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A B S T R A C T  

We investigate the m~pllcat~ons of a dual approach to the graduation of the force of 
mortality based on the modelling of the exposures as gamma random variables, as 
opposed to the modelling of the numbers of deaths as Poisson random variables. 
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1 I N T R O D U C T I O N  

In this paper, we describe as the 'conventional' approach to graduation the method 
whereby the force of mortality is graduated by fitting a parameterised formula to the 
crude mortality rates under the assumption that the actual numbers of deaths are Pols- 
son random variables conditional on the matching central exposures to the risk of 
death, e.g. Forfar, McCutcheon & Wxlkxe (1988) Under this approach, the Polsson 
assumption gwes rise to a characteristic hkehhood which is ophmJsed to provide esti- 
mates for the parameters m the graduation formula. It has been noted, e.g. page 113 of 
Gerber (1995), that the same formal expression for the likelihood arises under the 
different assumption that the central exposures to the risk of death are gamma random 
variables conditional on the matching numbers of deaths The imphcatlons of adopting 
this dual approach for the parametric graduation process are investigated m this paper. 
Following Renshaw (1991), both approaches are formulated within the generahsed 
linear modelling (GLM) framework , whde the conclusions extend to include non- 
linear parametensed graduation formulae. 

A brief description of the sahent features of GLMs is presented in Section 2 for 
completeness The consequences of switching from the 'conventional' approach to the 
dual modelling approach when the data are based on head counts, or equivalently, on 
pohcy counts m the absence of duphcate police . are discussed in Section 3. The im- 
plications for both approaches when duplicate policies are present in the data counts 
are then discussed m Section 4 and Section 5 respectively Finally an dlustration of the 
~mphcat~ons of the switch from the 'conventional' approach to the dual approach, 
which reside largely in the reporting of the graduation, is presented in Section 6. 
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2 GENERALISED LINEAR MODELS 

The purpose of  this section is to provide a brief introduction to GLMs. A complete 
treatment of the theory and application can be found m McCullagh & Nelder (1989) 
and Francis, Green & Payne (1993). 

The basis of  a GLM is motivated, in the first instance, by the assumption that the 
data are sampled from a one parameter exponential family of distributions with log- 
hkehhood 

l = ~0 - b(O) + c(y, q)) 

for a single observation y, where 0 is the canonical parameter and ~ is the dispersion 
parameter, assumed known. It is then straightforward to demonstrate that 

m =  E(Y)=  ~ 0  b(0) and V a r ( Y ) = ( 9 ~ o 2 b ( O ) = ( p b " ( O ) .  

We note that Var(Y) ~s the product of  two quantities The quantity b"(O) is called the 
variance function and depends on the canonical parameter and hence on the mean We 
can write this as V(m). 

The log-likelihoods for some common &strlbUtlOnS of interest and which conform 
to these properties are 

l = y log m - m - log yV 

0 = Iogm, b(O) = exp0,  V(m)  = m, (a = 1 

for the Poisson dlstribuuon with mean m, and 

Y + log 1 

l -  m m ÷ v l o g y + v l o g v - l o g F ( v )  
1 

v 

0 = - -L- ,b (O)  = - I o g ( - O ) ,  V(m)  = m2 ,~  = v -I 
m 

for the gamma distribution mean m and v a r i a n c e  m2/v. 
More generally a GLM is characterlsed by independent response variables { Yu" u = 

1,2, . ,n} forwhlch  

E(Y . )  = m,,, Var(Yu) = qW(m,,) (2.1) 
o) u 

comprising a variance function V, a scale parameter (~ > 0) and prior weights 09.. 
Covanates enter via a linear predictor 

P 

~1, = Z Xuj ~J 
j = l  
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with specified structure (x.j) and unknown parameters j3j linked to the mean response 
through a known dlfferentlable monotonic link function g with 

g(m.) = 17.. 

The special hnk function g = 0, so that 0(m) = r/, is called the canonical link function. 
Examples are the log link in the case of the Polsson distribution and the reciprocal link 
in the case of the gamma distribution 

The suffices or units u have structure, either intrinsic or imposed. The data compri- 
se reahsations {y. } of the independent response variables, matched to the structure of 
the units. Generally in any one study, the detail of the distribution and link are fixed, 
while the predictor structure may be varied 

Model fitting is by maxlmlslng the quasi log-likelihood 

11 n ntu 

q = q(y,m)= Z % = £  CO. "J y" -Sds (2.2) 
- , , = i  , , = l  , .  CV(s) 

leading to the system of  linear equations 
t !  

