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ABSTRACT 

The upper bound provided by Lundberg 's  inequahty can be improved for the probabl- 
hty of rum in fimte horizon, as Gerber (1979) has shown This paper studies this upper 

bound as a functmon of the retention hmH, for an excess of loss arrangement, and com- 
pares it with the probability of  ruin 
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1 INTRODUCTION 

Several studies about the effect of reinsurance on the ultimate probabili ty of ruin (for 
example Gerber (1979), Waters (1979), Bowers, Gerber, HJckman, Jones and Nesbltt 

(1987), Centeno (1986) and Hesselager (1990)) have concentrated their attention on 
the effect of reinsurance on the adjustment coefficient. 

Centeno (1986) has used an algorithm suggested by Panjer (1986) to calculate the 
probabihty of ultimate ruin, incorporating reinsurance, to show with some examples 
that the behavlour of this probability and Lundberg ' s  inequality are very similar, both 
considered as funcuons of  the retention level, provided that the mltml reserve is not 
too small This is consistent with the figures obtalnded more recently by Dickson and 
Waters (1994) for some other examples and using a different algorithm for the proba- 
bility of  ultimate rum In this paper, Dlckson and Waters have also calculated finite 
horizon rum probabdmes,  after reinsurance, by adapting the algorithm of  De Vylder 
and Goovaerts  (1988) and by an approxmaauon provided by the translated Gamma 
process Through an example they show that m continuous time for an excess of  loss 
arrangement,  the optimal retention limit m finite horizon can be quite far from the 
opumum value m infinite horizon. Of course, the sequence of optn'nal retention levels 
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converges to the mfimte hor,zon opumal level as the t,me increases But, for a fin,te 
horizon, Lundberg's inequality can be improved The purpose of this paper Is to show 
how we can use this improvement to redefine the "opumal" retenuon hm~t for an 
excess of loss arrangemenl, and to compare thls inequahty with the ruin probability in 
finite horizon and continuous time for some examples Of course, the same method- 
ology can be applied to proport,onal reinsurance provided that, the moment generating 

functmn of the individual cla,m amounts d~strlbuUon exists 

2 A S S U M P T I O N S  AND PRELIMINARIES 

In the classical r, sk process, the insurer's surplus at time t is denoted U(t), with 

U(t) = u + ct - S(t), 

where u ,s the Inlt,al surplus, c is the premmm income per umt of nine, assumed to be 
received continuously, and S(t) ,s the aggregate claims occurred up to ume t. {S(t)}, >_ o 
is assumed to be a compound Poisson process and without loss of general,ty the Pois- 
son parameter is assumed to be 1, which means that "trine t" IS the interval during 
which t claims are expected Let G(x) denote the individual claim amount distribution 

function and again without loss of generality, let us assume that this distribution has 
mean I, wh,ch means that the monetary unit chosen ~s the expected amount of a claim 
We further assume that G(0) = 0, with 0 < G(x)  < 1 for x > 0 and also that G is such 
that its moment generating function exists for x < T for some 0 < T < ~,  and that 

hm E[e rx ] oo = . (1) 
r---~ 7 

We assume that c is greater than 1, i.e. it is greater than the expected aggregate clmms 
in each period. Let 0be  such that c = I + 0 

The ruin probability before time t is 

~(u , t )  = Pr{U(s) < 0 for some s,0 < s < t}. 

