CREDIBILITY THEORY AND GENERALIZED LINEAR MODELS

J A NELDER 'and RJ VERRALL ?
ABSTRACT

This paper shows how credibility theory can be encompassed within the theory of
Hierarchical Generalized Linear Models. It 1s shown that credibility estimates are
obtained by including random effects in the model. The framework of Hierarchical
Generalized Linear Models allows a more extensive range of models to be used than
straightforward credibility theory. The model fitting and testing procedures can be
carried out using a standard staustical package Thus, the paper contributes a further
range of models which may be useful in a wide range of actuanal applications, inclu-
ding premium rating and claims reserving
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I INTRODUCTION

Credibility theory began with the papers by Mowbray (1914) and Whitney (1918). In
those papers, the emphasis was on deriving a premium which was a balance between
the experience of an individual risk and of a class of risks Buhlmann (1967) showed
how a credibility formula can be derived in a distnbution-free way, using a least-
squares cniterton. Since then. a number of papers have shown how this approach can
be extended- see particularly Buhlmann and Straub (1970), Hachemeister (1975), de
Vylder (1976, 1986). The survey by Goovaerts and Hoogstad (1987) provides an ex-
cellent introductton to these papers.

' Department of Mathematics
Impenial College
Huxley Building
180 Queen’s Gate
LONDON
SW72BZ

I Department of Actuartal Science and Staustics
City Umiversity
Northampton Square
LONDON
ECIV OHB

ASTIN BULLETIN, Vol 27, No 1, 1997 pp 71-82



72 J A NELDER ANDRJ VERRALL

The underlying assumption of credibility theory which sets it apart from formulae
based on the individual nisk alone 1s that the risk parameter 1s regarded as a random
vanable This naturally leads to a Bayesian model, and there have been a large number
of papers which adopt the Bayesian approach to credibility theory: for example Jewell
(1974, 1975), Klugman (1987), Zehnwirth (1977) Klugman (1992) gives an introduc-
tion to the use of Bayesian methods, covering particularly aspects of credibility theo-
ry. A recent review of Bayesian methods in actuanal science and credibility theory 1s
given by Makov et al (1996)

It can be shown that, under suitable assumptions, a credibility formula can be deri-
ved as the best linear approximation to the Bayesian estimate, using a quadratic loss
function Jewell (1974) showed that for an exponential family of distnbutions, the
credibility formula 1s the same as the exact formula, so long as the conjugate prior
distribution and a natural parametrisation 1s used This result will be derived in a diffe-
rent way 1n section 3, 1n order to place the basic model of credibiity within a wider
framework. The choice of structure for the collective and the parameterisation will be
discussed 1n more detail. Since exponential families form the basis of Generalized
Linear Models (GLMs) - see McCullagh and Nelder (1989) - it 1s natural to seek an
extension of credibility theory encompassing the full range of models which can be
formulated as GLMs. This s particularly apposite as GLMs have many very natural
applications in the actuarial field- see, for example Renshaw (1991), Renshaw and
Verrall (1994) This will also make possible more applications of credibility theory.

The main purpose of this paper 1s to show how credibility theory can be incorpora-
ted into the general framework of GLMs and implemented in the statistical package
Genstat Although the formulation of the credibility model is similar in many ways to
the Bayesian approach, our approach 1s hkelihood-based rather than Bayesian. The
dispersion parameters will be estimated directly from the data without specifying prior
distributions No prior estimates for the parameters need to be supplied. All assump-
tions used in the model can be checked using, for example, appropriate restdual analy-
ses Recent advances 1n the statistical literature on GLMs allow unobserved random
effects to be estimated along with the parameter vector in the linear predictor A useful
recent paper 1s Breslow and Clayton (1993) which covers the theory of generahized
linear mixed models (GLMMs) GLMMs allow the inclusion of normally distributed
random effects and have been applied to a wide vaniety of statistical problems We use
the theory of Lee and Nelder (1996), which develops hierarchical generalized linear
models (HGLMs). HGLMs also allow the inclusion of random effects, but these are
not restricted to be normatly distributed Pure random-effect models, 1in which no fixed
effects are included in the hinear predictor, are known n the actuarial hiterature as
credibility models. They form one part of a much wider class of models which have
many potential applications to actuarial data