Z 0 9 .  y" - m,, 0 m. 
0 V J 

in the unknown fl,,s These are solved numerically, e.g Francis, Green & Payne (1993), 
McCullagh & Nelder (1989). Detail of the construction of standard errors for the pa- 
rameter estimators, based on standard statistical theory, is also to be found in these 
references Denote the resulting values of  the parameter estimators, linear predictor 

and fitted values, for the current model c, /3j, ~,, and nS. respectively, where 

P 

j = l  

For members of the exponential family of distributions, the quasi Iog-hkelihood is 
synonymous with log-likelihood The maximal structure possible has the property that 
the fitted values are equal to the observed responses, that ~s dr. = y.  for all u, and ~s 
called the full or saturated m o d e l f  

The (unscaled) deviance of the current model c is 

t l  n Y~ 

O(c,f) = d ( y ; ~ )  = d,, = ~.a 2co,, j = - 2  0 q (y ;~) ,  
= u = l  ~h~ " 

in which the fitted values under the current and saturated models impact on the for- 
mula through the lower and upper limits of the integral respectively. The correspon- 
ding scaled deviance is 

d(y,~_) /7 

S(c,f) = d*  (y;~_)= = Z2co. r[ Y,, -Sds - = - 2  q(y;..~_) ( 2  3 )  
- ~ q ¢ V(s )  - 

I I = ]  l i l t  I 
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For fixed distribution, fixed link and hierarchical model structures cj and cz, with c2 
nested in c~, the difference m scaled deviance 

S(c:,  f') - S ( c , , ~  

may be referred, generally as an approxlmatmn, to the chi-square d~stnbuuon with v 2 - 
v~ degrees-of-freedom, where v~ and v 2 denote the respective degrees-of-freedom. 

Two types of residuals (which are idenncal only in the case of the Gaussian d~str~- 
buuon, for which V(s) = 1) are of interest, the Pearson residuals 

^ 

y,  - m,, (2.4) 

or the deviance residuals 

sign (y,, - th . ) . f~-  

where d. is the uth. component of the (unscaled) deviance above 

3. HEAD OR POLICY COUNTS WITH NO DUPLICATES 

3.1 Distribution Assumptions 

In keeping with common practice, let 

u~ = the force of mortality at age x 
,.p~ = the probablhty that a life aged x surwves tot age x + w 

and recall the basic idennty 
w 

wP~ = exp -  j /~ ~+ ~ds (3 I ) 

0 

with the imphed assumpuon that ~ is a functmn of age alone and ~s therefore assumed 
to be constant with respect to varmnons m calendar time within a fixed observation 
window. 

Focus on a set of mdwJdual lives or policyholders. If the latter, and the data are ba- 

sed on policy counts, then it is assumed throughout this Section that all policyholders 
possess a single policy Individual members of the set are assumed to be observed 
between ages x and x + 1 m t h e f a e d  calendar period or observauon window t to t + t o, 
with pre-specified pohcy durauon where relevant, and their survxval experience ~s 
assumed throughout to be independent Typmally to = 4 years in many Umted King- 
dom (UK) actuarial mortality studies. There is also interest m the case to -- 1 year 

when modelhng trends in mortality, e g. Renshaw, Haberman & Hatzopoulos (1996). 
Within such a cell, identified in this instance by the suffix x, suppose an individual t 
enters observation at age v~, and leaves it either by death (1,, = 1) or by censorship 
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(I,, = 0) at age 15, + w, where x _< v,, < v~, +w,, _< x + 1, Then It Is well known see, e g 
Section 3.2 of Cox & Oakes (1984), that each such datum contributes an amount 

/ 
L,, =w. P,,,,/-tv~:+,,., 

to the hkehhood, or, on resorting to the use of expression (3 I), an amount 

w., 

l,, = log L,, = - I It~',, +sds + lu log//,., +,,,, 
0 

to the log-hkehhood. Thus the total contnbutmn to the log-likehhood from such a cell 
1s 

nt it x ;v~: l 

where the summatmn extends to all n, individuals contributing to the experience in the 
cell If m addmon ,u~ is assumed to be piecewlse constant with respect to age within 

each cell and accorded the central value/a, + m, expression (3.2) can be written as 

l, = - r r / . / ~ + ) / 2  + a ,  Iog~r+l/2 

where 
tie n r 

rr =Ewu,ax=El .  
t = l  t = l  

denote the respective central exposure and actual number of deaths associated with 
cell x. The expression for the full Iog-hkehhood 

l = E l  , = E{- r , / . /~+l /2  +axlogp,+l/2 } (3.3) 

then follows by summation over all such cells. It Js of specJfic interest to note that this 
expression may be interpreted m one of two ways 

Firstly, and somewhat exclusively m the context of an actuarial gladuanon, expres- 
sion (2.3) ~s ~dentlfiable as the kernel of the Iog-hkehhood under the assumption that 
the actual numbers of deaths, a,, are modelled as independent reahsanons of Po~sson 
random variables A~ condmonal on r,, such that 

A, ~ Poi(r ,~,+l /2) .  

