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ABSTRACT

The purpose of this note 1s to draw attention to a semimartingale method which can be
applied to very general types of risk models to obtain local martingales o1 martingales,
which can then be used in the now classical way to evaluate 1uin piobabilities
Relations to the theory of exponential families of stochastic processes are also pointed
out and utihized.

] INTRODUCTION

Since Gerber (1973) introduced the use of martingale methods 1n risk theory, these
methods have become a standard technique, see also Gerber (1979) Several papers
have appeared, including Dassios and Embrechts (1989), Delbaen and Haezendonck
(1989) and Schmidli (1995), where martingale methods have been used to analyse
increasingly complicated risk models A more comprehensive review of the litera-
ture can be found in Grandell (1991) and Schmidli (1994) In this note we use results
from the general theory of senumartingales to derive martingales or local martin-
gales which can be used 1n the now classical way to asses the probability of ruin 1n
very general risk models

2 THE RUIN PROBABILITY FOR A GENERAL RISK MODEL

In this section we will consider risk processes ot the following type
Xi=u+B +2Z, + 5, (21)

where Bg = Zg = Sp = 0 such that the constant u 1s the 1nitial capital. The process B
represents the total premium payments between time O and time f and the accumu-
lation of other regular and predictable streams of income or payment. It is assumed
to be a continuous process of finite variation. The process § 1s a jump process
representing the accumulated claims, while Z 1s a random petturbation which s
assumed to be a continuous local martingale. Thus S, 1s the sum of the jumps of X 1n
the ume interval [0, /] We assume that there exists a predictable process S of finite
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variation such that S, — §, 15 a local martingale. This 1s a very weak conditton which
usually follows from the Doob-Meyer decomposition theorem. It implies that the
nisk process 1s a semimartingale (It 1s, n fact, a particularly nice kind of semi-
martingale, which n the stochastic calculus 1s referred to as a special semimartin-
gale) We will, moreover, assume that the times at which claims occur cannot be
predicted. The technical way of expressing this 1s that we assume the process X to be
quasi-left-contiuous. A more precise definition of this concept can, for instance, be
found 1n Jacod and Shiryaev (1987), but for the discussion here the shghtly loose
definition just given 1s sufficient. Note that a quasi-left-continuous process 1s by no
means required to have continuous sample paths To state these conditions pre-
cisely, 1t 1s necessary that all processes are defined on a probability space (2, 7. P)
with a right-continuous filtration {#,} It 1s not necessary to be very precise about
this here, but 1t may certainly be so in some applications

The process Z need not simply be some unspecific perturbation. It could, for
mstance, be due to the randomly varying value of a portfolio of stocks If A, is the
value of the portfolio at time ¢, a simple classical model for the variation of A 15 the
geometric Brownian motion @4, = «ed,dt + o A,dW,, where W1s a Wiener process

i{

In this case the accumulated income 1n [0, 7] from the stock portfolio o [Asd.\' 18
! 0
included i B,, while Z, = o [ A, dW,.
0

We have assumed that the sum of the jumps of X in [0, 1] 1s convergent This 1s
not the case for all semimartingales, but we make the assumption because 1t
simplifies the exposition considerably and 1s satisfied for most risk models of
practical interest. Note, however, that there exist results without this assumption
which are similar to, but more complicated than, the following. Since S 1epresents
the claims, all jumps are downwards The assumptions imposed imply the existence
of a predictable random measure v(w,dr dx) on (0,00) X (—00,0) satistying
v({1} x (—o00,0)) = 0 almost surely for all t > 0 and

r 0

| | xulds.dv) < (22)
/]

0 —x

almost surely for all + > 0, such that

t 0
S, — // v (ds, dx)
0 =

1s a local martingale, see Jacod and Shiryaev (1987, Section I1.1) In the context of
risk theory, v could be called the claim intensity measure. The net-profit condition
for the model (2.1) can be expressed as

t 0

B, > —/ / wids,dx) forallr>0 (23)

0 .x
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This means that the insurance company adopts the sensible policy to let the
premiums follow the claim ntensity. Whether this can exactly be done in practice
depends on how the claim intensity varies with time.