Of course ~ (u, t) Is not greater than the ultimate probabfl W of ruin, denoted as ~ (u). 
Therefore the upper bound given by Lundberg's  mequahty is valid for finite horizon. 
Gerber (1979), pp 139, has shown that this bound can be maproved in finite horizon 
He proved that for u > 0 and t > 0 

_< ,}, <2) 

where Mx(r)  Is the moment generating function of the individual claim amounts and R 
denotes the adjustment coefficient, defined as the umque positive root of 

M x ( r  ) -  I = cr (3) 

In the following we refer to express,on (2) as Gerber 's inequality After an integration 
by parts, inequality (2) can be written as 

~(u , t )  < mm,ie ?, (4) 
"~R t J 
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and the equation defining the adJustment coefficient as 

'~ e "  (1 - G ( a ) ) d r  = c (5) 

Now suppose that the insurer has an excess of  loss arrangement such that when a 

clalnl X occurs he ~s responsible for rmn {X, M}, paying m return per unit of  time a 
reinsurance premium ~(M), which we assume to be calculated according to the expec- 
ted value principle with loading coetficlent ~, i.e. 

c(M) = (I + ~)j '~(I  - G(x))dx (6) 

Assuming that the reinsurance premiums are prod continuously, the insurer 's  surplus 
at time t is 

N(t) 
U(M;t) = u + ( c -  c(M))t - ~ mm {X~, M}, 

/I.=l 

where N(t) denotes the number of clmms up to time t. The rum probabdlty before t~me 
t i s  

tlt(M,u,t)= Pr{U(M,s)<O for some s,0 <,s _<t}. 

After thin arragement Gerber ' s  inequality becomes 

f . . . . . .  t[J~te~(t-G(,))d~-(~-c(M))]] 
~(M;u,t)_< mm ,ie ?, (7) 

r->R(M)[ J 

where R(M) denotes the adJustment coefficient after reinsurance, i e the umque posi- 
tive root of 

j.~.t (I - G(x)) = c - c(M), (8) e p~ dx 

when it exists or zero otherwise. Such a root exists if and only ff the expected profit 
after reinsurance is posmve 

We know that the value of M that maxlmises the adjustment coeffictent, when the 
excess of loss reinsurance premmm is calculated according to the expected value prin- 
ciple with ~ > O, is such that 

1 
M = --ln(1 + ~), (9) 

R 

(see for example Waters (1979)), nummmmg then the upper bound provided by Lund- 
berg 's  inequahty. 

In the next section we wall study the problem that consists in choosing M m such a 
way that the upper bound provided by (7) ts mmlm~sed 
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3. THE PROBLEM AND ITS SOLUTION 

We define as "optmml" retention the value of M that mmm~lses the upper bound of the 

probability of  ruin given by (7). We can write (7) as 

~(M;u , t )  _< exp(\~_>R{M) f ( r ,M,u , t ) ) ,  (10) 

where 

Ill' - G(x))dx- -c(M))J (II) 
3 

] ( r , M , u , t ) = - r u + r t  e ~' (I (c 

In the next result we will study the condition under which (I 1), as a function of r, 
possesses a minimum 

Result 1 
(t) For each M > O,f(r, M: u, t), defined by (11), for r > 0, has a local mlmmum and Jt 

is unique if and only if the expected surplus at t is positive 
(ii) Suppose that the expected surplus at time t is positive and let ~(M) be the value of 

r at which the local mlmmum of f ( r ,  M; u, t) occurs. Then ~(M)_> R(M),  where 
R(M) is the unique positive root of (8) if it exists or zero otherwise, if and only If 

L../. R(M)[MxeR{M)~(I - G(a))dx. (12) _> 
! JO 

Proof: 
O) It Is clear that for M > 0 

lira f ( r ,  M,u, t) = 0 
r--~O 

and, by assumption (1), that also for any M > 0 

lira f ( r ,  M;u,t)  = +oo. 

On the other hand 

j o M f - u + t  e r ~ ( l - G ( x ) ) c . ~ - t ( c  - c ( M ) ) + r t  xe~( l -G(x ) )cLr  (13) 
Or 

and 

c~2f IO M M f 2 r~ 
= 2 t  x e r ' ( l - G ( x ) ) d x + r t J o  x e ( I - G ( x ) ) d x .  (14) 

c0r 2 

As (14) is smct ly  posmve for any M > 0, thenf(r ,  M; u, t) will have a minimum if 
and only if the limit of (13)  is negative as r + 0 But 

r--sO ~ r 

which is negative ff and only if the expected surplus at time t is positive 
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(It) ~(M) IS the solution of 

8 f  =0, (15) 
8r 

with 8f/8 r given by (13) It IS clear that ;:(M) will be greater than or equal to R(M) 
if and only if c)ffc)r is non positive at the point r =  R(M), I e if and only if con+-  
tion (12) holds 

Let M 0 be the m i n i m u m  of the values for which the expected surplus at rune t is non 
negative, i e. 

