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ABSTRACT 

We consider three classes of bwanate counting distributions and the corresponding 
compound d|str|but~ons For each class we derive a recurslve algorithm for 
calculatmg the bwanate compound distribution. 
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1. INTRODUCTION 

In this paper we develop recurslve algorithms for bivariate compound distributions 
of the type 

(I.1) ..q(.r, y) 2 p(n, *" *" y O, l ,  , = m)fl (x)f2 (y), r, = 
t l  m ~ 0 

which is the joint d~stnbutton of 

(X, Y) = 
~=0 ~=0 

where (N, M) has a probability function (pf) 

(1.2) p(n, m) = P (N= n ,  M=m) ,  

and all the severmes U,, V, are mutually independent and independent of (N, M) 
with p f ' s  

fl (u) = P(U, = u), 12(v) = P(V, = v) 

on the non-negative mtegers 
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For a counting variable K we write K - - R ~  (a, b) when its pf q saU~fies the 
recurslon 

(1 3) q(k)  = a + -~ q ( k -  l ) ,  k--  >1 ,  

and K ~ Ri  means that (I 3) holds for some constants a and b 
For a compound variable X with counting dtstnbuuon Rh(a, b) and severity 

d~strlbuttonfwe remind of the fact that the pf of X can be calculatcd from PANJER'S 
(1981) recurslve formula 

(1.4) g(x)  - - -  ~ a + f ( u ) g ( a - u ) .  
I - a f ( O )  , = ,  

when f is concentrated on the non-neganve integers. Also the ldennty 

(I 5) _ _ f . (  .... i(.r ) = ~ _u f " ( u ) f ' " ( a - n ) ,  
/ / + 1  u = l  IX 

from SCHROTER (1990, Lemina 1) will be used in the following 

In sections 2, 3 and 4 we consider three different models 

- -  Model A. With K = N + M  it holds that ( N I K = k )  ~ Binomial(k, Pl), and 
K ~ R i (a, b) 

- -  Model B. N = R o + R  ~ and M = R o + R 2 ,  where R o, Ri and R2 are mutually 
independent and R: ~ R i  (aj, ba). 

- -  Model C. N and M are conditionally independent given 0 =  0 and Pmsson 
distributed with parameters 0~.l and 022, respectively. The parameter 0 has a 
density u which satisfies 

* 0' d ~.,,=ob, 
- -  I o g u ( 0 )  - - -  

dO Z~: i, a, 0' 

We also consider the marginal p f ' s  

g(x)= ~g( r , y ) ,  p(,O = ~ p(",m), 
V=0 m = 0  

for X and N, and the conditional p f ' s  

g(y I.r) = g(.r, y)/g(.r), p (m I ,,) = p (,,, ,,,)/p ( . ) ,  

for (Y I x -  ,) and (M ] N = n) In particular, we derive recurslons for the condmonal 
moments, 

# , . , =  E(Y ' IX=r )=  ~ ) /gO,  lx), 
' ,=0 

based on the auxiliary functions 

fi:. , = 9(x),ut. ,. 
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The bwanate  recms~ons are of interest m predact,on problems revolving the 
condmonal  pf 9 (y  Ix) of  Y, gwen that X =.~ has been observed. Using the recurslons 
derived m this paper this wall involve the calculauon of  g(" ,  Y) for all u = 0, , x 
and y = 0, I, . It should be noted that nf one as only interested in the distribution of 
X +  Y, then there are sm~pler ways of  calculating th~s dasmbuuon than vm g(a, y), 
and the bwanate  recurs,ons should not be used m this case 

Model A has a natural apphcatnon m clamls reservnng where K denotes the total 
number of clamls mcuned m a fixed exposure period If W,, t = 1,. , K, denote the 
wa| tmg nines untd nouficat~on, whnch can be assumed to be Hd and independent of  
K ~ R] (a, b). then the numbers of reported and outstanding claams at t ime r, 

K K 

N = M = 

I=1 t=]  

satisfy assumption A with Pl = P(W,-~r) .  
The recursaon obtained m Secuon 2 can be vnewed as a bavanate version of the 

Panjer recursaon) 

