (5.1) 

j e ( - ( r  - ;) ,  - ( T  - t) + 2, ..., T - ,}; _, e { V~/}; ~ ~ {0, ..., r } ,  

where gr-l , j , :  is the number of paths in the sub-bundle defined by j and z. 
Equations (5.1) give an approximate value because they assume that arithmetic 
averages are equal for all paths in each sub-bundle. Recursive relations between 
joint frequency distributions are determined using exactly the same methods as in 
Table 8. 

Using the inean value of payofrs for each sub-bundle, backward induction 
calculations can be performed just as in 3.4. The calculations give an approximate 
value of 0.14109.3 for the American call. 

European Geometric Average Call 0.121869 

American Geometric Average Call 0.126932 

European Arithmetic Average Call 0.1365201"2 

American Arithmetic Average Call 0.141093 i 

Approximate Value 2 Exact Value 
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5.4. Reducing approximation error 

The section 5.3 assumption that all paths in a sub-bundle have equal arithmetic 
averages can lead to calculating a sub-optimal option value just as with the 
European option. However, it is possible both to assess the approximation error 
and to reduce it in much the same way as before. 

In the backward induction calculations, the assumption of equal averages is 
used to divide payoffs according to the number of paths in each sub-bundle. To 
reduce approximation errors, it is necessary to evaluate which recursive 
calculations are affected by this approximation. The simplest way to eliminate 
all approximation error is to divide sub-bundles further on the basis of individual 
arithmetic averages, and then proceed exactly as in valuing the geometric average 
options. Unless computing resources are severely limited, this is probably the 
simplest way to eliminate all approximation error, since experinaents indicate the 
number of divided sub-bundles is roughly described by a fourth-degree 
polynomial in T. 

If the procedure of the foregoing paragraph is not followed, sub-bundles can 
contain differing arithmetic averages, and care needs to be taken in assessing and 
reducing the resulting approximation error. (The tradeoff between the two 
approaches is best assessed in the context of a given valuation problem.) A good 
rule of thumb is to begin by examining payoffs near the exercise boundary at 
some time period near 2T/3, and continue backwards to earlier times if 
significant errors are detected. Section 5.2 demonstrated the importance of 
examining payoffs near the exercise boundary; the reason for choosing a time 
period around 2T/3 is that typically more exercise decisions are made as option 
expiry nears. 

In the present example, suppose it is desired to find the details of the two paths 
in B(5,1,3), to check whether the assumption of equal arithmetic averages, which 
implies dividing payoffs in a I:1 ratio, gives a nearly optimal value. Using 
Appendix I, the two time 5 paths are: 

0 1 0 1 0 1  

0 - 1 0 1 2 1 .  

The two paths' arithmetic averages are 1.110702 and 1.125660 respectively, and 
thus their contribution to value under a policy of immediate exercise is.  110702 
and . 125660 respectively. However, if the two paths are extended to time 6, their 
expected values are 

(.165418p + .094887q) /R= .127646 

for the first path, and 

(.177884p + .107623q) /R= .140082 
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for the second. Clearly, the optimal policy for B(5, 1, 3) is not to exercise at time 
5. Even so, the optimal sub-bundle payoff of  

.267728 = .127646 + .140082 

should be divided on the basis ofexpected values rather than by numbers of paths 
as in 5.3. In the present example, this is the only refinement to the approximation 
needed to determine an optimum; all other divisions based on numbers of  path 
are already optimal. Thus, a single modification suffices to obtain the exact 
American arithmetic average option value of 0.141269. The difference between 
exact and approximate valuations indicates that before relying on approximations 
in practice, model-based evaluations of  their accuracy should be established. 

European Geometric Average Call :0.121869 

American Geometric Average Call 0.126932 

European Arithmetic Average Call 0.136520 ~'2 

American Arithmetic Average Call 0.141093 l 
0.1412692 

Approximate Value 2 Exact Value 

The literature does not stress the importance of assessing approximations in 
relation to a model determined optimum. However as evidenced by the 
approximate and exact values for the American arithmetic average call, the 
present example indicates that even plausible approximations can create 
significant valuation errors. More computational experience of the sort described 
in 6.1 is is needed to determine the likely incidence of errors for the American 
option. In practice it may prove useful to find an exact solution for a set of  typical 
parameter values and use that value to estimate approximation errors for 
American instruments when they are valued according to the quick methods of 
Section 5.3. 