I [ 1} = _ (I - G(x))d~ _>0 (16) M 0 min M M > 0 a n d u + t  c - c ( M ) -  

Note that M o will be zero if and only if uh _> ~ - 0 Then the fol lowing corollary fol- 
lows from the previous proof 

C o r o l a r y  1.1 For each M > M o, 

[ e f(?(M)'u't'M) if t_t > R( M)~:  xeR(M}x ( 1 - G( x))dx 

~(u,t;M)_< l t Jo (I - G(x))dx (17) e f(R(M}'u't 'M) I f  u _< R(M)r M xek~M) , 
t 

where R(M) is the unique  posit ive solut ion of (8) if it exists or zero otherwise and 
~(M) is the unique posiuve sohltion of 

M e r~ f~,,t 
f (I - G(.Q)dx - (c - c(M)) + r xe~'(I - G(x))dx = u-. (18) 
a0 ! 

Hence we can conclude  that for some values of M It will be possible to improve the 
upper  hound given by Lundbe rg ' s  mequahty ,  which imphes  that in some cases the 
value of M that min lmises  the upper hound provided by Gerber ' s  inequal i ty  is diffe- 
rent from the value of M that maxlmlSeS the adjustment  coefficient As this max imum 
IS attained at the unique solution of (8) satisfying (9) we can conclude that this value is 

different from the mlnlmlser  of Gerber ' s  inequali ty if and only if 

u [ ~ ' . ( ' + ~ )  
- > R* xeR''(I -- G(x))d~, (19) 
l J0  

where R* is the unique solution of 

f~ln('+~)e'~(I-G(x))d., = c -  c(-Ir In(I + ~) ) (20) 

Let us study the behavtour  of  Gerbe r ' s  bound as a funct ion of  the retent ,on hml t  
Notice that 
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rain I / t ( u , t ; M ) < e x p ( m l n  mm f (r ,M;u,t))  
M>M o ~ M~'M o r>R(M) 

(21) 
= e x p (  rain m,n f (r ,M;u, t )) .  

~.r>-R(M) M>_M o 

Differentmtmgf(r ,  M, u, t) with respect to M and considering (6) we get 

aT = r t ( l -  G(M))(e 'M - (1  +~)), (22) 
OM 

and dffferentmtlng twice 

02 f rt[rerM(i_G(M))+((i+~)_eRM)g(M)]. 
OM z - (23) 

which imphes that the first derivative is zero ff and only if 

M = 1_ In(I + ~), (24) 
r 

and that the second derivative is positive whenever (24) holds This means that for 
fixed r, u and t, fir, M, u, t) has a local minimum, which ~s umque and attained at the 

point m =-1 In(I +~) .  
r 

1 
Let r o = - ~ - l n ( I  + ~)wlth Mo gwen by (16). (Note that ro wdl be finite if and only 

if u/t < ~ - 0.) 
So, minimising fir, M; u, t) for r > R(M) andM > M 0, is eqmvalent to mlnlmlsmg 

f ( r , - t  ln(I + ~),u,t) for R* < r <  ro, where R* is the umque solution to (20) 
r 