Thus, the purpose of this paper is further to umify the actuarial theory; to show how
modern statistical methods can be used to enable credibility theory to be applied in a
standard statistical package, to allow extensions of basic credibility theory and to
show how the assumptions made can be checked Thus last point 1s important, since we
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regard many aspects of actuanal work as exercises 1s statishical modehing, rather than a
dogmuatic application of risk theory models

Tt should be noted that the theory can be applied to models that specify only the
mean and vartance functions, using quasi-likelihood (Wedderburn, 1974, Nelder and
Pregibon, 1987) - see section 5

The paper 1s set out as follows. Section 2 contains a brief introduction to GLMs and
derives some results which will be used elsewhere. Section 3 shows how credibility
theory can be treated within the context of HGLMs Section 4 outlines more general
HGLMs. and how they are likely to be used for actuarial data Section 5 outlines some
extensions to the models 1n sections 3 and 4

2 INTRODUCTION TO GLMS

This section contains a brief introduction to GLMs, and derives some of the key re-
sults which will be used later in the paper. A complete treatment of the theory and
apphication of GL.Ms can be found 1n McCullagh and Nelder (1989).

The basis of GLMs 1s the assumption that the data are sampled from a one-
parameter exponential famtly of distributions We first describe these and some of
their fundamental properties

Consider a single observation y A one-parameter exponential famuly of distribu-
tions has a log-hikelthood of the form

29250) , iy @n

where 8 1s the canonical parameter
and ¢ 1s the dispersion parameter, assumed known

Haberman and Renshaw (1996) review the application of Generalized Linear Models
tn actuanial science, and include a section on loss distributions. In actuarial apphca-
tions, many distributions belonging to one-parameter exponential families are useful
However, Haberman and Renshaw (1996) show how 1t 15 also possible to fit certain
heavy-tailed distributions using Generalized Linear Models

Some examples of such families are given below It 1s straightforward to show that

db(6)

=EY)= 22
H=E(Y) 70 (22)
d*b()
and Var(Y) = 2.3
) 102 (2.3)
d*h(8)
Note that Var(Y) 1s the product of two quantitics >— 15 called the variance func-

tion and depends on the canonical parameter (and hence on the mean) We can write
this as V(u), since equation (2 2) shows that 0 1s a function of
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d*b(6)
d6*

Thus V()= 24
In actuanal applications, it is posstble to include deterministic volume measures 1n the
defimition of Var(Y). A GLM may be defined by specifying a distribution, as above,
together with a link function and a linear predictor. The link function defines the rela-
tionship between the linear predictor and the mean. The linear predictor takes the form

n=Xp (25)

where  f1s parameter vector
and X 1s defined by the design.

For a single observation, X 1s a row vector, and for a set of observations, X 1s the de-
sign matrix

The linear predictor 1s related to the mean by i = g(u) The function g 1s called the
link function, and the special case g(u) = @is called the canonical link function

By way of illustration, the log-likelihoods for some common distributions are given
below
(1) Normal

1
v — 5“2 v )
The log-likelihood 18 ——5F— — —— - —log(2no
& o? 202 2 Bl )
Thus, 8 = y and the canonical link function 1s the identity function.

b(0)—ﬁand c(y.6) = — v’ — L log2ne?)
- 2 )7 - 9 2 2 g

V(u)=1 and @ = 62

(ii) Poisson
The log-likelihood 1s y logu — 1t — log y/
6 = log u and the canonical hink s the log function
b(8) = ¢® and c(y, @) = - log y!
V(iu) = and =1

(1)) Binomal

Suppose R ~ Binonual (m, ). Define Y = ﬁ Then the log-likelithood 1s

n
ylog{*——bg(l—ﬂ) "
H + Iog[ )
my

1

m

u

Hence 6 = log l . and the canonical link function 1s the logit function

b(8) = log(l +e%)and cv,o)= log[ " j

my



CREDIBILITY THEORY AND GENERALIZED LINEAR MODELS 75

I
V(y=pu(l—p) andp=—.

m
Note that this parameterisation may be unfamiliar because of the defimition of Y
However, 1t enables us to give a coherent theory in the following section
2
(1v) Gamma (with mean u and variance L2l .
Vv

: |
AN log —
u
The log-likelihood 15 —= —£ 4 viogy+vlogy - log ()
v
0= L and the canonical link 1s the reciprocal function.

u
b(8) = —log(-8) and ¢(y.¢)=vlog y+viogv—logI'(v).
Vu)= ;12 and o =v~".