If we make the further assumption that there exists an rg > Q such that

/ / J(ds, dx) < oo (24)

v< -1

almost surely for all + > 0 when O < r < rg, then 1t follows from the general
semimartingale theory that the stochastic process

M (r) = exp[-r(X, - ) = G,(1)] 25)
15 a local martingale for every r in [0,r¢], see Liptser and Shiryaev (1989, Chapter
4). Here
1 0
Gi(1) = —rB +5r7 < Z> +/ / (" = Dulds,dy)  (26)
0 -oc
and < Z > denotes the predictable quadratic vanation of Z.

The local martingale M(r) can be used to evaluate the ruin probability in the way
that 1s now standard n rnisk theory. Let

T=mf{r>0 X, <0}

be the time of rumn. Then because a non-negative local martingale 1s a super-
martingale and because My(r) = 1, it follows that

I > E(M,n (1)) > E(M(r)|7 < )P(r < 1)

for every rin [O,ry] and 1 > 0 Hence

e—l”
<< for all r ol
P(r<in< Eopl G0 <T) orallr €{0,1,] 27)

where we have used that X; < 0 on {7 <}, see also Gerber (1979, p 133)
By Jensen’s mequality we see that

E(exp[=G.(n]lr < 1)™" < E(exp[G-(1)]lm < 1) (28)

Note that G,(r) 1s a strictly convex function of r satisfying that G,.(0) = 0 and
0

-G'(0) = B, +/ / xv(ds,dr) > 0 (29)
0 —oo

by the net-profit condition (2 3) That we can differentiate the integral with respect
to v under the integral follows by a standard argument because zero 1s an interior
pomnt n the range of r-values for which the integral exists From these observations
1t follows that
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E(exp[—ru+ G.(r)]lT < 1)

1s a strictly convex function of r which decreases from the value 1 at r = 0 When
(2.4) holds for all r> 0, 1t increases to plus infinity as » — oo Hence there exists a
unique r* € [0, ro] for which this function attains 1ts minimum, and by (2 8)

-r'u

Pr <) s mCo <0

(2 10)

1s probably often close to the best evaluation of the ruin probability obtainable from
2.7).

A simipler evaluation of the ruin probability 15 obtamed 1if an r-value R, > 0 exists
for which the denominator of (2 7) equals one. This r-value need not be unique, and
1t typically depends on t We see that

P(r< 1)< et (2110
If R, exists for all > 0 and 1f R = lun R, exists, then
=
Pt < 00) < 78 (212)

Example 2.1 Consider the classical risk model perturbed by a Wiener process W
N,
Xi=u+c+aW, =Y ¥, (2 13)

=1

Here ¢ 1s the premium rate, N 1s a Poisson process with intensity A, and the Y,’s are
posiive independent identically distnibuted random variables with distrnibution func-
tion F and mcan value ;2. We assume that W, N and {Y,} arc independent This model
has been studied by Gerber (1970), Dufresne and Gerber (1991), Furrer and Schnidlr
(1994) and Schrmidh (1995).

In this particular case, B, = cf, < Z >, = ot and w(w; dt, dx) = AF* (dx)dt, with
F#(x)=1 — F (=x), s0

6i0) = &)t = ((=1c+ 30 4 Alpr (=) = 1)1 (2 14)

where pr(s) = fe “dF(x) 1s the Laplace transform of F Since X n this case s a
process with independent increments, 1t 1s well-known that M,(r) 1s a martingale for
every r 1n the domain of ¢, We see that R, = R 1s the positive solution of g(r) = 0
When o® = 0, R 15 the classical adjustment (or Lundberg) coefficient

A bound on finite time ruin probabilities, which 1< more precise than exp (—Ru),
can m some cases be obtamned as follows For r € [R, ry] we have that g(r) > 0, so
by 27)

P(r < 1) < expl—ru+g(1)1] forally € [R, ro) (2 15)