The situation w~th a bmomml distribution of  N given N + M  as assumed nn 
model A arises m a varaety of insurance problems Constder for anstance the ca,be 
where a stop-loss contract with retention llmtt d has been written for a one-year 
period 10, II. At tmae t ~ [0, 11 the aggregate claim amount has reached the level 
X = x ,  and the paoblem as to deterrnme the probabahty ~ , > , l - ,  g(Y Ix) that the final 
cla,m amount X +  Y wnll exceed the limnt d, g~ven the mformat~on X = x  (or to 
deterrnme the expected reinsurance recoveries ~ , > a _ , ( x + ~ ' - d ) g ( y [ , ~ )  m this 
case). If the claim occurrences ale generated by a mixed Po~sson process with 
(random) intensity Or/(~), 0-<.s--  < 1, then the cla,m numbers (N, M) occurring m 
[0, tl and (t, 11 satisfy the binomial assumption of model A with Pl = .[~ ~(~)ds /  
~d ~l(~)cls The recursnon derived m Sectaon 2 is then apphcable af O has a gamma 
distribution, m which case the total number of  clan-ns K = N +  M has a negative 
bmomml distribution (~ R] ) ,  and of  course tn the Poxsson case where 0 ns 
degenerate More generally, ~f the mnxmg dnstnbut~on satisfies the condmon gwen 
m model C, we may use the recurslon derived m Secuon 4 wath ,,ll = fr~ rl(s)ds and 
~,_ = ~l ~l (s)ds Another apphcat~on of  model C arises m connecuon with customer 
based rating where a custorner with unknown risk character|stacs represented by O 
has aeported a total claim arnount X = x  on the existing pohcnes. For a new policy, 
this customer will report a clama amount of  Y dunng the next year, and th~s polncy 
can then be rated on the basis of the experience X = x  using the condmonal  pf 
g(y Ix). 

The class of mixed Poisson distributions considered m Section 4 were invest|- 
gated by WILLMOT (1993) and HESSELAGER (1993) m lhe umvariate case, and the 
recursions derived in Section 4 g~ve a blvarlate extension of thmr results 

Model B uses a standard way of constructing bwanate dlstnbutaons (see eg 
KOCHERLAKOTA et al 1992), which is useful m risk theory when two risk classes 
are affected by the same events. Let R~ and R 2 denote the numbers of events 
causing a clann in class I and class 2, respectively, and let R0 denote the number of 
events causing a clam~ to both classes 
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Model B was studied m the Polsson case where a j = 0  for j  = 0, 1, 2 by TEICHER 
(1954), who obtained a recurslon for the bivanate pf p(n,  m). In Section 3 we 
extend the result of TEICHER (1954) tO the more general case where R j -  R~, and 
derive a recurs,on for the corresponding compound pf g(x, y) 

2. A BIVARIATE VERSION OF THE PANJER RECURSION 

With K = N +  M we consider the following model" 

A. The conditional distribution of  N given K is bmom,al, 

(2.1) P(N=nIK=k)  = (~ lp'ip~-", pi+p2 = 1, 

and K ~  R, (a, b). 

2.1. B i v a r i a t e  d i s t r i b u t i o n s  

Let 

cp(~, t) = E[sNt M] = ~ p(n, m)s"t" 
t l ,  tel > 0 

denote the pgf for (N, M), and let qJ(s) = Es g be the pgf for K = N+M. From the 
assumption (2 1) we find that 

(2.2) if(s, t) = EE [sNtMIKI = E [tKE I(s/t)Nlgl] 
= E[tK(pl(~/t)+pz) K] = ~p(pls+p2t), 

where we have made use of the fact that the pgf for the binomial d~stnbution with 
parameters (k, p) is (pz + (1 - p ) ) t .  When K -  Ri (a, b) we also remind of the fact 
that the pgf ~/; satisfies the differential equation 

(2 3) (1 -as),p'(s)  = (a + b),p(s). 

From this we readily obtain a recursion for the bivanate pf p(n, m)" 

Theorem 2.1: Under condmon A it hold~ that 

p(n, 171) = Pl a + p(,7- I, m) + ap2p(n, m-  1), n > -- I 

P(n' m) = Pz(  a + L l p ( n "  m - l )  + a p ' p ( n - l '  m)" I 

wtthp(n, - I) = p ( - l ,  m)  = O. 

Proof Dlfferenuatmg (2.2) with respect to ~ yields 

d 
( 1 - a p l s - a p z t ) - - c p ( s ,  t) = (a+b)plcp(v, t), 

dr 
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and with cp(s, t) = Y, ....... 0p(n ,  m)s"t'" we compare the coefficients of  s " - I t "  111 
this equation for n--> I to obtain 

np(n, m) - a101 ( n -  I ) p ( n -  I, m) - a102np(n, m -  1) = (a+b)101p(n-  I, m) 

This proves the first relation, and the second follows by symlnetry. QED 

Theoreln 2 I gives the following recurslon for 9(x, y). 

T h e o r e m  2.2: Undel con&non A tt holds that 

(2.4) 9(0, 0) = ,p (p , f ,  (0) + P2f2(0)), 

where q)(z) tv the pg/Jor K For .r-->l it holds" that 

and for y >-- I,, 

' (a 
(2 6) 9(x, y) = 1o2 Z + 

u=O 

Proof The lnltml vahle is 
w. 