6. EXTENSIONS AND CONCLUSIONS 

This section sketches computational experience to date and also remarks on how 
the paper 's methods can be extended to valuing other path dependent 
instruments. 

6.1. Computational Experience 

While computations using the method are still in the early stages, experience to 
date is encouraging. The data in Table l l, taken from Neave and Stein (1997), 
report our results for European arithmetic average calls with relatively large 
volatilities. 
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"FABLE II 

APPROXIMATE VALUES OF ARITHMETIC AVERAGE OPTION 

T ~ = 0.40 a = 0.60 a =  0.80 C P U  Secs 

6 .136520 .184712 .231945 0 
i2 .137026 .185367 .232823 0 
18 .137214 .185685 .233290 2 
24 .137322 .185862 .233547 7 
30 .137392 .185972 .233710 22 
36 .137441 .186046 .233822 52 
42 .137476 .186100 .233901 107 
48 .137502 .186142 .233963 204 

All unstated parameters are the same as in Table 2. Approximation errors are 
discussed below. 

Table I I suggests that, in the context of discrete models, the present method 
both increases accuracy and reduces calculation time. With respect to accuracy, 
Ritchken, Sankarasubramunian and Vijh (1993) use an Edgeworth approxima- 
tion to value European arithmetic average options, benchmarking their results 
usmg simulated values. For volatilities of 0.20 and 0.30 respectively, the standard 
errors in simulations for 16 to 64 periods are on the order of 0.004 to 0.005. For 
25 reset points, the relative approximation errors of this paper '  s method are 
0.0002 and 0.0009 for volatilities of 0.40 and 0.80 respectively (Stein, 1996), and 
exact valuations can be found with modest amounts of  additional calculation. 

An examination of Figure 3 suggests the present approximation is also likely to 
give greater accuracy than that of  Hull and White (1993). Our approach 
approximates arithmetic averages using sub-bt, ndle means, while Hull and White 
use nonlinear interpolation between arithmetic averages determined by the 
maximum and minimum path averages in a bundle. Our approach only 
introduces error in sub-bundles cut by the strike price, whereas nonlinear 
interpolation can introduce error at a greater number of sub-bundles. Finally, we 
can estimate and reduce the error created by a sub-bundle's being cut, while Hull 
and White offer no way of either estimating or reducing the error of their method. 

With respect to computation time, Table I1 reports the number of CPU 
seconds needed to set up and obtain the valuations. In addition to the data 
reported in Table I I, we have been able to find exact values for European 
geometric average calls, and approximate values for European arithmetic 
averages calls, for values of  T up to 100. The compt, tation times for these 
experiments have been about one hour on a SunSparc workstation. Compt, tation 
times are comparable to recent unpublished work using the Hull and White 
approximation, but as already mentioned the present method gives greater 
accuracy. Finally, computation time is independent of  the process volatility. 

With respect to memory requirements, experiments with the European 
arithmetic average call, conducted on a SunSparc work station, indicate the 
procedure uses 0.7MB (megabytes) of RAM when T = 30, 9.3 MB when T = 60, 
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and 68.8MB when T = 100. As rough comparisons, MicroSoft Word '97 uses 
2.6MB, Netscape Navigator 3.0 uses 4.5MB. Personal computers with 64MB of 
RAM are now standard, and some work stations offer up to I IOMB. 

Additional experiments are needed to assess the approach's accuracy and 
memory requirements in valuing the American arithmetic average option. 
Nevertheless, the framework organizes and reduces the numbers of computations 
in new ways, and also permits comparing approximations with exact optima for 
the same problem. 

6.2. Time Weighted Averages 

The methods developed above can readily be modified to value instruments whose 
averages are computed on a subset of the time points. For example, if arithmetic 
averages are computed on a subset of time points, the joint frequency 
distributions used in this paper need only be modified to record the frequencies 
with which indices are realized at chosen reset points. They can also be modified 
relatively easily to value instruments with time weighted averages. The approach 
can be extended to average strike options by determining joint distributions of the 
averages and path ends, readily available from the information developed in this 
paper. 

6.3. Path Sums and Time Dependent Probabilities 

Since the present model uses a constant value of u, valuation under a martingale 
with time varying interest rates requires using time dependent probabilities. Given 
time dependent probabilities, exact values can be found recursively, but the 
calculations are exponential in T. The task can be simplified by using the 
generating function to define a joint frequency distribution of path sums and time 
dependent probabilities, using a procedure much like that of Appendix II. Then 
depending on the relations between probabilities at each point in time, the 
difference between maximal and nai,limal probabilities for the paths in a sub- 
bundle can be assessed. If the difference is unimportant for the problem at hand, 
an average path probability can be used; otherwise individual probabilities need 
to be enumerated using methods similar to those outlined above. 