This section has given a brief introduction to GLMs The following section shows how
standard credibility theory can be applied 1n this context Section 4 will show how
more general models can be formulated

3. THE BUHLMAN MODEL FOR EXPONENTIAL FAMILIES

In this section, we derive the credibility formulae for exponential families of distribu-
tions, under the assumptions made by Buhlmann (1967) It1s possible to extend this to
other models for example the assumptions of Buhlmann and Straub (1970) can be
incorporated using weight functions This section derives just the credibility formulae
A brief discussion of the estimation of the dispersion parameters is given n section 4,
where the appropriate references are cited.

Denote the data by y, forr = 1,2, ,1ny=1,2, ,n, Assume for the moment, as 1s
common in credibility applications, that 1, = k, V 1, but note that this restriction 1s not
nccessary for the derivation of HGLMs

Thus, ¢ indexes the risks within the collective In credibility theory, 1t 1s assumed
that each risk has a risk parameter, which we denote by & for risk
The assumpuons of the model of Buhlmann (1967) are

(1) The risks, and hence & , are independently, identically distributed.
(1) "u| &, are independently, 1dentically distributed.

We assume that y,j|§, 15 distributed according to an exponential family Define

m(€,)= E[yu| 5,] Note that under the assumptions of the model, E[_v,,| 5,] does not
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depend on J. Hence the canonical parameter for observation y, does not depend on J,
and we assume that 1t can be written as follows

6] = 0(m(&,)) = 6(u,) 31

where @ 1s the canonical link function and y, 1s a random effect for group 1. Thus, for
the standard credibility model, m(&) = 1, Define v, = 8 (u,); then, n this case,

0,=v,. (32)

Again, note that there 1s no y dependence here Note also that this also implies that
Var(y, |&,) does not depend on

This has defined the distribution of the random variable within each risk, conditio-
nal on the risk parameter. It ts also necessary to define the structure of the collective -
the distribution of {& =1, ,r}. This s often done by defining a Bayesian prior
distribution; here we use the same form of distribution for the random effects, but do
not perform a Bayesian analysis Instead. we define a “hierarchical likelihood”, A,
which we maximize.

We define the conjugate hierarchical generalized linear model (HGLM) by defi-
ning the kernel of the log-likelihood for &u,) as

a,6! — a,p(6)) (3.3)

In the actuanal literature, this distribution (the distribution of the random effects) 1s
known as the structure of the collective Note that we define the log-likelthood of &
implicitly through that of &/m(&,)). We have conditioned on &, through m(&) = u,, since
it 1s the latter that we wish to estimate.

From (3.3) and the distribution of yulé,, we may define a herarchical log-
likelithood as

h="3 K8y, v)+ D 1, 34
[N {

yljel' - b(el')
=z T [+ (3, @)+ @8] — ayb(6)) (35)
¢
y

When the distribution of both the data and the random effects 1s normal, this 1s Hen-
derson’s joint log-likelihood (Henderson 1975). In other cases, 1t 1s an obvious exten-
sion of the joint log-likelihood. called the hierarchical log-likelihood We have now
defined a hierarchical generalized linear model (HGLM), in this case the conjugate
HGLM In the particular case described 1n this secuon, the linear predictor for y, con-
sists solely of a random effects term which 1s modelled in the second stage of the
likelihood, (3 2) It s possible to incorporate more structure into the model by inclu-
ding fixed effects and generalizing the form of the random effects model However, in
this section we are concerned solely with showing that the estimates obtained under
the basic model described above are the usual credibility estimates Thus, we require
an esnmate of m(£ ) = u, The mean random effects {u, - 1 = 1, .., 1} are esimated by
maximizing the hierarchical likelihood, (3 4), as follows.
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Using (2 2)
ab(O(u,)) y
o, v
H oh i[.\)u — Y, ]
ence - = +a| _(12“,
Nk G
Equaung i o 0 gives
N,
Yie — kil + Qu; — @ayi, =0 (3.6)
A
where y,, =y,
J=I
. Yt
Hence a, = __J‘.ﬂ.
k+ ga,
=Zy, +(1-Z)m
-1
where ¥, =—y,, Z= and m=1,
k k + @a, sy