9(0,  0) = 

(tOg(X-U, y) + ap 2 Z f2(v)9 (x, Y - v ) ,  
v = 0  

bv f2(v) g( x, y - v )  + aPl Z / l (U)g(  x - u ,  Y)' 
u = 0  

p (n, m)fl (0)" f2 (0)" = q) ( f i  (0), f2 (0)), 
th m = 0 

and (2 4) follows froln (2.2). Using (1 5) fol" t=  1 yields 
sc ~e 

- -  * I t  . ~ I I I  ~ 1 p ( n - l ,  re)f, (-012 (Y) 
n = l  m = O  /'7/ 

~., 1 u 
= m).11 (a)f2 (Y) = - fl  ( u ) 9 ( x -  u, y) - -  p ( n ,  ° O , + I ~  . *,. 

I t  m = [) I1 "+ ] u = I X 

For .r->l  we then obtain from Theorem 2.1 that 

,') Z Z p(,,, '" E"' = m)/ ,  (x) Cv) 
t i m  l t t t = O  

= ~ Pl a +  p O t - I ,  m ) + a o 2 p ( n ,  m - l )  lel"(x)f£m(y) 
t = l  n 

= Pl a + f l ( u ) g ( x - I ' ,  y) + P2a f2(v)9(x, y - v ) .  
1¢=0 " v = 0  

The second identity (2.6) follows by symnletry. QED 

The bivarlate COlnpound distribution is calculated recurslvely frorn (2 5) or (2.6) 
by collecting the terms involving 9(x, ~,) on the left-hand side. It ~s seen that the 
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number of  multlphcatmns involved with the calculanon of  g(u, v) for (u, v) -< (x, y) 
Is of order O ( a y ( x + y ) )  If the severity dlsmbutlons fl and f2 have bounded 
supports, as will typically be the case in pracncal applications, the number of  
multlphcatlons will be of  order O(xv). 

By summing (25)  over y-->0 we obtain the Panjer recursion (l 4) for the 
marginal dlsmbunon of  X, and the recursion obtained from Theorem 2.2 may 
therefore be wewed as a btvanate extension of  the Panjer recurslon 

2.2. Marginal and conditional distributions 

Theorem 2 I can also be used to identify the marginal and condmonal distributions 
of (N, M). We have the following. 

Theorem 2.3 Under conditton A tt holds" that 

1 - aP2 1 - a02 

(M I N = n )  ~ Ri  (ap2, (b +an)pc  ) 

Proof  By summing the first relation in Theorem 2.1 over m->0 we fred that 

p(n)  - Pl + p ( n -  I), ,1-> l, 
I - a p  2 

whtch proves the first assemon For the conditional p f p ( m  In) we observe from the 
second relation m Theorem 2.1 that 

- - , reel 
p ( m -  1 In) p(n,  m - l )  ,0 2 a + + a'°l p(n,  m -  I) 

In + in) 
S m c e p ( n , m )  = q ( n + m )  Pi" P2, " where q 

fl 
that 

ms the pf for K, we have 

p(n-l,m) ,I P2 

p ( n , m - l )  m Pl 

whmh proves the result. QED 

The class R t contains the binomial distributions (a < 0), the Poisson distributions 
( a=0 ) ,  and the negatwe binomial dlstnbuhons ( 0 < a < l )  It ~s seen from 
Theorem 2 3 that the marginal and condmonal distributions are binomial, Polsson 
or negatwe binomial when the dlsmbution of K ~s bmomml, Polsson or negatwe 
binomial, respecuvely. In pamcular, it ~s seen that N and M are independent m the 
Poisson case (a = 0) 

Note also from Theorem 2 3 that the marginal dlsmbutlon of  X and the 
conditional dlsmbuuon of ( Y ] N = n )  can be calculated by use of  the Panjer 
recurslon (I 4) 



RECURSIONS FOR CERTAIN BIVARIATE COUNTING DISTRIBUTIONS 41 

In order to calculate the condmonal  pf .q(u Ix) for y = 0 , . ,  y, ...... one needs to 

calculate pfg(u,  u) for all (u, u) --< (x, v ..... ). In some cases one may settle for an 
approximation to this distribution, based on the conditional moments :t~,, 

T h e o r e m  2.4 Wtth ej = ~ =  oz / f2 (v ) ,  it holds that 

I - i  

(2 7) (1 - a p z ) d t .  , = aPl 2 f i  (u)fi/  . . . . .  + ap 2 ~., c (L  t)f i , .  , e t - , .  
u=0 t=O 

/'l where c(I ,  z) = a  + b . 
I 

Theorem 2 4 follows from Theorem 2 2 by stralghtforwai'd calculations, and the 
detads can be found m Appendix A With i l l , ,  gwen by Theorem 2.4, and the 
marginal pf 9(.r) of X being calculated from the Panjer recurslon, we then have a 
lecurslve procedure for obtaining the conditional inoments /~t . ,  = fit. , /9 (x )  