6.4. Conclusions 

This paper valued European and American fixed strike average calls on a discrete 
time, recombining multiplicative binomial asset price process. Using generating 
functions to find frequency distributions of option payoffs, the paper showed how 
to eliminate much of the calculation previously thought to be involved in valuing 
path dependent options. The procedures value European geometric average 
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op t i ons  ana ly t ica l ly ,  and  use re la t ively few c o m p u t a t i o n s  to va lue  E u r o p e a n  

a r i t hme t i c  ave rage  op t ions .  Both  types '  A m e r i c a n  c o u n t e r p a r t s  are  va lued  using 
recurs ive  re la t ions  be tween  f r equency  d i s t r ibu t ions .  
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Appendix  !. Relat ing Z and V* 

The generating function can be used to study both the mapping from Z to V* and 
the inverse mapping from V" to Z. Consider the term of f4(x .  7. v) equal to 
x4z43p 13, which describes the path defined by z=43, ending price j*, and path sum 
v = 13. 

Suppose it is known that z = 43. The value of j* can be determined by 
expressing 43 as a sum of powers of 2, and counting the number of terms. That is, 

4 3 = 2 5 + 2 3 + 2 1  + 2  o 

so that j*=4. Since Z is defined as a sum of terms 2 i1 while v* is determined by 
a sum of indices j, 

v* = 6 + 4 + 2 + 1  = 13 

To study the inverse mapping from V" to Z, let the values o f f  and v* be given. 
To continue the previous example, if j*=4 and v*= 13, then from (2.3) v* must be 
the sum of four integers chosen from 1 . . . . .  6. There are only two such 
combinations; either the foregoing or 

v * = 5 + 4 + 3 +  1 = 13 

for which Z = 2 9 .  The two paths in the sub-bundle B(6,2,5) are thus 

0101012 and 0-101212 

The maximal arithmetic average in any sub-bundle is defined by one of the 
extremal values of Z associated with the sub-bundle. Moreover, the maxinlal 
arithmetic average increases as the term V defining the sub-bundles increases. 
Finally, a minimal path average can be characterized in terms of Z. However the 
geometric average is also a lower bound oll the arithlnetic averages, and is in any 
case recorded as a part of the valuation method. 
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Appendix II. Finding the Joint  Frequency Distribution: Example  

This Appendix develops an analytic method of  finding joint frequency 
distributions of  indices and path sums. While in practice it is usually convenient 
to calculate the joint frequency distributions recursively, the analytic approach of  
this Appendix makes it possible to organize the computa t ions  efficiently. The 
joint fi'equency distribution is obtained analytically using two-fold convolut ions 
of  (2.17) taking the form_/3 (x, v) . fr-5 (x. v). A term of  the convolved functions 
can be interpreted as follows. Consider any feasible index in B(T , j ) ,  say (s, k).  
The number  o f  paths through (s, k) is readily shown to be b(s, k ) .  b ( T -  s, j - k), 
where b(T,.j) - T ! / ( T - j ) ! j ! .  From (2.16) the distribution of  path sums at (s .k )  
is g,.k(v)vk:k+lJ/2X k. Since any path in in B ( T , j )  arriving at index (s, k) must 
still take T-s steps, the distribution of  path sums at ( t , j )  is 

v k(T-s) .g.,.,k(v)vk(~+l)/Zxk .gT_.,.,j_k(v)v(:-k)(i-#+l)/2.ri-~ = (A.I)  

1, k(T-s)+[k(k+l)+(h)(i-k+l)l/2xig.,,k (V) • gT-s.j-k (I') 

The term v k:r-') compensates for the fact that the remaining T-s steps begin at 
(s, k) ,  while g-r..,,j.k(v) begins its count ing from (0, 0).  

To illustrate the calculations, Table A.I repeats the joint frequency distribution 
o f  path sums and indices realized reported in Table 4 for B(6,3").  Blanks indicate 
combinat ions  which cannot be realized by paths in B(6, 3*). 