The night hand side of (2 15) attains 1ts mmmimum at r*, which 1s given as the
solution of g'(r*) = /4, provided there 1s a solution n [0.rp}. Otherwise the
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minimum 1s attamed at r* = ro, in which case g'(r*) < u/1. If 1 < u/¢'(R), the
convexity of g implies that r* > R, so

P(r < 1) <cexp[—ru+g(r) fort <ufg'(r) (2 16)

Since g(r*) < (r* — R)u/t for r* > R (using again the convexity of ¢ and the fact
that g(R) = 0), we see that the right hand side of (2.16) 1s strictly smaller than
exp(—uR) when 1 < u/g'(R). Concerning (2 16), see also Gerber (1979, p 139).

3 A PARTICULAR TYPE OF RISK MODELS

In this section we consider a particular type of the general nsk models studied in
Section 2 Specifically, we assume that

{
Ny
X,=Ll+B[+/0rdW\-ZYH (31)
0 =1

where B 1s as 1n the previous section, W 1s a standard Wiener process, and o 1s a

predictable process The value of o, at ime s only depends on things which are

known at that time The process N 1s a counting process with predictable intensity A,
!

1e. A 1s a predictable stochastic process such that N, — [ Ads 1s a local martingale

The positive random variables Y,,Y,, ., the claims, u?e assumed to be mutually
independent The distribution of the claim Y, may depend on the nme at which the
1'th jump occurs, but 1s otherwise non-random and independent of the N-process.
Thus the Y-s can depend on the N-process only through the ume-dependence of the
distributions of the Y,-s. An example of time-dependence 1s when the claims are
subject to inflatton

Under these simplifying assumptions v(dt,dx) = A\F*(dx)dt, where F, 1s the
claim-size distiibution at time f, and F*(x) = 1| — F(=x) 15 the distribution of
—Y, at time ¢. Hence

!

!
G/{r)=—1B, —i—%r2 /of(ls+ /[gov(—r) — 1] Aods, 32)
0 0

where o (u) = [ e dF.(v) 1s the Laplace transform of F,
For the models considered here, the net-profit condition (2.3) 1s

!

B, > //Lc/\\aﬂs (33)

0

for all r > 0, where /., denotes the mean claim size at ume s
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We shall now describe simple situations where the ruin probability can easily be
evaluated. We suppose that for each ¢ > 0 there exists a distnbution function F; such
that Fi(\) > F,(x) forall x > 0and all s <1, 1e the claim-size distribution at time s
18 stochastically dominated by a single distribution F, for all s < r This 1s, for
instance, the case if the claims are subject to determumstic inflation Under the
condition just imposed, ji, < i, for s < ¢ and

/[%(—l) — HAydu < [@i(—r) — 1]JA, fors <, (34)
0

I
where ji, denotes the mean value of F, o(u) = fe‘“‘(ll-;,(.\'), and A, = [ Ads s
the integrated intensity of N 0

Now we make the further assumption that the nsurance company adopts the
prudent policy that for some constant ¢ > |

B, > ¢ / Nadi (35)
0

for s < r If, moreover, a? 1s bounded by a constant (,2 for s <t, (3.4) and (3.5)
implies that

-~ 1,
Gu(1) € [=refis + Pi(=r) = 1], +57°Cs

1
= &N A, +5r¢s (36)
for all s < ¢ The function g,(r) 1s well-known from classical risk theory Under the
conditions imposed 1t 1s convex, g,(0) = 0 and g/(0) < 0, so there 1s a range [0.R,] of
r-values for which g,(r) < 0 Note that R, 1s an analogue of the classical adjustment
coefficient. For r € [0, ] 1t follows from (2 7) that

-ru+'2rlc,zt

Pr<1) < c

=77 Elexpl=g/(nAL) | T < 1) (37)

The Laplace transform ot A, 1s rarely known, but when the Laplace transform of
A, 15 known, 1t 1s sometimes possible to proceed 1n a way analogous to the
denvation of the upper bound (2.16). Quite generally we can use that
—ru+ %rzclzl has a mimimum at r = u/(tC,z), which implics the inequality