Note that EY / = X,,fi/ . ,  By summing (2 7) over x we obtain that 

I - I  

EY l - aP2 ~ c( l ,  0 E Y ' e / _ , ,  
l - a  , :0  

which is DE PRIL'S (1986) recurslon for the inolnents of  the colnpound d lsmbu-  

non when M ~ R 1 a -  , b 
1 - a p l  1 - a p ~  

3 BIVARIATE R 2 DISTRIBUTIONS 

In this section we consider the following situations:  

B. N = R o + R  L and M = R o + R  2, where R0, R I and R 2 are mutually Independent 
and R: ~ Ri  (a:, b/). 

3.1. Bivariate distributions 

The case where Ro, R~ and R 2 are independently Poisson distributed has previously 
been considered in the literature TEICHER (1954) (see also JOHNSON and KOTZ, 

1969, p 298) showed that this b~vanate Poisson distribution satisfies the recurrence 
relations 

rip(n, m) = Z i p ( n - I ,  m) + 2 o p ( n - I ,  m - l ) .  

rap(n, m) = 2~p(n,  m -  1) + 2 o p ( n -  1, m -  1), 

where 20, ,1. I and 22 denote the Polsson parameters for Ro, Ri and R 2, respectively. 
HOLGATE (1954) treated the estnnatlon problems for this d~stnbLitlon 

Since the bivarlate Polsson distribution appears as a special case of  condition B 
with aj = 0 and b: = 2j, the following result is seen to generahze that of TEICHER (1954) 
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T h e o r e m  3.1 Under condmon B t t  holds that 

I !:l l (3.1) p (n ,  m) = 0 +  p ( n - I ,  m - l )  + al + - -  p ( n - l ,  m) 
I1 

(a a lb °+b la° ) p ( n  2, m 
- 0 a ~  + - - - 1) ,  1 7 > - I ,  

I1 

(3 2) p ( n ,  o l )  = a 0 + p ( n -  1, m -  I )  + a 2 + - p(n, m -  I )  
m ) m 

( a'b°-~-b2a° I 
- a o a  z + - p ( n - 1 ,  m - 2 ) ,  m -  > 1 ,  

m ../ 

where p(0 ,  0) = sr0:rl:rr2, .~j = P ( R j = 0 ) ,  and  p(n ,  m ) = 0  when 11<0 or m < 0 .  

Proof The pgf for ( N ,  M )  Is in this case 

(33)  co(s, t) = ElsUtMI = E[(st)ROsr'tt¢21 = q~o(st)~pl(s)q;2(t), 

where ~/;j denotes the pgf for Rj ~ Ri  (%, bj) Differentiating (3.3) with respect to s 
and making use o f  ( 2  3 )  yields 

( l - a l s  aost+aoalts? ) d - - -  q: ( s ,  t )  
ds 

= [ t ( l  -als)(ao+b(~) + (a I +bL)( l  - a o s t ) ] c o ( s ,  t), 

and with CO (s, t) = Y~,,. 
this equation for n >- 1 

np (n, m) - 

4- al¿a I 
= ( a  I + b  I 

m>op(n, m)s"t m we compare the coefficients of s " -~ t ' "  in 
to obtam 

a l ( n - l ) p ( n - l ,  m ) - a o ( n - l ) p ( n - 1 ,  m - I )  

(17 - 2 )  p (17 - 2 ,  m - 1 ) 

) p ( n - 1 ,  m) + (ao+bo)p(n -  I, m -  1) 

[a I ( a o + b o )  + ao(a I + b l ) ] / . , ( n - 2 ,  m -  1). 

This verifies (3 1), and (3 2) follows analogously. QED 

R e m a r k  1. Note from the proot of Theorem 3 I that (3 1) only requires that R 0 and 
R I are of  c l a s s R  I . I f p ( 0 , 1 n )  is known for m = 0, 1, , t h e b l v a r i a t e p f p ( n , m )  rnay 
therefore be calculated recursively from (3.1) even when R 2 does not belong to R i .  
A similar remarks hold,, if" R I does not belong to R~. []  

From the recurrence relation m Theorem 3.1 we easily obtain the following 
recurslon for the corresponding blvarlate compound d~stribuuon 
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T h e o r e m  3.2 Assume thai condttion B holds true Then 

(3.4) 9 (0, O) = ~Po (f ,  (O)f2 (0)) V:, (f ,  (0)) ~P2 (f2 (0)), 

where ~: (z) Is the pgf for Rj. For x--< l, 

' (a bl I11 (3.5) O(x,y)  = ~ I + - f l ( u ) g ( x - u , y )  
u = 0 X J 

! = u = O  

t 

-7:oZ t = V = 0  

and ]or y-> 1, 

(36)  9 ( " 'Y)  = ~ ( a 2 + - . = o  

v=O u=O 

v -%± 
t l = 0  

Proof. We have that 

43 

bou) 
ao + - -  fl (u)f2 (u) 9 ( x -  u, y -  v) 

