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ABSTRACT 

Thus paper shows how credibil i ty theory can be encompassed within the theory of 
Hierarchical  Genezahzed Linear Models.  It is shown that credtbdnty est imates are 
obtained by including random effects m the model. The framework of  Hierarchical 
Generalized Linear Models allows a more extensive range of  models to be used than 
straightforward credibil i ty theory. The model fitting and testing procedures can be 
carried out using a standard statistical package Thus, the paper contributes a further 
range of models which may be useful m a wide range of  actuarial apphcations, inclu- 
ding premmm rating and clmms reserving 
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I INTRODUCTION 

Credtbihty theory began with the papers by Mowbray (1914) and Whitney (1918). In 
those papers, the emphasis was on deriving a premium which was a balance between 
the experience of  an mdwldual  risk and of a class of  risks Buhlmann (1967) showed 
how a credibil i ty formula can be derived m a distr ibution-free way, using a least- 
squares criterion. Since then. a number of papers have shown how this approach can 

be extended'  see pamcular ly  Buhlmann and Straub (1970), Hachemeister  (1975), de 
Vylder (1976, 1986). The survey by Goovaerts  and Hoogstad (1987) provides an ex- 
cellent introduction to these paper~. 
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The underlying assumption of  credlb~hty theory which sets it apart from formulae 
based on the individual risk alone is that the ask  parameter Js regarded as a random 
variable This naturally leads to a Bayesmn model, and there have been a large number 
of papers which adopt the Bayesian approach to credlbihty theory: for example Jewell 

(1974, 1975), Klugman (1987), Zehnwlrth (1977) Klugman (1992) gives an mtroduc- 
uon to the use of Bayesian methods, covering particularly aspects of  credlbd~ty theo- 
ry. A recent review of  Bayesian methods m actuarial science and credlb~hty theory ~s 
given by Makov et al (1996) 

It can be shown that, under statable assumptions, a cred~bthty formula can be deri- 
ved as the best hnear approximation to the Bayestan estimate, using a quadratic loss 
function Jewell (1974) showed that for an exponential  famdy of d ls tnbuuons,  the 
cred~blhty formula is the same as the exact formula, so long as the conjugate prior 
dJstnbuuon and a natural parametnsatton is used This result will be derived m a diffe- 
rent way m section 3, m order to place the basic model of  credtbfl~ty within a w~der 
framework. The choice of structure for the collective and the parametertsatlon will be 
discussed m more detail. Since exponenual  families form the basis of  General ized 
Linear Models  (GLMs) - see McCullagh and Nelder (1989) - it is natural to seek an 
extension of  credibil i ty theory encompassing the full range of models which can be 
formulated as GLMs.  This is particularly apposite as GLMs have many very natural 
apphcauons  m the actuarial field'  see, for example Renshaw (1991), Renshaw and 
Verrall (1994) This wdl also make possible more apphcatJons of credibility theory, 

The main purpose of this paper is to show how credlblhty theory can be incorpora- 

ted into the general framework of GLMs and implemented m the statistical package 
Genstat Although the formulation of the credibility model is similar m many ways to 
the Bayesian approach, our approach is hkehhood-based rather than Bayesian. The 
dispersion parameters will be estimated directly from the data without specifying prior 
dtstribut~ons No prior estimates for the parameters need to be supphed. All assump- 
tions used in the model can be checked using, for example, appropriate residual analy- 

ses Recent advances m the statistxcal literature on GLMs allow unobserved random 
effects to be estimated along with the parameter vector m the linear predictor A useful 
recent paper is Breslow and Clayton (1993) which covers the theory of  generahzed 
linear mixed models (GLMMs) GLMMs allow the inclusion of normally distributed 
random effects and have been applied to a wide variety of statistical problems We use 
the theory of  Lee and Nelder (1996), which develops hierarchical generahzed hnear 

models (HGLMs).  HGLMs also allow the inclusion of  random effects, but these are 
not restricted to be normally dlstnbuted Pure random-effect models, in which no fixed 
effects are included m the hnear predtctor, are known m the actuarial hterature as 
credlblhty models. They form one part of  a much w~der class of  models which have 
many potential apphcauons to actuarial data 

Thus, the purpose of this paper is further to umfy the actuarial theory; to show how 

modern statistical methods can be used to enable credibili ty theory to be applied in a 
standard statistical package, to allow extensions of basic credibil i ty theory and to 
show how the assumptions made can be checked This last point is important, since we 
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regard many aspects of actuarial work as exercises is statistical modeling, rather than a 
dogmatic application of nsk theory models 