Differentiating 
r 

ff(r, 1_ ln(I + ~), u, t) with respect to r we get 

-~r f ( r ' l  ln(l + ~);u,t) = -u + t f l  ln't+~'err -G(x))dx 

+rt xe ( I - G ( x ) ) d x ,  
.tO 

(25) 

and differentiating twine we get 
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c~ 2 r-I ln(l+'~) r t  ~, 1 
f (r ,  r ln( l+~) ,u , t )  = 2tJo xe u - G ( x ) ) d x  Or 2 

r - I In( l+~)  " r~ 
+rtJo x ' e  ( 1 -  G(x))dx 

(26) 

f [ I n ( l + ~ )  2 r r  . . . .  
= tj~ x e ao(x), 

which is positive, implying that f ( r ,  l- ln(I +¢),u,t) ts a convex function of r That the 
F 

three terms sum to the right hand side of  (26), can be easily checked, by integrating by 
parts this last expression Hence we can conclude that there is at most one solution to 

O f(r, lln(l+~);u,t)=O -57 
1 

and that when it exists it is the global nunmlum of f ( r , - ; - In( l  + ~ ) , u , t ) .  
r 

But on one hand 

hm f(r,-I ln(l + ¢),u,t) = O 
r--~O \ r 

and 

Lffr,2-1n(m + O, < hm O. 
r - - 4 0 8 1 "  ~ r ) 

On the other hand, if u/t < ~ -  O, then r o will be finite and 

f Mo 
lira f ( r , / l n ( I  +~) ,u , t  = rotJo (e '° '  - 1 ) ( 1 -  G(x))dx > 0 

r-'--> r o k F 

and if u/t >_ ~ -  0 then 

r - 4  r o r---~ r~ \ r 

= h m  ( - r ( .  - I ( ¢ -  0 ) ) )  = 4 ,  
r---~ r~ 

(27) 

so we can state the following result 

Result 2 
If ult _> ~ -  0 then the tipper bound to the rum probability before ume t, gwen by (10), 
attains its minimum at M = 0 

If u/t < ~ - / 9  then the upper bound, considered as a function of  M has an absolute 

__1 ln(l +~)  with r* = m l - n l m u m  w h i c h  is a t t a i n e d  at the p o i n t  M = r ,  

max(7, R*) where 7 is the soluuon to 
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I ( (1 "~'~ /'-I In(l+~) 
jo'"('+~)e"(l-G(x))~r - c -c  ; ln( l+~)JJ+rJo xe"(l-G(x))~t~=£(28), 

and R* is the umque solution to 
I ~:ln(l+¢)er~(l-a(x))~c=(l+O)-(l+~)f~ln(l+~)(l-a(x))dx, (29) 

if such a root exists or zero otherwise. 

4. EXAMPLES 

In this section we gwe some examples for the problem studmd in the previous section 
and compare the values obtained for the upper bound given by Gerber's mequahty 
with the values of Lundberg's bound and the values of ruin probability m finite hori- 
zon. 

Example 1: Let us consider first the case of exponential individual claim amounts, i e 
G(x)  = I - e-' for x > 0. Then the excess of loss reinsurance premium is c (M)  = 
(1 +) eMand 

M o = - l n ( U + t O 1  

Equation (8) defining the adjustment coefficient R(M) is, in this case, eqmvalent to 

(1 - e - ( ' - ~ ) M ) / ( I  -- r )  = ( l  + O) - (I  + ~ )  e - M  , ( 3 0 )  

and equation (18) definmg >(M) is equwalent to 

( I r / (  ) r [ ] 
_ + - -  i_e_Cl_r) M _ Me_( j_ , )M_ ( l + 0 ) _ ( l + ~ ) e _  M = u  (31) 

1 r (I - r) 2 I - r t 

>(M) wall be greater than R(M) if and only if 

> - (32) 
t l - R ( M )  U 1 - R ( M )  

Equations (30) and (31) can be ~olved for each M by standard numerical techniques 
given values of 0and 
l f u / t  < ~ - 0the upper bound to ~(M; u, t) gwen by (10) is attained at the point 

M = - k l n  (1 +~) (33) 
r ¢. 