X 

( (a°bl+b°al)tl) .9 
aoal + fl "(u)f2(v)g(x - u, y -  v), 

2x 

b 2 v~ 
- / f 2 ( v )  g(X, y - v )  
) J 

O o + f2(v)fl (u)g(x-u ,  y -  v) 

(a (aob2+boa2)p) .2 
oa2 + - - -  f2 (V)fl(U)g(A 

2v 
- u ,  y - v )  

o(O, O) = ~ p(n, m)Jl (O)"f2(O)"' = ~ ( f l  (O),f2(O)), 
t ; .  i tJ = 0 

where cp (s, t) is the pgf for (N, M), and (3 4) therefore follows from (3.3) 
Using (1.5) we have for i > - 1 and j - > 0  that 

] L! *t 
E -P(,,-,,,,,-J):Y(.,-)r;'"o,) = E -:, (.)r?(v)o(.,--.,y-v). n=i.m=j n u=o u=o IX 

Mulnplymg (3.1) with Jl*" (x)f2*" (y) and summing over n, m then ymlds (3.5), and 
(3 6) follows analogously from (3 2). QED 

R e m a r k  2. Since (3 5) was obtained by use of (3 I), it follows from Remark I that 
g(x, v) may be calculated recurmvely from (3.5) when g(0, y) is known for y = 0, 1, 

., even if R 2 does not belong to R~ A sm~flar remark holds if R] does not belong 
to R~. 

It is seen from (3.5) and (3 6) that the number of  muluphcat]ons revolved with 
the calculation of g(u, v) for (u, v) --< (x, y) is of o r d e r  O(x2y 2) If the seventy 
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distributions f l  and f2 have bounded support, as will typically be the case m 
practical apphcatlons, the number of multlphcatlons will be of  order O(,D') 

For the blvanate Polsson d lsmbunon corresponding to aj = 0  and b / = 2 j ,  the 
recurs~ve formulas in Theorem 3.2 s lmphfy substantially In this case we have, 

g(x. y) = __21 ~ ufl ( u ) g ( x - . ,  y) 
.,I t t =  } 

20 ~ v 
+ - -  Y. uf ,( . ) f2(v)g(.~-u,  y-v) ,  x->l, 

~." u =  I v = O  

g(x, y) = - Y~ vf2(v)9(x, y -  v) 
y ,,=l 

+ - -  ~ ~ v f , (u) f2(v)g(~ ' -u ,  y - v ) ,  .v-->l 
y . = 0  v=l 

3.2. Marginal and conditional distributions 

SUNDT (1992) considered the class Rt  of counting distributions satisfying 

for statable constants a, and fl,, and showed that if q~ ~ R~, q2 E R t, then the 
convolution ql * q2 belongs to R~+/ From this we observe that the marginal 
d~strlbunons of N and M belong to R2 under condition B, and Theorem 3 2 may 
therefore be viewed as a blvarlate extension of  SUNDT (1992, Theorem 9) The 
representaUon (3.7) for the marginal distribution of N can be found m SUNDT (1992, 
Corollary 4), or may be obtained by summing (3.1) over m Smularly,  a recurston 
for the marginal distribution of  X can be obtained from SUNDT (1992, Theorem 9), 
or by sumlnmg (3 5) over v. 

The following result gives a recurslon for the auxiliary quantities fil  ~ Since the 
marginal pf g(x) can be calculated recurslvely from SUNDT (1992, Theorem 9) we 
then have a recursive procedure for calculanng the condmonal  moments u~ , = 
ill. ,/g(x) • Theorem 3 3 follow by strmghtforward calculations, and the details can 
be found In Appendix A 

T h e o r e m  3.3 Asvume that condmon B holds true. Wtth 

cj(l. i) = aj + , j  = 0, 2, 
t 

d(I, t) = aoc2(I, t)+azco(I,  t), 
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tt holdv for 1-->1 that 

= ~ ~2(I, ,)fi, ,e,_, + a o ( l - a  2) ~ f , (u ) f i t  . . . . .  
l ¢ =  I 

(1 - a 2 ) ( l  - a  o f t ( 0 ) ) ~ t , ,  
t=O 

+ E f l ( u )  E fi co(l, I)et_ , - --d(I,  t ) e l_  , , 
~= ,=o 2 

ej •,=o v J2(v) and ea = ]~=ovJf2°2(v) 

R e m a r k  3. The rectlrsion in Theorem 3 3 is obtained from (3.6), and is according to 
Remarks 1 and 2 therefore also vahd when R I does not belong to R I .  []  

4 BIVARIATE MIXED POISSON DISTRIBUTIONS 

Consider  the fol lowing smia t lon '  

C. N and M are condmona l ly  independent  given 0 = 0, with pf 

)" (O/re)'" 
(4 1) p0(n ,  m) - (021 e - ' %  e -°a2 

t7 I m ! 