It should be noted that the theory can be applied to models that specify only the 
mean and variance functions, using quasMlkelihood (Wedderburn, 1974, Nelder and 
Preglbon, 1987) - see section 5 

The paper is set out as follows. Sectmn 2 contains a brief introduction to GLMs and 
derives some results which will be used elsewhere. Section 3 shows how cred|b|hty 
theory can be treated within the context of HGLMs Section 4 outlines more general 
HGLMs. and how they are likely to be used for actuarial data Section 5 outhnes some 
extensions to the models in sections 3 and 4 

2 I N T R O D U C T I O N  TO G L M S  

This section contains a brief introduction to GLMs, and derwes some of the key re- 
sults which will be used later in the paper. A complete treatment of the theory and 
application of GLMs can be found in McCullagh and Nelder (1989). 

The basis of GLMs is the assumption that the data are sampled from a one- 
parameter exponential family of distributions We first describe these and some of 
their fundamental properties 

Consider a single observation y A one-parameter exponential family of dlstr|bu- 
tlons has a Iog-hkehhood of the form 

yO - b(O) 
+ c(y, cp) (2 I ) 

cp 

where 0 Is the canonical parameter 

and ~ is the dispersion parameter, assumed known 

Haberrnan and Renshaw (1996) review the application of Generalized Linear Models 

m actuarml science, and include a section on loss distributions. In actuarial apphca- 

tlons, many distributions belonging to one-parameter exponentml famd~es are useful 
However, Haberman and Renshaw (1996) show how it is also possible to fit certain 
heavy-taded distributions using Generalized Linear Models 

Some examples of such families are given below It is straightforward to show that 

db(O) 
p = E(Y) - (2 2) 

dO 

dZb(O) 
and V a r ( Y ) -  ~o (2.3) 

dO 2 

dZb(O) 
Note that Var(Y) is the product of two quantities dO 2 

tlon and depends on the canonical parameter (and hence on the mean) We can write 
this as V(]d), since equation (2 2) shows that 0 is a function of p. 

- -  is called the variance func- 



74 J A NELDER AND R J VERRALL 

d2b(O) 
Thus V(/3) = dO 2 (2 4) 

In actuarial applications, it is possible to include determmlstm volume measures m the 
def inmon of Var(Y). A GLM may be defined by specifying a distribution, as above, 
together with a link function and a hnear pred,ctor. The link funct,on defines the rela- 
tionship between the linear predictor and the mean. The hnear predictor takes the form 

17 = X/5 (2 5) 

where ,/3IS parameter vector 
and X is defined by the design. 

For a single observat lon.X is a row vector, and for a set of observat,ons, X is the de- 
sign matrix 

The hnear predictor is related to the mean by 77 = g(~) The function g is called the 

link function, and the special case g(~)  = 0 i s  called the canonical hnk funcuon 
By way of  dlustranon, the Iog-hkehhoods for some common distributions are given 

below 
(t) Normal  

/Iv - ~ 3, 2 I iog(2Jr0. 2 ) 
The log-hkehhood is 0.2 20 .2 2 

Thus, 0 = p. and the canonical link functmn is the identity function. 
02 y2 ] 

b ( 0 ) =  - -2  and c(y, 0) - 2 0 . 2  log(2zr0. 2) 

V(/.J) = 1 and ~p = 0.2 

(ii) Poi~son 
The log-hkehhood is y log/J - tt - log yr 
0 = log u and the canomcal hnk is the log function 
b( O) = e ° and c(y, ¢p) = - log y 
V(la)=.,u and ~o= I 

(iti) Binomtal 

Suppose R ~ Binomial (m, 1.1). Define Y = --.R Then the log-likelihood is 
m 

y log  i ~ / j  - l og (1  - , u )  
, +,og//:v) 

?1l 

Hence 0 = log /.l , and the canonical link function is the loglt function 
1 - / /  

log( m / b(O) = log(l + e 0) and c(y, ~o) = \ m y j  
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I 
V(,u) = p(1 - ~)  and ¢p = - - .  

171 

Note that this parameterlsatlon may be unfalmhar because of the definmon of Y 

However, ~t enables us to give a coherem theory m the following section 
,9 

(tv) Gamma (with mean p and variance ~_.C__). 
9 

y I 
- -  + l o g -  

T h e  Iog-hkehhood as ,u /.t + v log y + v log v - log F(v) 
1 

I 
0 = - - -  and the canomcal I.nk as the reciprocal function. 

b(O) = - log( -0 )  and c(y, ~o) = v log y +  v log v - log V(v). 