For this case, the detail of the distributional reqmrements to set up the appropriate 
GLM (equanon (2 1) with u -z x) is either 

responses {Ax},wlth m~ = r ,u ,+l /2 ,  V(m~ ) = mr,~p = 1,o9~ = 1, (3 4a) 

or eqmvalently 

responses{A, /r~ ,with m, =tJ~+l/2.V(m,)=m~,gp=l,og~ =r~ (34b)  
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Secondly,  e.g. Section l 1 5 of Gerber 1995), expression (3 3) is also identifiable as 
the kernel of  the log-hkelihood under the assumption that the exposures to r.sk, r,, are 
modelled as independent reallsatlons of gamma random variables R, condmonal  on a,, 
such that 

R~ - gam (a~,/./~+ I/2 ) 

Superficmlly this result is perhaps a little unusual m-so-far as the gamma &strabutlon 
is generally associated with two unknown parameters, whereas here, as with the Pols- 
son distribution above, there is only a single parameter to estimate For this case, the 
detad of  the distributional reqmrements to set up the appropriate GLM (equation (2 I) 
with u --- x )  is either 

responses {R, },with m t  = a a - -  

or eqmvalently 

t + l / 2  

responses {R, / a ,  }, with m, = - -  
1 

f l  ~+1/2 

,) 
, V ( m ~ ) = m ~ , ( 9 = l , c o ~  = a , ,  (35a)  

, V (m ,  ) = m~,(~= l,og , = a,  (3.5b) 

The data comprise the ordered pairs of numbers of deaths and central exposures (a,, r~) 
over a range of  ages x All of the r,s are non-zero by ~mphcat~on, but ~t is conceivable 
that certain of  the a,s are zero. This ms most likely to occur at the extremities of the age 
range were the data are sometimes sparse Note that whde such data cells are retained 
in any analysis of  the data based on distributional assumptions (3.4a & b), they are 
weighted out of  any analysis based on &stnbutlonal assumptions (3.5a & b) 

3 . 2  D i s c u s s i o n  

The optlmlsat lon of expression (3 3) under the former mterpretatlon (based on the 
Polsson &stribution) ~s central to the current graduation practice of  the Continuous 
Mortahty lnvesttgatlon (CMI) Bureau in the UK, e g. Forfar et al (1988), while the 
opt~misat~on of  expression (3.3) under the alternative interpretation (based on the 
gamma distribution) would appear  not to have been investigated previously in an 
actuanal graduation setting. 

It is possible to derive the first set of assumptions, m which the number of  actual 
deaths A, form the response variables, by taking expectations and variances under the 
~dent~ty 

A ,  = Z / , ,  
t=l 

where l,, Is the zero-one indicator random variable, introduced previously, in Section 
3.1. It has the property 

E(I~,) = E(I~,) = P ( I .  = 1) = 1 - e x p -  J~+~ds 
0 
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and is assumed to be independent for all individuals t. The results then follow under 
the assumptmn that/.t~ is plecewlse constant within cells, so that 

E(I~,) = (E(I~,)= 1 - exp(-ll ,+l/2w~,),  (36)  

and on neglecting second and higher order therms in the power series expansion of  
exp ( - u  r+l / 2 w 3, ), so that 

Var(l~,) = E(I~,) = I.t,+j/2w . .  

Under the second set of assumptions, for which the responses satisfy 
,1 t 

gx =~W., 
t=l 

the individual exposures W. are modelled as random variables. Under the addmonal 
assumption that the individual exposures are independent and identically distributed, it 
follows trivially from the reproductive property of  the gamma distribution that they 
have the gamma distribution 

W,, - gam(a~,p~+l /2  ) 
g/x 

Again based on the reproductive property of the gamma distnbuuon, note that it is also 
possible to construct the identical GLM by defining 

tl  a LI t  

R,=ZW,,=Zr,, 
i=l j= l  

m which the T~js are assumed to be independent and identically distrthuted gamma 
random vmables,  such that 

T~s ~ gam(l,/J,+l/2), 

and where at least one death is recorded m every cell Here it is possible to interpret T,j 
as the sum of randomly selected censored exposures W,, the last of which is associated 
with a death 