"['he parameter  0 6 Io~, o2], O-<a~ <a2<--°°,  has a density u which sat,sties 

d X~=oa, O' 
(4 2) - -  log u (0) - , 

dO Z~= 0 b, O' 

for stutable constants  a, and b,, and 

(4.3) ~ b ,  0' H (tg) ""'+ 0, 0 "'"+ a I , 02 . 
* = 0  

Let 
c¢ 

gl¢>(~) ~ (o~,)" 
= - -  e - °a,95*" (.Q, j = I, 2 ,  

n = (i 11 I 

denote the condmona l  p f ' s  of  X and Y and let 

zc 

(4 4) go(x, v) ~ Po('I, "" " *" = ' n ) f l  ( ) ' ) J 2  C V) = g l ) l ) ( x )  ~(2)  ~,'~ 0'), 
t~ m = 0 

denote the joint  condi t ional  pf of  (X, Y). Finally,  introduce the auxlhary  
fu nctlons 

(4 5) h, (x, 7') = 

and note that g(x, y) = ho(x, y) 

Ie I ~' go (x, y) u (0) dO, 
o 
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4.1. Bivariate distributions 

The following recurslon for the function h,(x, y), and hence the pf 9(x, y), ts a 
bwarmte extension of  the recurs~on presented in HESSELAGER (1993). 

Theorem 4.1 Under condmon C tt holds that 

(4.6) h,(O, O) = tT e -~ II-](°))'~u(tg)dt~, 

~vttll 2 = 21+22,  andf(O) = J ' l f l (0 )+22f2(0 )  . For I = 0, 
2~ +22 

(4.7) h , (x ,y)  = 21 ~_, -u fl (u) h, + l (x - u, ~,),x >-I, 
u = l  X 

V 

2 " h,(x, 3') = '~,2 --fz(v)h,+ i(x, y -  v), y>- I, 
,= I y 

(4 8) 

and 

, k - I ,  

(4.9) cxh,(x, v) = 2, 2 f l(u) 2 b ,h , (x -u ,  y) + 22 2 f 2 ( v )  2 b,h,(x, y - v )  
u =  I i = 0  v =  I t = 0  

/ , - I  

+ ~ h,(x, Y)[0+  1 ) b , + l - c , ] ,  
~ = 0  

where c, = 2 ( I - f ( O ) ) b , -  a, 

With mltml values h,(O, 0) one calculates h0(r, 0) . . . .  h~_ i(x, 0) from (4 7) and 
hi(x, 0) from (4 9) for x = I, 2, For 3' = I, 2, one calculates h 0(0, ~,), , 
hk_ i(0, y) from (4.8) and h~(0, y) from (4 9). For (x, y) --> (1, 1) one may then use 
either (4.7) or (4.8) together with (4.9) The recurslon is seen to be of order 
O(xv(x+y)),  reduong to O(.~'), when the supports o f f l  and fz are finite. 

( ) Proof of Theorem 4 1. Since g J  Is compound Polsson w,th parameter 2j ~9 it holds 
that -IJ):0~ - e - '~:ll -f, lo)) and - :0 0 ~ - -cI)'0~-~2~:0~ e-0,~ ~l-/'1o)~ with 2 and ~ ,.,th9 k ] -  , 9 0 k  , ) -  9 0  k /,.,t,t/b' k ) = - 

J (0) as stated, and (4.6) then follows frown the defin,tlon (4.5). 
Under the Polsson asst.mption of  condition C, the condlt,onal pf gl(~(x) satisfies 

the Panjer recurs,on, 

2 
t l  

9~'(Z) = 02j Z - f:(u) gl/)(Z-U), z ~ l , J  = 1, 2, 
u =  I Z 
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and from (4.4) we than have that 

go(v, v) gl~)(y)O~, ~ " ( l ,  = - f l  (u) g,~ ( a -  u) 
u = I X 

II 

= #21 ~ -J](u)go(x-u, v ) , x -  > l ,  
u =  I 

and smMarly, 

g0(x, v) = 0 ~  - f 2  (v) go (x, y -  u), v > 1 
u = l  V 

By mul t@ymg this e×pres~lon with O' u (0), and integrating over 0 we obtain (4 7) 
and (4 8). 