V(p) =/.t 2 and ¢p = v -I 

This section has given a brief introduction to GLMs The following section shows how 
standard credlblhty theory can be apphed in this context Section 4 will show how 
more general models can be formulated 

3. THE B U H L M A N  M O D E L  FOR E X P O N E N T I A L  FAMILIES 

In this sect,on, we derive the credibili ty formulae for exponential families of distribu- 
uons, under the assumptions made by Buhlmann (1967) It IS possible to extend this to 
other models for example the assumptions of Buhlmann and Straub (1970) can be 
lncorpolated u~lng weight functions This section derives just the credibili ty formulae 
A brief dv;cusslon of the estmaatlon of the d~sperslon parameters is given m secUon 4, 

where the appropriate references are c~ted. 

Denote thc  data byy,j  fort  = 1,2, , t ; j =  1,2,  ,n,  Assume for the moment, as is 
common in credibili ty applications, that n, = k, 'v' /, but note that this restriction as not 
necessary for the derivation of HGLM~ 

Thus, t indexes the risks within the collective In credibil i ty theory, ~t is assumed 

that each risk has a risk parameter, which we denote by ~, for risk i 
The assumptions of the model of Buhlmalm (1967) are 

(i) The risks, and hence ~,, are independently, idenucally distributed. 

(u) % ~, are independently, identically distributed. 

We assume that y,j 4, is distr ibuted according to an exponential  family Define 

m ( ~ , , = E [ y  u ~,] Note that under the assumplions of  the model, E[y,j ~,] does not 
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depend on J. Hence the canonical parameter for observation y,j does not depend on j, 

and we assume that it can be wrmen as follows 

O~ = O(m(~, )) = O(u, ) (3 1 ) 

where 0 is the canonical link function and u, is a random effect for group t. Thus, for 
the standard credtbthty model, m(~,) = u, Define v, = 0 (u,); then, in this case, 

O; = v,, (3 2) 

Again, note that there is no j dependence here Note also that this also tmphes that 
Var(y,; I~,) does not depend onj  

This has defined the distribution of the random variable within each risk, conditio- 
nal on the task parameter. It is also necessary to define the structure of the collective - 
the distribution of {~, t = I, , t}. This is often done by defining a Bayesian prior 
distribution; here we use the same form of dlstnbutmn for the random effects, but do 
not perform a Bayesian analysts Instead, we defme a "hierarchical l ikelihood", h, 
which we maximize. 

We define the conjugate hierarchical generalized linear model (HGLM) by deft- 
ntng the kernel of the log-likelihood for O(u,) as 

atO; - a2b(O ~) (3.3) 

In the actuarial hterature, this distribution (the distribution of the random effects) ts 
known as the structure of the collectwe Note that we define the log-hkehhood of ~, 
imphcltly through that of O(m(~,)). We have condmoned on ~, through m(~,) = u,, since 
It ~s the latter that we wish to estimate, 

we may define a hierarchical log- From (3.3) and the dlstrlbutlon of y,j {,, 

hkehhood as 

I,J t 

~ ( Y , J O ; - b ( O ; )  I . . . .  
= - + c t y , j , p )  + alo, ' -a2b(O ~) 

~0 

(3 4) 

(3 5) 

When the distribution of both the data and the random effects is normal, this is Hen- 
derson's joint Iog-hkehhood (Henderson 1975). In other cases, it is an obvious exten- 
sion of the joint Iog-hkehhood. called the hierarchical log-likelihood We have now 
defined a hierarchical generalized hnear model (HGLM), in this case the conjugate 
HGLM In the particular case described m this section, the hnear predictor for y,j con- 

sists solely of a random effects term which is modelled in the second stage of the 
hkehhood, (3 2) It is possible to incorporate more structure into the model by inclu- 
ding fixed effects and generalizing the form of the random effects model However, m 
this section we are concerned solely with showing that the estimates obtained under 
the basic model described above are the usual credtblhty estimates Thus, we require 
an estimate of rn(~,) = u, The mean random effects {u, : t = 1 . . . .  t} are estimated by 

maximizing the hierarchical llkehhood, (3 4), as follows. 
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Usmg (2 2) 

cgb(O(u, )) 

Ov, 
- -  _ I I t .  

Hence 

&h 
Equating - - t o  0 gives 

o~', 

/( 

where y,+ = __~-,Yq 
j = l  

Hence 

0~-- = + al -- a2tll 
3=1 

3;+ - kh ,  + ~pa~ - ~ , 2 h ,  = 0 

/~, - Y , +  + q~a I 

k+~oa 2 

= Z y ,  + ( I  - Z)m 

(3.6) 

1 k a~ 
where ] : , = ~ y , + ,  Z - - -  and m = - - .  