The target of the graduation process is the force ofmortahty 13~ under d~stnbutlon 
assumptions (3.4a & b) and the force of vltahty 1//.t, under distribution assumptions 
(3.4a & b). In using the latter description, we follow the terminology of  Lambert 
(1772) see, e g Daw (1980) 

The value of  the scaled deviance, (expression 2.3, with u- :  x)  is identical tinder 
both sets of modelling assumptions (3 4a & b) and (3.5a & b) and is equal to 

S(c ' f )= Z 2 { a '  t rdJ~+'/2 ^a~ ( a r _ r , ~ , + , / 2 ) }  (37) 

where /~, denotes the graduated values of/.1, provided deaths are recorded for all ages 

0 e. a, > 0 V x)  so that none of  the terms are weighted out of the expression on the 

right hand side (RHS) of equation (37)  under the dual modelling assumptions (3.5a & 
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b) This is perhaps a surpns,ng result on the surface It reflects the fact that the same 
objective function, expression (3 3), which Is embedded m the construction of  the 
scaled devmnce as the quasi log-likehhood function, (expression 2 2, with u = x)  is 
optimlsed when fitting the model structure (or graduation formula). 

Subject to the weighting out of  any data cells containing zero a,s in the one case, 
the two sets of  distribution assumptions lead to identical graduat,ons for/.t, Thus, 
assumption (3 4a) with responses {a, } in combination w,th log-link based graduation 
formulae of  the type 

P 

log//,+l/2 = E h v f l j  (3 8) 
3=0 

so that 
p 

logm~ = q, = logr, + log/a,+l/2 = Iogr, + E h v f l j ,  
./=0 

gives ,dentical graduations to those obtained under assumption (3 5b) with responses 
{ r, }sothat  

P 

logm~ = r/, = loga~ -Iog/ . t ,+l /2 = loga.~ + E/lv,/3j.  
j = 0  

Typically the parameterlsed structure of  the RHS of the graduation equation (3.8) is a 
polynomial in x with either the log r, or log at terms declared as offsets, as the case 
may be The estimated values of  the parameters flj are identical in magn,tude but op- 
posite in sign in the two cases Similarly assumption (3.4b) with responses {a/r ,  } m 
combination w~th the power link graduation formulae of the type 

P 
7 

] " / t + l / 2  = Ehvflj 
j = 0  

gives identical graduations to tho~e obtained under assumption (3 5b) with responses 
{ r / a  x } so that 

P 
- 7  

~ + 1 / 2  = Zhu~j 
j=O 

This ume the esumated values of  the parameters flj are identical m both magnitude and 
sign in the two cases. Thus the general conclusions of this paper extend to non-hnear 
parametensed graduauon formulae via the identity link under the 'convenuonal '  ap- 
proach and the reciprocal link under the dual approach. 

Let e, = q/.t~+j/2 denote the expected number of  deaths predicted at age x, under 
the conventional graduation methodology encapsulated by equations (3.4a &b). and 
define the statistics 



ON THE DUALITY OF ASSUMPTIONS UNDERPINNING THE CONSTRUCTION OF LIFE TABLES ] 3 

dev, 
dev~ =a' -er'4~/~-=~f~-'Lr= ~ -' looC"'e., (3.9) 

It is common practice for these to be tabulated (subject to possible cell grouping in the 
tails of  the age range) as part of the diagnosuc checking procedure of  a graduation• 
Note in particular that the staustlc z, ~s the Pearson residual of  the corresponding 
GLM, (expression 2.3, with u-= x). Thus typically the value of the approximate chl- 

square statistic E z~ is quoted as one of  the many test statistics of  a graduation. The 

equivalent staustlcs under the dual graduation methodology encapsulated by equations 
(3.5a or b) revolving definition ,~ = a~ /P ,+ l /2  or expected exposure predicted at age 

x, are 

r, i d v, = _ , = ._2_,~, =--7--- ,  100 r~- (3 10) 

Again note that these statistics are defined in such a way that z,a denotes the Pearson 
residual of the associated GLM (3.5a or b). The relationship between the values of the 
deviation tinder the dual and 'convenuonal '  graduation methodologies, namely 