Differentiating (4 1) wrl 0 ymlds 

d 
(4 10) - - p o ( n ,  m) = 2 1 p o ( n -  l, m) + 22po(n, m -  l) - 2.po(n,  nl). 

dO 

According to (42)  ~t holds that u(O)Y},=oa, O' = u'(O)Y~,=ob, O ', and pamal 
mtegranon using (4 10) yields 

a, O'po (n, m) u (0) dO = b, #'Po (n, m) u'(O) dO 
ol  t = 0  Oi t = 0  

= b,O p,.~(n, m)u(O - iO'-Ib, u(O)po(n, re)dO 
I=[) ..J¢I I O 1=1 I'i - b , O ' u ( O ) l X i p o ( n -  I, m) + 22po(n, m -  I) - 2 po(n, m)]dO 

Ol I=0 

= (t + l )O'b,+ i u (# )pa(n ,  re)d# 
d(q ~=0 

- b , O ' u ( O ) [ X ~ p o ( n - I ,  m) + 22po(n, m - 1 )  - 2.po(n,  m)ldO, 
t = 0  

where the last equahty follows from (4.3). Mulhply on both sides with fl*" (x)J~ m (y) 
and sum over (n, m) to obtain 

/~ ~ - I  ~ k 

(4 II) 2 a,h,(x, y) = - E (t+ l)b,+,h,(x, y ) -  2x E f,(u) E b,h,(x-u, y) 
z=O ~=0 u = 0  ~=0 

) t k 

- h ( v )  b,h,(.,-, y - p )  + X b,h,(.,-, y). 
t~=O t=O I=0  

By rearranging terms we then arrive at (4 9) QED 
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The expression (4 6) for the lnmal values is analogous to the expression given by 
HESSELAGER (1993) for the unlvanate case, and the reader will in that paper find 
explicit formulas for (4.6) for a number of cases 

It should be noted that the gamma maxlng density satisfies (4 2), and the 
corresponding mixed Polsson distribution can be shown to be the blvanate negative 
blnOlnlal distribution treated m Section 2 For this case, the recurslon in 
Theorem 2.2 ~,~ simpler than the one given m Theorem 4 1, although they are both 
of the same order. 

The condition (4.3) may be dropped without serious consequences, and the 
ident|ty (4.9) will in this case contain an additional term as in Theorem I of  
HESSH_AGEr (1993). In all of the examples considered in HESSELAGt-ZR (1993), (4 3) 
IS however fulfilled 

Unlvartate mixed Po~s,,on distributions with a mixing density which satisfies 
(4 2) were studied by WtLLmOT (1993) who obtained a recurrence relation for the 
counting distribution and also investigated a number of  special cases where (4 2) 
holds true. A recurslon for the bwanate counting dlstrlbuUon is obtaining by letting 
fl (I) = f2( I )  = 1 in Theorem 4 I In this case we may ehlnlnate the auxdlary 
functions h,(n, m) for t>--I and obtain a recurrence relation for the pf p(n, m) = 
ho(n, m), analogous to that of  WmLMOT (1993): 

Theorem 4.2 Under condition C It holds for  n > k that 

k + l  

(4 12) ~ 2 ' l ( n - O T p ( n - t ,  m){a~_,  - 2 b~_, + ( n + m +  l - t ) b ~ + l _ , }  = O, 
1 =0 

and for  m > k, 

/{+1 

(4 13) ~ 2 ~ ( m - I ) t p ( n ,  m - O { a ~ _ ,  - 2 b~_, + ( n + m + l - O b k + l _ , }  = O, 
I=0  

with the convention that a_ i = b_ i = b~ + t = 0 

Proof  When fl (1) = f2 (I) = 1, the relations (4 7), (4 8) become 

(414) h , (n .m)  = - )~ l /1 ,+ t (n - l ,m) ,  h , ( n , m )  = 2 ~ - h , + t ( , , m - I ) ,  
I1 I11 

Repeated u~,e of  the first relation gives 11,(17, 117) = J . l - ' ( H - I - I ) ( ' ) p ( 7 1 + l ) ,  where 
(n+O(')  = (n+OV/nL By inserting Into (4.11), which m this case becomes 

k L - I  

(4 15) Y~ a,h,(71, 771) = - ~ ( t+ l )b ,+ ,h , (n ,  m ) - 2 ,  Y~ b,h,(71- 1, m) 
t=O 1=0 I=O 

k 

- 22 Z b,h,(n, m -  1) + 2. £ b,h,(n, nl), 
I=~1 I = 0  
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we then obtain after a httle rearrangement that 

(4 16) (a; _, 
t=O 

- ~ & - , )  2'l (n  - t) I p (n  - t, m )  = 

E ( k - t +  l ) b ~ _ , + l R ' l ( n - O r p ( n - t ,  m) 
t = l  

-- ~1 ~., ba_,X'l ( / 1 -  k ) ( n  - i - I ) ~ p ( n - t -  1, m )  
t=O 

- 2 2  E ba_,,a.', ( n - , ) ! p ( n - , ,  m - 1 )  
t = 0  

From (4 14) ~t follows that 

p ( n - t ,  m -  1) = h t ( n - i -  1, m -  I) - - - p ( n - t -  1, m), 
, - t ("  - 0 2 2  

which |nserted into the last term m (4 16) leads to (4 12) after rearranging terrns 
The relation (4 13) follows analogously. QED 

The reader will notice from the proof of  Theorem 4.2 that there is a whole variety 
of  recunence relations for the blvmmte pf p(n.  m). From (4 14) we observe that 

(n+j)°~ (m+t-j)~'-J~ 
(4 17) h,(n, m) - - -  p(n+J, r e + l - j )  :,. ~-~ 

for arbitrary ./ = O, , ;, winch together with (4.15) also will give a zecurrence 
relation In pamcular (4 16) Is such a relation, whtch in fact ts the blvarlate 
extenmon of WmLMOT's (1993) recurrence relaUon for the umvarmte case, as one 
may verify by sulnmlng (4 16) over m-> O. 