with r* = max ( 7,  R*) where ~ is the solution to equauon (3 I) with M substituted by 

the right-hand side of (33) and R* is the solution to equation (30) again with M sub- 
stituted by the right-hand slde of  (33) 
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Let 0 = 0 2 and ~ = 0.4. In this case the value of M that mmml l ses  the upper bound 
provided by Lundberg ' s  inequahty  is M = 1.486, which gives a value for the adJust- 
ment coefficient of  R* = 0 226466 When  we mmlmise  the upper  bound provided by 

Gerber ' s  inequali ty we get a different solution for the excess of loss re tenuon hmlt  ~f 
u / t > 0.12075, the solution being M = 0 if u / t _> 0.2. Table  I gives the optimal M for 
different values of u / t 

TABLE 1 

'OPTIMAl.' RE'I ENTION AS A FUNC'[ ION OF toll, WITH CLAIM AMOUNTS EXPONENTIALLY DISTRIBUTED 

u/t 0 125 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 2  

M 1427 I 357 I 219 1078 0 9 3 2  0 7 7 9  0611 0 4 1 2  0 

1 E+O0 - _ ~  . . . . .  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  = :  . . . . . . . . .  = . . . . . . . . . . . . .  

: ::::: ::::::::::::::::::::::::: Lundberg's Bound :_!:_: 

"~::3 1E 02 I :  iI::::: :::::::::]::::::::::::::LPr::ab:lity of Ruin I -i::: 

"N 

0 1 2 3 4 5 
Retention Level 

FIGURE ] CLAIM AMOUNTS EXPONENT1AI.I.Y DISTRIBUq El) 

Figure 1 shows calculated values of I/t (M, u, t), Gerber ' s  upper bound and Lundberg ' s  
upper bound for u = 30 and t = 200 
Table  2 gwes  the values attained by these funcuons  at the m l m m u m  of  each of  them 
(rounded to two decimal places) 
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TABLE 2 

'OFrl IMAL' VAI.UEq WI'I H CI AIM AMOUNTS EXPONENTIALLY DISTRIBUTED 

M ~A/M;30,200) Gerber'~ bound Lundberg's bound 

0.83 0 2 1 8 x  lOt OlOI x 102 0 2 5 2 x  I01 
1.08 0 2 5 7 x  107 0 8 9 6 x  IO 3 0 2 1 9 x  IO 2 
1.49 0442  x 10s 0 104 x 102 0 112 x 102 

The efficiency measure defined by Dickson and Waters (1994) goes from 49% (= 
V(0  83;30. 200)/lff(l 49, 30, 200)) for the mlntmtser of Lundberg 's  bound to 85% (= 

(0.83,30, 200) /N(I .08 ,  30, 200)) for the mmimlser  of Gerber ' s  bound. 
The probabilit ies,  in all the examples,  were calculated using the algorithm of  De 

Vylder and Goovaerts (1988) as re-scaled by Dickson and Waters (1991) and adjusted 
to take into account reinsurance 

We started by dlscrettzlng the mdtvtdual claim amounts (before reinsurance) on 
1//3, 2//3 . . . . .  usmg the method suggested by De Vylder and Goovaerts  (1988) Then, 
for each value of M we have calculated the net premium (after reinsurance) m the new 
monetary untt, after whtch we have calculated the dtstrlbutton functton F of the aggre- 
gate claim amounts after reinsurance m a period of  tm~e with the rescaled Polsson 

parameter (in this case - with t = 1 - the inverse of the net premium). In this way the 
rescahng parameter depends on the value of  the retention. 2 

Then we have used the recurslon formula 

( t ( w ,  1) = 1 - F(w + 1) ,  w _< i7 + (fi - 1 ) ,  

w+l  

~(w ,n )  = I - F ( w + l ) +  E f j ~ t ( w + l - j , n - I ) ,  w<_ ~ + ( ~ - n ) , n  =2 ,  ,fi, 
j=0  

where ~ = u/3 and fi = {tP} where P denotes the net premtum in the new monetary 

unit and {x} denotes the least mteger greater than or equal to x 
We have used the approximation 

with ~ t ( w - I , n )  to be zero tf w ts zero, as suggested by De Vylder and Goovaerts  