-d~v ~ 
d~v~ - Jd~+l/2 

~mplies that the res|duals under the two methodologies have opposite signs. Although 
only strictly exact provided all the a,s are positive, this relationship provides a very 
close approximation when the a,s take zero values at the extremmes of the age range 
concerned. Detaded examination of  the respective formulae defimng the Pearson resi- 
duals z, and ~,, reveals that they differ m magnitude (and have opposite signs) On the 
other hand, because of the equality of the deviance components under the two metho- 
dologies established above, the deviance residuals defined by either 

as the case may be, where d, ~s the general term in the summauon on the RHS of ex- 
preqsion (3 7), are identical in magnitude (and opposite m sign) under the dual metho- 
dologies. It is also of interest to note that the final statistics quoted in expressions (3 9) 
and (3 10), corresponding to the respective dual modelhng scenarios, are the recipro- 
cals of one another prior to scaling by 100 Again both of  these features are exact 
when all the a,s are posiuve and represent a very close approxlmauon when any of  the 
a~s are zero at the extremmes of the age range 
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4 P O L I C Y  C O U N T S  W I T H  D U P L I C A T E S :  C L A I M  N U M B E R  R E S P O N S E  M O D E L S  

4.1 Preliminaries 
The data used in the construction of actuarial life tables are generally based on pohcy 
rather than head counts Consequently, the death of  a pohcyholder  with more than one 
pohcy will appear as more than one death m the raw data The resulting graduatmn 
needs to account for this overd~spersmn, for a review of  the issues Involved, readers 
should consult Forfar et al. (I 988) and Renshaw (1992). 

Let 

D ,  = the number of  policies held by pohcyholder  i, age x 
C~, = the number of policies held by pohcyholder  t, age x, resulting m a claim. 

Assume that the random variables D,, are a.i.d V i and let D, denote the generic type. 
For each i, the events (C,, = k I I,, = 1) and (D,, = k) are such that 

(C, ,=k[l , ,= 1) ¢:, (D,,=k),  k =  I, 2, 3, .. 

and thus have identtcal probabdities. Define 

P( O~ = k )= P(C,, = k l I~, = l)= {~ ('k) 

where 

Denote 

and 

Ck~ _> 0 ,~ . .  Jr~ *~ I 
k=l 

E(D~) = E(c~, f / . ,  = 1) = ~ , J r ~  *~ =, u ,  

~=1 

k =1 ,2 ,3  .... 

otherwise 

E( D~ ) = E( C~ [I,, = 1)= ~ k2,rt "~a~ ~ = 2 ~  • 

It also follows by definition that 

so that 

P(C~, = O I I ,  = 0 ) = 1  

E(C, ,  I 1 .  = 0) = E(C~. t 1,, = 0) = 0 

Hence the uncondittonal distribution of  C ,  Is given by 

j l  - E(/xl ), k = 0 

P(C,, = k) = [ E ( l a , ) ~ l  ' k = 1,2,3, 
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for which 

E(C,,)=llrrE(lu),  E(C~,)=2:n'~ E(/ , , )  

These equations, in combination with expression (3 6) for E(I~,), on neglecting second 
and higher order terms in the power series expansion of  exp(-/-t~+~ a w,), imply that 

E(Cu ) = i.R',[da+l/2Wrt and Var (C, )  = 2./~t/./,+l/21wu. (4.1) 

We also have an interest in the first two moments of  the product random variable 
Dr, Ix, Under the mild assumption that the number of  policies, D~,, held by pohcyhol- 
der t. aged x, is statistically independent of the mode of censorship, I,,, It follows that 

E(D, It, ) = E(D,, )E(I ,  ), Var(D,,/, ,  ) = E(D~, )E(I~, ) - { E(D~, )E(I ,  )}2 

These equations in combination with expressions (3 6), on neglecting second and 
higher order terms in the power series expansion of exp(-,Ux+m w,), then mlply that 

E(D~,I~,) =l ~,,u ~+I/2w,, and Var(D, , / , , )=  2zGIJ,+l:zw~, (4.2) 

4.2 Distribution Assumptions 

Let 

A~ = the number of policies giving rise to a clmm through deaths 
r~ = the cental exposure to the risk of death based on pohcies. 

' Z  Note that r, = d,,w.,, 
t= l  

where d,, (_> I) denotes the number of  policies held by policyholder i, reducing to q if 
and only if d,, = 1 V i. Throughout this Section the A~s are modelled as random van- 
ables condmonal on q'. It follows on taking expectations and variances under any one 
of  the following identities 

A~ = Z D , ,  (with A, > 0),A[ = Z C a , , A :  = Z D , ,  1. (43) 
t=[ I=] I=l  

that the detail of  the distributional requirements to set up the appropriate GLM 
(equation (2.1), with tt ~ x)  is either 

responses {A;}, with m, = r~tJ,+l/z, U(m,) = m x, ~ = 1, o) x = ~b~ l , (4 4a) 

or equivalently 

responses {A; / r'}, with m~ = Ya+l/2, g ( m r )  = t t / , ,  (~ = I, 09~ = r ~  l ,  (4 4b) 

where ~.~ = 2/r~ 
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4.3 D i s c u s s i o n  