4.2. Marginal and conditional distributions 

The marginal distributions are in this case the m~xed Po~sson and the corresponding 
compound tmxed Polsson d~stnbuttons considered by WU.I.~IOT (1993) and HESSE- 
LAGER (1993) 

Since N and M are conditionally independent gtven 0 = 0, tt follow~ that 

p ( , , , l n )  / '  ( & 0 ) " '  - ~ : 0  = e (7~" 1 i;)  dO,  
J i~//I 

where u( /g ln)  is the posterior density for 0 given N = n  When the prior density 
, ( 0 )  sausfles (4 2). it was verified m HI3SS[3LAGI:R (1993) that u0'~ In) also sat|sfles 
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(4.2) with updated constants fi,,/~, Thus, the condmonal compound dlstnbutmn of 
Y given N = n  may be calculated recurslvely by use of  the recurslon from 
HESSELAGER (1993). 

For the condlllonal &strlbutlon of  Y given X=. r  we may multiply (4 8) and (4 9) 
by y / and  sum over v to obtain a recur,,ive algorithm for the auxiliary function ti I') . , 1, t 

= ~, vlh,(r, v) This,  m pamcular, will give a recurslon for the function t7 / , - , 1  ~°) . , , - - k  / ,  I ,  

and hence for the condmonal moments /~  , =fi~ , /g (x) .  We state the result without 
proof.  

Theorem 4.3 With c, = 2 / b , ( 1 - f l  (0)) - a ,  and e s = ~.,vVSf2(v) It holds that 

a(') 22 = 0, k -  I, 
j = O  

= i,:o j=o Y I;) - j  

/ . . -1  

+ Z ( b , + , ( t +  I) - c, ) f i  (° /, t -  

t = O  

APPENDIX A 

Proof o f  Theorem 2.4. For 1-- > I, multiply (2 6) by v / and sum over y to obtain 

~c 

,if/ , = 2 Ylg( x' Y) 

= P2 2 (ay/+ bvy l - l ) J ) ( v )g (x ,  y - v )  
= I u = O  

t 

+ ap, ~ ~ f, (u)y'g(x-,,, y) 
v = ]  u = O  

u=O ~ = 0  

+ apl ~ f, ( . ) , &  . . . .  
1 1 = 0  

= Pza fi, , e l - ,  + 02 b ,. ,el_,  + aPl fl (u)fil. ,-,, 
a = O  I l = O  l u = O  

Q E D  
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Proof of Theorem 3 3. Muluply (3 6) by yZ and sum over v to obtain for /__.l 
that 

,~,,, = ,~, y'g(x, y) 
' ,=1 

= ~ laz (y+v) t+  b2v(v+y)t-I]f2(v)o(x, y) 
v v = O  

+ ~ Z [ao (y+v )  t +  b o v ( v + Y ) l - ' l f l ( u ) f 2 ( v ) 9 (  x - u ,  Y) 
/ t = O  V, v = O  

- a o a  2 ~ ( v + v ) t f ~ 2 ( v ) f t ( u ) g ( x - u ,  y) 
u = 0  v , v = 0  

oz 

b ° a 2 + a ° b 2  ~., ~ v ( v + y ) t - ' f ; 2 ( v ) f , ( u ) g ( a - u , y )  
2 u=O v 5 = 0  

/ - I  

= a 2 ~ fi , , ,  e I _, + b 2 /7,,, e I _, 
~=0 i ~=0 t 

+ , + l~,,~./_ 1 

' 

- aoa 2 f,  (u) fi . . . . . .  e l_ , 

(boa?+aob2) fl(u) I 1 fi . . . . .  e~_, 
2 ~ = )  ~=0 

I -1  

= t12f l '  , + Z C 2 ( / '  I)~,. ,el_ , + ao(l - a 2 )  Z f,(u)Ig, . . . . .  
t = 0  u = O  

/ -  I l ,~ 

+ .,.~.., f ,  (u) ~ fi . . . . .  leo(l, t ) e , _ , - - - d ( I ,  ,)e,7_,l, 
,,=o ,=o 2 

and the result fol lows upon rearranging terms. QED 
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