" k + qxl 2 a 2 

Thus, we have shown that, with the choice of distribution for the random effects deft- 
ned m (3.3), and using the canomcal link function, the estimate of u, is m the form of a 

credtbihty estmlate provided E(m(~,)) = a l  This is straightforward to show, and was 
a 2 

also proved by Jewell (1974). The density of  u, Is propomonal  to 

ealO:-a2b(O:) 

Now c)e"'O:-a"b{O;)007 -- \(a I -- a 2 ~Ob(07))')Ca'O'-a2b(O:) 

= (cq - az ,n(~ ,  ))e ''°;-''2h~°;~ 

Integratmg over the natural range of 0 : ,  and assuming e " '°:-"2b~°;) is zero at the end 

points, we have 

a I - a 2 E [ m ( ~ ,  )] = 0. 

Hence, using (2 2), Elm(G, )1 = El . ,  I = c q  
a 2 

Thus, we have shown that the credibili ty estunate is the same as the esumate obtained 
using a conjugate HGLM wtth pure random effects. This shows that credtbthty theory 
ts closely connected to the statistical theory of random-effect models Of course, It ts 
possible to widen the scope of  the models considerably. Fixed effects terms can also 
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be included m the model, other hnk functions may be considered and the form of the 
random-effect models can be generahzed 

It is possible to formulate the pure random-effect model m another way, by inclu- 
ding a fixed effect which is constant for all the data This means that the overall mean 
ts estimated as a fixed effect and the randomeffects model departures from this overall 
mean There is no effect on the cred~bihty estimates, but the above derivation ~s, m 
some ways, closer to the actuarial theory 

The results m this section are closely related to those of Jewell (1974). The present 
approach differs m that it ~s not presented as a Bayesmn procedure, and the emphas~s 
is on the modelhng aspects encapsulated within Generalized Linear Models 

The estmlatlon of the dispersion parameters is discussed m section 4. This includes 

the estimation of ~ and of a~ and a2. It should be noted that if a constant fixed effect is 
included m the model, as outlined above, there ~s only one parameter to estmmte m the 
distribution of u, For this reason we adopt th~s approach henceforth 

By way of Illustratmn, we consider the four exponentml families outlined m section 
2 Note that we can derive the density of , ,  from the density of 0 (u,), defined m (3.3) 
The density of tl, is proportional to 

e.,O;_.:l.(o;) 30(u ,  ) 

c~g 

ealO~-a21'(O~ ) 

V(u, ) (3.7) 

(tt) N o r m a l  

The random effects have log-hkehhood whose kernel ts 
2 

IIt 
a l t l  t - -  _ _  a2 2 

DI l 
J e .  u ,  - N ( m .  0"02 ) al = ---5-, a2 = -ST and m = Elu, ] = a-L 

17~ 17 0 a 2 

( , )  Poisson  
u, has a hkehhood proportional to 
eal  log llt-a2ut 

U~ 

Hence u, - Gamma. parameters al and a2, and m = E[u, l = a ]  
0 2 

( m )  B m o m t a l  
u, has a hkehhood propomonal to 

log( u ,  - a ~  log exp a I k l - u ,  _ I - u ,  

u, (1 - u, ) 

J e t t ,  ~ Beta. paranaeters a~ and a2- a~. and 172 = Elu, ] = a l  
(/2 
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(iv) Gamma 
u, has a hkehhood proportional to 

exp(\ -alu, + a2 log u, ) 

2 
/H t 

I e u, - reverse gamma and m = E[u,] = a--L 
02 

Having shown that the estmmtes obtained using conjugate HGLMs for a simple ran- 
dora-effect model are the usual credibil i ty estimates, we now define a more general 
framework whmh encompasses credlbdlty inodels 

4 HIERARCHICAL GENERALIZED LINEAR MODELS 

Standard GLMs model differences between groups, paratnetnc varmnon and other 
effects as fixed effects in the linear predictor Random-effect models can be combined 
with standard GLMs m order to forlnulate models with both fixed effects and the 
random ettects of credibili ty inodels. To do this, we define an extended linear predic- 
tor for a single observauon as 

rf=rl+v (4 I) 
where q=X/3, asIn(25) 
and v ts a strictly monotomc function of u.v=v(u) 

When v = 0, (4.1) reduces to the standard linear predictor for GLMs. When 1"/= 0 and 
v = 0(u), we have the basis cred~blhty model described m section 3. 