The result (4.4a) follows from the first of  the |dentines (4.3) which, under the assump- 
tion that A~ IS independent of  the {D~, } imphes, in combination with equations (3.4a) 

E(A~) = E(D~ )E(A~ ) =j :rr,r~,tl~+j/2 

and 

Var(A~) = Var(D,)E(A~)+{E(D,)}2Var(A~)-  E(D~) E(A~)= 21r' E(A~) 
E(D~ ) i trx 

Under the independence of  the terms in the respective summations, the same result 
follows trivially from either the second of  the identlues (4.3) m combination with 
equations (4 I), or the third of  the identmes (4.3) in combination with equations (4.2). 
In all three cases, the product term ~zr, r, In the expression for E(A~) involving the 
unobserved central exposure based on lives has been replaced by r~, the observed 
central exposure based on policies The result (4.4b) follows trivially from result 
(4 4a) 

The justification for (4.4a) based on the second of the identities (4.3) and equations 
(4.1) is a generahsation of the method described in Renshaw (1992) for initial exposu- 
res and the binomial response model. This work establishes a link with much earher 
work on the modelling of  duplicate policies using an empirical approach, e.g. Beard & 
Perks (1949). 

A knowledge of the reciprocals of the overdlspers~on parameters 9, is needed to 
form the weights, if the distributional assumptions (4 4) are to be fully implemented 
Insight into the potential variation of q~, with x is provided by studies of  the propert,es 
of  so-called var,ance ratios, the empirical equivalent of 0,, e.g Forfar et al. (1988). 
These are defined as 

' ~  2 r ( l )  
t Ja 

vr, = ~ tf~,) 

I 

where f~') denotes the proportion, at age x, of policyholders who have l policies and 

where 

f~" _> O V i = l,2,3, . , ~ tf~') = l ~ vr, _> l 
I 

There are a number of  alternative practical posslbflmes When available, varmnce 
rauos can be used as esumates for the dispersion parameters ¢, and graduation can 
proceed m accordance with assumptions (4 4) On the other hand, Forfar et al. (1988) 
acting for the CMI Bureau in the UK, elect to transform the data by dlvldmg both the 
policy counts a~ and exposures r,' by the matching variance ratios prior to graduation 
with assumptions (3 4) &splaclng assumptions (4 4) When a detaded knowledge of 
the relevant variance ratios is not available for analysis a possible method of genera- 
tmg estimates for the dispersion parameters is described m Renshaw (1992). Alterna- 
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tlvely, under the assumption that the underlying modelhng distribution of  the number 
of  duplicate pohcles is identical across all ages x in the absence of  any further detailed 
knowledge about this distribution, the dispersion parameters q~ may be replaced by a 
constant scale (or dispersion) parameter 0 in assumpnons (4 4), e.g. Renshaw (1992) 
It IS estimated as 

~ =  unscaled deviance 

degrees - of  - freedom 

and is root # used to scale the Pearson residuals z, of expressions (3 9) or ~ of  

expressions (3 10), by muluplymg either V, or V, by ~ ,  as the case may be. Here the 

unscaled deviance is calculated using the expression on the RHS of equation (3.7). 
(Recall that 4~ was set to one when deriving this expression, so that the scaled deviance 
S (c ,~  is also the unscaled deviance m this instance.) This latter approach is closest in 
spirit to that adopted by Forfar et al. (1988) revolving the transformauon of  the data 
prior to graduation m-so-far as it produces identical graduations, while al lowing the 
presence of duplicate policies to impact solely on the second moment properties of the 
graduation process 

5. POLICY COUNTS WITH DUPLICATES: EXPOSURE RESPONSE MODELS 

5.1 Preliminaries 

As before, let 

Dr, = the number of policies held by policyholder i, age x 
W,, = the contribution to the exposure by policyholder t, age x 

Recall that D,, Dr, are assumed to be 1.1 d. V t with 

E( D~ ) =l 7r ~ , E( D~ ) =2 7c,. 

Recall also the duahty property of Section 3 2, namely that the central exposure to risk 
of death based on head counts, at age x 

n 

R~ = Z W~, ~ gam(a, , l l ,+l l2  ), 
t=l 

so that 

a, E "R2"t , )  a ~ ( l + a ~ )  E(R~)=- 
] " /~+l /2  ] ' /¢+112 
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Consider the identity 

R: (5.1) 
t= l  

which defines the central exposure to risk of death based on pohcy counts, at age x 
Assuming that the number of  pohcles held by an indw~dual pohcyholder is indepen- 
dent of the corresponding contribution to the exposure to nsk from that individual and 
that the indlvtdual exposures are independent, ~t follows fiom the identity (5 1) that 

t t  t 

E( R~ ) = E( D, ) Z  E( W,, ) = E(O, ) E( R, ) - 17r, a~ (5.2) 
s=l J"/~+1/2 

and 
n 

2 "~ E(R[ 2) = E(D~ )E( Z W,,)" = E(D~)E(R~) = z ;,r ~a,9 (1 + a , )  
,=j bt~+~/2 

after slmphficatJon. 