Thus, we have shown that, with the choice of distribution for the random effects defi-

ned in (3.3), and using the canonical ink function, the estimate of «, is in the form of a

credibility estimate provided E(m(¢)) = a This 1s straightforward to show, and was
@

also proved by Jewell (1974). The density of «, 1s proportional to

eu,O,’—u;b(G,’)

8, —a, b6, ’
aem [ —a,b(6)) N ab(gl) ell,@,’—azb(e,')
Now 96’ REPTY

1
= (a, —aym(E, ))etr bt

a8 —ayb(8])

Integrating over the natural range of 6/, and assuming e is zero at the end

points, we have
a, —a, Elm(€)]=0.

Hence, using (2 2), Elm(E) = Elu, | = &L

ay

Thus, we have shown that the credibihity estimate 1s the same as the estimate obtained
using a conjugate HGLM with pure random cffects. This shows that credibility theory
15 closely connected to the statistical theory of random-effect models Of course, 1t 1s
possible to widen the scope of the models considerably. Fixed effects terms can also
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be included n the model, other link functions may be considered and the form of the
random-effect models can be generalized

It is possible to formulate the pure random-effect model in another way, by inclu-
ding a fixed effect which 1s constant for all the data This means that the overall mean
1s estimated as a fixed effect and the randomeffects model departures from this overall
mean There 1s no effect on the credibility estimates, but the above derivation 1s, 1n
some ways, closer to the actuarial theory

The results n this section are closely related to those of Jewell (1974). The present
approach differs 1n that 1t 1s not presented as a Bayesian procedure. and the emphasis
1s on the modelling aspects encapsulated within Generalized Linear Models

The estimation of the dispersion parameters 1s discussed 1 section 4. This includes
the estimation of ¢ and of a4, and «,. It should be noted that if a constant fixed effect 1s
included in the model, as outlined above, there 1s only one parameter to estimate n the
distribution of i, For this reason we adopt this approach henceforth

By way of illustration, we consider the four exponential families outlined 1n section
2 Note that we can derive the density of «, from the density of 6 (u,), defined in (3.3)
The density of u, is proportional to

6{119,'—(12[)(9,') ae(“,)
ot

a8 —a,h(8))

{

€
3.7
Viu,) (37

(11) Normal
The random effects have log-likelthood whose kernel 1s

1
au, —a, —2—
2 m | a
1e. u, ~N(m.og) a = —5. 0y =—and m= Elu,j=—
0 Oy ay

(11) Poisson
u, has a likehhood proportional to

" togu, —ayu,

u,

a
Hence u, ~ Gamma. parameters @, and a,, and m = Elu, | = —L
a,
(111) Bionual
u, has a hikehthood proportional to

u, 1
exp|:u, log(l—_“ )—az log[l_“ H

u,(l1—u,)
a

1e u, ~ Beta, parameters @, and a,- a,. and m = Elu,1=—
a,
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(iv) Gamma
u, has a likelthood proportional to

exp[;a—l +a, loguy, J

u,

2
u;

1€ u, ~ nverse gamma and m = E[u, | = 4
ay
Having shown that the estimates obtained using conjugate HGLMs for a simple ran-
dom-effect model are the usual credibility estimates, we now define a more general
framework which encompasses credibility models

4 HIERARCHICAL GENERALIZED LINEAR MODELS

Standard GLMs model differences between groups, parametric variation and other
effects as fixed effects in the linear predictor Random-effect models can be combined
with standard GLMs n order to formulate models with both fixed effects and the
random ettects of credibility models. To do this, we define an extended linear predic-
tor for a single observation as

n=n+v @hn
where 1 =XfB,as1n (25)
and v 15 a strictly monotonic function of w,v=v(u)

When v = 0, (4.1) reduces to the standard linear predictor for GLMs. When 7 = 0 and
v = B(u), we have the basis credibility model described in section 3.