The hmrarchlcal Iog-likehhood, (3.4), becomes 

h= y_l(/3,y,, ,,,)+ 
I ,J  t 

where v, = v(u,) 
The maximum hmrarch,cal hkel ,hood exumates (MHLEs) of /3  and u are obtained 

from the parr of  equations 

c)l___.~, = 0 and I=0/7 0 
0/3 &, 

whmh may be solved iteratwely using the procedures written by the second author for 
the statistical package Genstat 

We consider here the case when the canomcal link function ~s used for the fixed ef- 
fects and v = 0(u) In th,s case, equauon (3 I) for observation y,j becomes 

0,~ = O,j + O(u, ) (4 2) 

where G = X,fl 
0 ~s the canomcal hnk function 
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and X,j is the row from the design matrix for the fixed effects which relates to Yv 

The same log-hkehhood is used for 0(u,), as m (3 3) Then the kernel o f h  is 

t ~(y,~O,~ - b(O,~)) 

"J + ~ l (v , )  

~ ( y , j  - u~))x~,; 
Hence 3h _ ,.j (4.3) 

Z ( y ~ j  - u~ )) + ~,0a I 
Oh 

and _ _  = , , . t  - a2u , (4 4) 

where u~ = EIy,j u, ] = E[y,l ~, ], 

~ is the kth parameter in the fixed effects 

and &,~ is the kth entry of  the row vector X,j 

Note that m this case, unhke that m secnon 3, Ely,j ~, ] -7'= u, Instead, 

O(u,~ ) = O,j + O(u, ) (4 5) 

which imphes that ~ = u, when r/v = 0. 

We include the overall mean as a fixed effect and require that the random effects 
then have the appropriate mean (eg 0 for the identity hnk function). 

The d~spersmn parameters given the fixed and random effects are estunated by 
max~mlsmg the h-hkehhood after a statable adjustment. The adjustment, which results 
m an adjusted profile h-hkehhood, is necessary because the marginal maximum hkeh- 
hood esnmates may be btased. Further justifications for thts adjustment can be found 
m Cox and Reid (1987) and Let .,nd Nelder (1996) For the normal distribution, 
unbmsed esnmates are obtained ,4ors detads on estimation theory for random-effect 
GLMs can be found m McGdchrlst  (1994) and Schall (1991). 

The joint  estimates of  the mean effects (fixed and random) and the dlspersmn pa- 
rameters are obtained by iterating between the two sets of  estimating equatmns. These 
processes may be convemently carned out m Genstat, for which a set of  procedures is 
avadable from the second author. 

For the dis tnbunons dlustrated m section L the hkehhoods of the random effects 
are again approprmte, but the estimate wdl be different because of the difference bet- 
ween (3 1) and (4 2) 



CREDIBILITY THEORY AND GENERALIZED LINEAR MODELS 8 1 

5 DISCUSSION 

It is possible to extend the class of  models to wluch these methods may be applied by 
specifying just the mean and variance functions This IS useful when greater flexibility 

Is required in the modelhng assumptmns For example,  Renshaw and Verrall (1994) 
show that the chain-ladder techmque m clmms reserving ~s essentially eqmvalent  to 
GLM with a Polsson likelihood and an appropriate linear predictor. By specifying just 
the mean and varmnce function, this model may be applied to a much wider class of 
data than is imphed by the Polsson assumptmn (which obviously lequlres the variance 
to equal the nean). This revolves the use of  extended quasl -hkehhood (Wedderburn 

1974, Nelder and Preglbon 1987). For HGLMs,  the equivalent extension is the exten- 
ded quasl -h-hkehhood,  in which the extended quast -hkehhood is used in the hierar- 
chical hkellhood This extension makes it possible, for example,  to include randoln 
effects in the chain-ladder linear model to allow a connection between accident years. 

HGLMs inay also be of use when a particular factor is hard to model parametrical-  
ly An example of  this, which has been inentloned above, ~s claims reserving, when it 
is inappropriate to model the accident years as completely independent, but a parame- 
tric relationship is also inappropriate. The same comment applies m motor premmm 
rating, when it IS usual to group a factor such as the age of  the policyholder.  Such a 
grouping may be inappropriate,  as it may be crude or doubtful because It  has been 
decided before the analysis of the data (for example,  according to the present rating 
structure). However, it is often inappropriate, because of computational and theroren- 

cal considerations,  to treat the ages as completely separate or to apply a paramemc 
model In this situation. HGLMs may be useful 

Apphcat lons  in life insurance include similar premium-rat ing situations as in ge- 
neral insurance, and also graduation theory The use of HGLMs for graduation would 
have some snTillarltles tO Whittaker graduation, which can be regarded as a GLM with 
a stochastic Ilncar predictor (Verrall. 1993). 
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