(53)  

5.2 Distribution Assumptions  

Let 

R~ = the central exposure to the risk of  death based on pohc~es 
a~ = the number of  policies gwmg rise to a claim through deaths 

Throughout this section the R~ s are modelled as random variables condmonal on a'~. 

It follows from equations (5.1), (5.2) and (5.3) that the detail of  the distributional 
requirements to set up the appropriate GLM (equauon (2 1), with tt - x)  is either 

1 
responses {R[}, with m, = a ~ - - , V ( m ~ ) = m ~ , ¢ = l ,  co, =l/t~ I, (54a)  

] ' / t + l / 2  

or eqmvalently 

• -- m ~esp.mses {R~/a,  }, with m, 

where this time 

/"/~ +1 / 2 

, V ( m , )  = m~, ¢ = I. 09, = I/t~ I, (5.4b) 

(_Z_+ / ~zr~ ] 
Ip,, = - 1  + -  (55)  
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5 .3  Discussion 

In parallel with the previous case, this time the product term ,~a~ in the expression for 
E ( R ~ )  revolving the unobserved number of  deaths a, based on head counts has been 
replaced by a~, the observed number of deaths base on policy counts. Again result 
(5 4b) follows trivially from result (5 4a) 

A knowledge of  the reciprocals of the dispersion parameters V, is required to form 
the weights if the distribuuon assumptions (5.4a or b) are to be fully implemented In 
the event that the results of  a study into the variance ratios for the pohcles m question 
are available, this will furnish estamates for the first two moments ,lr, and 2rr, of  the 
number of  duphcate policies so that modelling can proceed. Alternatively if It IS assu- 
med that the square of the coefficient of  variation of  the number of duplicate policies 
held by an ind~vtdual is sufficiently small so as to make the first term on the RHS of 
expression (5.5) for V~ is negligible in comparison with the second term, 

1 
~ = ~, "-7 

C/a 

and the situation is analogous to that discussed in Section 4.3. 

6. ILLUSTRATION 

The dual methodologies are illustrated using the Pensioners' widows 1979-1982 expe- 
rience reported in Table 15.5 of  Forfar et al  (1988). The data (a, ,  r ,) ,  comprising the 
numbers of deaths a~ and matching central exposures r,, are reported in the age range 
17 to 108 years inclusive. There are 2 + 5 = 7 completely empty cells m the extremi- 
ues of the age range and 28 + 12 = 40 cells contain no reported deaths The detail of  
the graduation contained in the above Table is based on Gompertz 's  formula fitted by 
the 'conventional '  approach, in which the numbers of  deaths are modelled as Polsson 
random variables The data have been regraduated using both the 'conventional '  ap- 
proach based on assumptions (3.4a) with predlctor-hnk formulauon 

+ ~ ( x - 7 0 " ~  
log , , , ,  -- l o g  ,-, + log -- log + n0 ( - g - 6 - ) '  

and the dual approach based on assumptions (3 5a) with equivalent predictor-link 
formulauon 

^ ( x - 7 0 " ~  
log m, = log a, - log/a,+./2 = log a, + ]30 +/J, ( ~ ) ,  

where  m~ denotes  the respective inean responses The associated gl'aduatton formula, 
imphed by these forrnulae, is taken frown Forfar et a l  (1988). Some details of  the res- 
pective fits including the parameter estimates are recorded in Table 6.1 The corres- 
ponding parameter estmaates have opposite signs as expected, but differ slightly m 
absolute value because the data entries revolving zero deaths feature only m the 
'conventional '  analysis Sn'nilarly the corresponding values of both the deviances and 
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the degrees-of-f reedom differ for the same reason. These differences are found to 
disappear when the ' convent lonar  analysis is apphed to the reduced da{a set and tden- 
tical graduauons result as a consequence (subject to very minor differences induced by 
the numerical fitting algori thm operating under the two different approaches ) An 
extract of  both graduattons based on the detail of  Table 6 1 ts reproduced m Table 
6 2(a&b), along wtth detatl of the assocmted staustlcs of expressions (3 9) and (3. I 0), 
as the case may be The detail of Table 6.2a ts m complete agreement wtth that to be 
found m Table 15.5 of Forfar et a! (1988), whtle the relattvely mmor effects of the 
excluded data under the dual modelhng approach are demonstrated. The basic diffe- 
rences in the accompanying ~tattsUcs used to monitor the effectiveness of a graduation 
under the two different approaches, as described m Section 3.2, can be venfied 