Plr < 1) < ¢ W0
provided u/(1¢}) < R,. In general, we have the result

1
P(r<i1 < exp(—R,u + §R3C121>

This evaluation 1s, of course, most precise when we can choose R, such that g/(R,) =
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0. Note that we could, 1n a similar way, treat the case wheie C;" 1s a random variable
independent of A, provided the Laplace transform of ¢? 1s known Another possible
and manageable assumption 1s that the process o2 1s bounded by a constant times the
intensity A

Finally, we make the stronger assumption that for s </ the ntensity A, 1s
bounded by a constant 4, > 0 By (27)

e
E(exp[=h(r)r] | 7<)

with f1,(1) = g,(r)d, + %/'ZC,Z. The right-hand side of (3 8) 1s of the type considered
in Example 2.1, and many 1deas that have been used to study that example can be
applied here too Obviously,

P(r<n<

(38)

P(T < 1) < exp(—Ru), (39)

where R, 1s the unique strictly positive solution to 1,(r) = 0 Here we use that h,(r) 1s
strictly convex with /2,(0) = 0 and /(0) < 0 provided the strong net-profit condition
(3 5) 1s sausfied

4 THE MARTINGALE CASE

Sometimes 1t can be proved that E(M,(r)) = | for all 1 > 0. Then 1t follows that the
supermartingale M,(r) 1s a martingale We shall briefly consider this situation, where
more accurate results can be obtained, see e.g. Gerber (1979) and Schmidh (1995).
A nice way of seeing this, which also shows how the theory 1s related to the theory
of exponential families of processes, 1s to define for each r € [0,r] a new prob-
ability measure Q, by

0.(d) = / M, (r)dP @1

for A € F,and forall r > 0 By the fundamental 1dentity of sequential analysis (see
e g Kuchler and Sgrensen, 1994)

P(T € B) = Eg (exp[rX: + G-(r)]1 fresye ™ (42)

where B C R The night-hand side can be evaluated as discussed earlicr.

The family of probability measutes {Q, 0 < r < ro} was also studied 1n Sgr-
ensen (1993) Under an additional assumption on v 1t 1s the exponential family of
processes generated by the semimartingale X. This 1s, for instance, the case for the
general type of models constdered in Section 3 when the claim-size distribution 1s
constant. We will now concentrate on such models
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Under Q, the process X 1s of the form

1

N,
X[:—U+Bl+/o-cdw\-_zyl1 (43)
'0 == 1
where W 1s a standard Wiener process, N has intensity @(—r)A, the claim-size
distribution 1s exp [rx — log (—r)]dF(x) (1 e. 1t belongs to the exponential family
generated by F), and

E,:B,—r<Z>,

All 1independence assumptions made under P hold under O, too These results
follow e.g from Jacod and Mémin (1976), see also Kuchler and Sarensen (1989).

We shall now consider the event {7 < oo}. The probability of this event under Q,
1s determined by the predictable dnft of X under Q,, given by

B, — / /.\'exp[r.\' — log (—=MdF(x)p(—r)A\ds = B, - r < Z > + o' (—r)A,
0 0

= =Gi(n),

where we have used that, by standard exponential family theory, the mean value of
the claim-size distnbution under Q, 1s —¢'(—r)/p(—r) We saw 1n Section 2 that
under the net-profit condition —G,(r) 1s a strictly concave function of r satisfying
G,(0) =0 and —G(0) > 0. Now suppose the model 1s sufficiently ergodic that
171G, (r) converges almost surely to a non-random himit g(r), which will then be
convex. Assume further that we can find R > 0 such that g(R) = 0. Then
—¢'(R) <0, so —=G(R) will tend to minus infimty as ¢ — oco. Hence
0. (1t <o) =1 forr > R, so 1t follows from (4.2) that

P(1 < 00) = Eg(exp[rX; + G, (r)])e ™ (44)

forr > R
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