The hierarchical log-likelihood, (3.4), becomes

= 1By, v)+ D 1)
1 !

where v, = v(u,)
The maximum hierarchical hkelihood extimates (MHLESs) of 8 andu are obtaimed

from the pair of equations
% =0 and % =0

which may be solved 1teratively using the procedures written by the second author for
the statistical package Genstat

We consider here the case when the canonical link function 1s used for the fixed ef-
fects and v = &u) In this case, equation (3 1) for observation y, becomes

6, =6, +0(u,) (42)

where 6, =X,
@ 1s the canonical hink function
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and X, 1s the row from the design matrix for the fixed effects which relates to y,

The same log-likehihood 1s used for &u,), as 1in (3 3) Then the kernel of 4 1s
(9,8 = b(8;))
1)

I(v,
p +Z v,)

Hence 4.3)
N o
(yl - ul’ )) + q’al
and oh ; - a (44)
= —au
av’ @ 2%,
where u) = E[y,,‘ u)= E[yu| &l
B 1s the kth parameter 1n the fixed effects
and X;, 18 the kth entry of the row vector X,
Note that in this case, unlike that 1n section 3, E[yul ﬁ, I# u, Instead,
O(u,)=n, +6(u,) (45)

which implies that u), =, when 1, =0.

We include the overall mean as a fixed effect and require that the random effects
then have the approprate mean (eg O for the identity link function).

The dispersion parameters given the fixed and random effects are estimated by
maximising the h-likelihood after a suitable adjustment. The adjustment. which results
in an adjusted profile h-likehhood, 1s necessary because the marginal maximum hkeh-
hood estimates may be biased. Further justifications for this adjustment can be found
in Cox and Reid (1987) and L:c .nd Nelder (1996) For the normal distribution,
unbiased estimates are obtained “lorc details on estimation theory for random-effect
GLMs can be found in McGulchrist (1994) and Schall (1991).

The joint estimates of the mean effects (fixed and random) and the dispersion pa-
rameters are obtained by iterating between the two sets of estimating equations. These
processes may be conveniently carned out 1in Genstat, for which a set of procedures 1s
available from the second author.

For the distributions 1llustrated in section 1, the likelihoods of the random effects
are agamn appropriate, but the esimate will be different because of the difference bet-
ween (3 1) and (4 2)
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5 DISCUSSION

It 1s possible to extend the class of models to which these methods may be applied by
specifying just the mean and vanance functions This 1s useful when greater flexibility
1s required in the modelling assumptions For example, Renshaw and Verrall (1994)
show that the chain-ladder technique 1n claims reserving 1s essentially equrvalent to
GLM with a Poisson likelihood and an appropriate hinear predictor. By specifying just
the mean and variance functiton, this model may be applied to a much wider class of
data than 1s 1implied by the Poisson assumption (which obviously requires the variance
to equal the nean). This involves the use of extended quasi-likelihood (Wedderburn
1974, Nelder and Pregibon 1987). For HGLMs, the equivalent extension 1s the exten-
ded quasi-h-likelithood, in which the extended quasi-likelithood is used in the hierar-
chical likelihood This extension makes 1t possible, for example, to include random
effects in the chain-ladder inear model to allow a connection between accident years.

HGLMs may also be of use when a particular factor 1s hard to model parametrical-
ly An example of this, which has been mentioned above, 15 claims reserving, when 1t
1s inappropriate to model the accident years as completely independent, but a parame-
tric relationship 1s also inappropriate. The same comment applies 1n motor premium
rating, when 1t 1s usual to group a factor such as the age of the polhicyholder. Such a
grouping may be mappropriate, as it may be crude or doubtful because 1t has been
decided before the analysis of the data (for example, according to the present rating
structure). However, 1t 1s often inappropriate, because of computational and theroreti-
cal considerations, to treat the ages as completely separate or to apply a parametric
model In this situation, HGLMs may be useful

Applications 1n hfe insurance include similar premium-rating situations as n ge-
neral insurance, and also graduation theory The use of HGLMs for graduation would
have some similarities to Whittaker graduation, which can be regarded as a GLM with
a stochastic lincar predictor (Verrall, 1993).
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