(1988), for probabilities m continuous time 

TABLE 3 

'OPTIMAL" VALUES WITH CLAIM AMOUNTS PARETO DISTRIBUTED 

M IlKM;30,200) Gerber's bound Lundberg's bound 

0.83 0 1 0 2 x  102 0 5 4 9 x  102 I000  
1.03 0 109 x 10 z 0523  x 102 0644  
2.33 0 3 5 6 x  102 0 9 7 7 x  102 0013  

2 Note that w,th th,s reqcahng we are resmcted to evaluate the rum probabdmes for a posmve net 
premium 
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As tP may be not an integer we have used the following interpolation to calculate the 
probabilities of the original process 

~ ( M , u , t )  _= ~(u13,tP) _= ({tP} - tP)~(u13, ltP} - I )+  ( t P - ( { t P }  - l))~(u13, ltP}) 

In the calculauons of  Table 2 we have taken 13= 100 and the control parameter, ~, was 
set at 3 x 10 -9 This parameter is used for the calcnlatlons in the De Vylder and Goo- 
vaerts algorithm (see De Vylder and Goovaerts  (1988), p 7) For the calculations of  
the ruin probabilities necessary to perform Figure 1 we have used 13 = 20. 

E x a m p l e  2: Consider  now the case where G(x) = I - (I +x) -2, i e. ind,vldual claims 
follow a Pareto (2,1) distribution. Let 0 =  0 2 and ~ = 0 4 as In the prevmus example 
In this case the equauons defimng R(M) and ?(M) require numerical calculations of  
integrals of  the kand 

I ~  (I - G(x))dx  e r~ 

Instead of  using standard numerical techmques to calculate them, we have calculated 
R(M) and ?(M) based on the discretlzed dlsmbutmn.  Figure 2 shows the rum proba- 

blhty before time t = 200, for tt = 3 0 ,  and both Gerber ' s  and Lundberg 's  bounds 

0 

P. 

0.1 

~!:.:.I!:'!:-5!:_:..:!L~:.:':_:.!L:!_::.!E p~ob~b,ity of R~io :_!57:.:':-_--_:~ 

o 

o ool t :----: 
0.0 1.0 2.0 3.0 4.0 5.0 

Reterrtior Level 

FIGURE2 CLAIM AMOUNTS PARE~IO DISTRIBUTED 

Table 3 eqmvalent  to Table 2, but for the Pareto distribution The figures are even 
more indicative. 
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5. CONCLUDING REMARKS 

As we have already mentioned, the optimal retention hmlt, when the probability of 
rum in continuous time w~th a fimte horizon ~s mlnlmlsed, can be quite far from the 
optimal value when the probabdlty of rum m continuous time with an infinite horizon 
IS considered However, the calculations of  the ruln probabilities in finite horizon are 
very time consuming, making this cnterlon less appealing. 

Gerber's bound is computatlonally much easier to deal with than the rum proba- 
bdlty and in the examples considered ~t provides a solution that ~s very close to the 
solution obtained when the probability of ruin is used. The disadvantage of using 
Gerber's bound is that this bound is not always an improvement on Lundberg's bound 
- It depends on the value of  the ratio of u to t Our advice would be to use Gerber's 
bound, if it provides an improvement to Lundberg's bound, and use an approximation 
such as that provided by the translated Gamma process otherwise 

We have shown that when the reinsurance premium calculation principle is the ex- 
pected value principle, Gerber's bound has a umque minimum. However, this is not 
true m general. When th~s is not the case, m all the examples considered, the proba- 
blhty of ruin had a similar behavlour Some care should be taken in these cases. 
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