7 CONCLUSIONS 

The ' convent lonar  actuartal approach to the construcuon of H,-graduattons based on 
the fitting of  a w~de class of parameterlsed mathematical formulae by optlmismg the 

hkehhood,  m which the death counts are modelled as Polsson random vanables con- 

d m o n a l  on the central exposures, ~s effecuvely equtvalent to a dual approach m which 
the central exposures are modelled as gamma random varmbles condlt ional on the 
death counts The dual approaches lead to ldenucal graduations provided deaths are 
recorded m all data ceils, otherwise small differences occur m practice as a conse- 
quence of the loss of mformauon from any data cells m whtch no deaths are recorded 
under the one approach Key dtfferences occur in the dmgnostlc stattsucs of a gradua- 
tion, w~th restduals being accorded oppostte signs under the two different approaches 
In practice, a detailed knowledge of the specific nature of the empwlcal d~stnbuuons 
on duphcate pohc~es has only a mmmaal effect on the first moment of  a graduation 
under the two formulauons descrtbed here In the absence of this knowledge,  these 
first moment properttes may be neglected and a free standing constant scale (or disper- 
sion) parameter mtroduced, under either formulation, to represent the second moment 
properties o f a  graduauon in the presence of  duplicate pohcies. 

The dual approach to/, t ,-graduatlon would appear to have d~stmct advantages over 
the ' convenuonar  approach to graduatton, when it is adapted and apphed to the con- 
struction of select mortahty tables. This is dtscussed further m Renshaw & Haberman 
(1996), who successfully use the dual approach to model the log crude mortality rauos 
for individual select durations relative to the ultmaate experience 
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TABLE 6 1 
PARAMETERS bSTIMATES WITH (STANDARD ERRORS) 

'conventional' approach 

deviance ts 60 98 w~th 83 d f 

scale parameter ~= 1 
^ 

flo = -3 553 (0 03923) 

flo = 4 317 (0 1966) 

dual approach 

deviance is 45 99 with 50 d f 

scale parameter 0= I 
^ 

flo=3 543 (0 03925) 

_ flo = -4 332 (0 1979) 

TABLE 6 2(a) 
GRADUATION EXTRACT, 'CONVFNTIONAL' METHOD 

17 
30 
40 
50 
60 
65 
70 
75 
80 
85 
95 

108 

X G l~x+t/2 a x e~ d e v  x 

0 5 0 00029 0 0 00 0 00 
36 0 0 00091 0 0 03 -0 03 

115 5 0 00215 0 0 25 -0 25 
378 5 0 00509 3 I 93 I 07 

10290 001208  14 1243 I 57 
10290 0 0 1 8 6 0  21 19 14 I 86 
941 0 0 02864 21 26 95 -5 95 
607 0 0 04410 33 26 77 6 23 
323 5 0 06790 25 21 97 3 03 
1325 010455  11 1385 1160 

4 0 0 24790 2 0 99 I 0 I 
2 0  076154  0 I 52 -152  

\FVx zx lOOax/G 

353  0 4 5  1126 
4 37 0 43 109 7 
5 19 -I 14 7 7 9  
5 17 1 20 123 3 
4 69 0 65 113 8 
3 72 -0 77 79 4 

x 

17 
30 
40 
50 
6O 
65 
7O 
75 
80 
85 
95 

108 

TABLE 6.2(b) 
GRADUAT[ON EXTRACT, DUAL METHOD 

ax /-/x + t/2 rx 

0 0 00029 0 5 
0 0 00090 36 0 
0 000215  1150 
3 0 00511 378 5 

14 0 0 1 2 1 6  10290 
21 001876  10290 
21 0 02893 941 0 
33 0 04461 607 0 
25 0 06880 323 5 
II 0 10611 1325 
2 0 25237 4 0 
0 0 77841 2 0 

G d~vx ,jf~ Zx ! OOG/Jx 

5867  -2082  3387  -061 6 4 5  
1151 1 -122 I 3076  - 0 4 0  8 9 4  
11196 -906  2443  -037  91 9 
7 2 5 9  215 I 1584 1 36 1296 
7397  -1327  1288 -I 03 82 I 
363 4 -39 9 72 7 -0 55 89 0 
1037 288  31 3 0 9 2  1278 

7 9 -3 9 5 6 -0 70 50 5 