TABLE A.I 
Joint Frequency Distribution for B(6. 3*) 

Vii -3 -2 -I 0 I 2 3 Row Totals 

-9 I 2 2 2 7 
-7 2 3 2 7 
-5 2 6 6 14 
-3 2 7 10 2 21 
-I 6 12 3 21 

I 3 12 6 21 
3 2 10 7 2 21 
5 6 6 2 14 
7 2 3 2 7 
9 2 2 2 I 7 

I 8 29 64 29 8 I 

Note  that the row totals equal the product  o f  the 7 indices in each path and the 
path fi'equencies. The second section of  Table A. I supplements the column totals 
at the bot tom of  the first section by showing the frequencies with which individual 
indices are realized at different times. As before, blanks represent unattainable 
combinations.  
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Terms of  the two-fold  convolu t ions  are used to calculate  the jo in t  frequency 
d is t r ibut ions  are employed  for each t ime-index combina t ion ,  as shown in the 
detai led calcula t ions  of  Table  A.[I .  Each column of  Table  A.I I  represents a time- 
index combina t ion ;  for example ,  the index -2 can be realized at  time 2 or  at  time 4. 
These two columns then indicate the frequency d is t r ibut ions  o f  path sums at time 
6 for paths  a t ta in ing  the index -2 at ei ther time 2 or  t ime 4. Similarly,  the index -i  
can be realized at t imes 1, 3, and 5. The convolu t ion  describes only a single 
frequency dis t r ibut ion  at t imes I and 5, but  three at t ime 3. This is because paths  
arr iving at index - I, t ime 3 can have three values at that  point ,  and each path  from 
that  poin t  to the end can also take on any one o f  three incremental  values. The 
pos i t ioning  o f  the frequencies within the columns  is de termined by the range of  
path  sums, as described both in Section 3.2 and at  the beginning o f  this Appendix .  

TABLE A.II 
Obtaining the Joint Frequency Distribution 

Indices -3  -2  -2  -I  -I  - I  - I  -1 0 0 0 0 0 0 

Times 3 2 4 I 3 3 3 5 0 2 2 4 4 6 

V 
- 9  1 I 1 I I I I 
- 7  I 1 I l I I I 
- 5  I I 2 I I 2 2 I I 2 
- 3  I I 2 I I I 2 3 I I I I 3 
- I  2 I I 2 3 2 I 2 I 3 

1 I I I 3 I 2 I 2 3 
3 I I 3 1 I I I 3 
5 2 I I 2 
7 1 I 
9 I I 

I 4 4 IO 3 3 3 I0 20 6 6 6 6 20 
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Appendix 111: Finding distinct arithmetic averages in a sub-bundle 

To see how the distinct arithmetic averages in a sub-bundle can be found, 
consider the subbundles (8, 3, 15), (8, 3, 14), (8, 3, 13), and (8, 3, 12). Each sub- 
bundle contains six paths, as shown by the path numbers m the following rows: 

8 6 1  8 5 2  8 4 3  7 6 2  7 5 3  6 5 4  
8 5 1  8 4 2  7 6 1  7 5 2  7 4 3  6 5 3  
8 4 1  8 3 2  7 5 1  7 4 2  6 5 2  6 4 3  
8 3 1  7 4 1  7 3 2  6 5 1  6 4 2  5 4 3  

The arithmetic averages for the foregoing paths are shown next for cr = 0.40. 

0.9056653 0.8909149 0.8909149 0.8909149 0.8909149 0.8828047 
0.8609239 0.8609239 0.8542838 0.8461735 0.8461735 0.8461735 
0.8242928 0.8242928 0.8161825 0.8095424 0.8095424 0.8095424 
0.7943017 0.7795514 0.7795514 0.7795514 0.7795514 0.7729113 

The example shows the need, when exact valuation is desired, for carefully 
investigating any particular sub-bundles cut by the strike price. In the present 
each sub-bundle has exactly three distinct averages, but the frequency 
distributions of the three distinct averages vary. Thus, if one or more of these 
sub-bundles were cut by the strike price, the valuation effect would depend on the 
particular sub-bundle or sub-bundles affected. So far, it seems necessary to 
determine the frequency distribution of the distinct averages in any such sub- 
bundle. 

Frequency distributions of distinct averages can be found either by 
enumerating the subbundle's path numbers or by using a dynamic programming 
search to find the distinct path averages, then determining the frequency of  each 
distinct average using linear programming. In large subbundles, the second 
method is more efficient than complete enumeration, because the number of paths 
can be large while the number of distinct averages is very much less than the 
number of paths. 




