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A B S T R A C T  

The purpose of this note i~, to draw attentmn to a semmlartmgale method which can be 
apphed to very general types of risk models to obtain local mamngales  o~ martingales, 
which can then be used m the now classical way to evaluate luln plobabdit les  
Relations to the theory of exponenual famlhes of stochashc processes are also pointed 
out and utilized. 

1 INTRODUCTION 

Since Gerber  (1973) introduced the use of  martingale methods m risk theory, these 
methods have become a standard technique, see also Gelber  (1979) Several papers 
have appeared,  including Dasslos and Embrechts (1989), Delbaen and Haezendonck 
(1989) and Schmldh (1995), where mamnga le  methods have been used to analyse 
increasingly comphcated  risk models A more comprehensive review of the litera- 
ture can be found m Grandell  (1991) and Schmldh (1994) In this note we use results 
from the general theory of  semmmrtmgales  to derive mamngales  or local mamn-  
gales which can be used in the now classical way to asses the probabil i ty of rum m 
very general risk model,, 

2 THE RUIN PROBABILITY FOR A GENERAL RISK MODEL 

In this section we will constdel risk processes of the following type 

X t = u + B , + Z t + S , ,  (2 1) 

where Bo = Zo = So = 0 such that the constant u is the initial capital. The process B 
represents the total premmm payments  between tmle 0 and tune t and the accumu- 
lanon of  other regular and predmtable streams of income or payment.  It is assumed 
to be a continuous process of fimte varlahon. The process S ~s a jump  process 
representing the accumulated clmtns, whde Z ~s a random perturbation which is 
assumed to be a contnmous local martingale. Thus Sr is the sum of  the jum12s of X m 
the time interval [0, t] We assume that there exists a predictable process S of  finite 
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variation such that St - St IS a local martingale. This IS a very weak condition which 
usually follows from the Doob-Meyer  decomposi t ion theorem. It imphes that the 
risk process is a semlmart lngale  (It is, in fact, a part icularly n.ce kind of  semi- 
martingale,  which in the stochastic calculus is referred to as a special semlmartm- 
gale) We will, inoreover, assume that the tm~es at which clamas occur cannot be 
predicted. The technical way of  expressing this is that we assume the process X to be 
quasi-left-continuous.  A more precise definition of this concept can, for instance, be 
found m Jacod and Shlryaev (1987), but for the discussion here the shghtly loose 
definition just given is sufficient. Note that a quasi-left-continuous process is by no 
means required to have continuous sample paths To state these condit ions pre- 
cisely, it is necessary that all processes are defined on a probabili ty space (f~, .7-. P) 
with a right-continuous filtration (.Tt} It ~s not necessary to be very precise about 
this here, but it may certainly be so m some apphcat lons 

The process Z need not s imply be some unspecific perturbation. It could, for 
instance, be due to the randomly varying value of a portfoho of  stocks If A, Is the 
value of the portfolio at time t, a simple classical model foi the variation of  A is the 
geometric Browman motion d4r  = (vAtdt + crAtdWt, where W is a Wiener  process 

! 

In this case the accumulated income m [0, t] from the stock portfolio c~ ]" A~ds is 
t 0 

included m B,, while Z, = cr J AsdWs. 
0 

We have assumed that the sum of  the jumps  of  X In [0, t] IS convergent This is 
not the case for all semimartll~gales, but we make the assumption because it 
simplifies the exposit ion considerably and ~s satisfied for most risk models of  
practical interest. Note, however,  that there exist results without this assumption 
which are snmlar  to, but more comphcated  than, the following. Since S ~epresents 
the claims, all jumps  are downwards The assumptions nnposed imply the existence 
of  a predictable random ineasure u(~v, dt, dx) on (0, cxz)× ( - ~ , 0 )  satlstylng 
u({t} × ( - o c , 0 ) )  = 0 almost surely for all t > 0 and 

f 0 

/ < (22/ 
0 --~,2. 

ahnost surely for all t > 0, such that 

t 0 

S t - . /  / \'l/( ds, dx) 
0 -'~,z, 

is a local martingale,  see Jacod and Shlryaev (1987, Section II.1) In the context of  
risk theory, u could be called the claim intensity measure. The net-profit condition 
for the model (2.1) can be expressed as 

t 0 

Bt > - f . /  Yt:(ds, d.¥) 
o ~c 

for all t > 0 (2 3) 
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This means that the insurance company adopts the sensible pohcy to let the 
premmms follow the clmm intensity. Whether this can exactly be done In practice 
depends on how the clam~ intensity varies with time. 

If we make the further assumption that there exists an ro > 0 such that 
! 

0 x < - I  

almost surely for all t > 0 when 0 < r_< t'0, then it follows from the general 
semmmmngale  theory that the stochasUc process 

M,(r) = e x p [ - r ( X ,  - u) - O,(r)] (2 5) 

is a local martingale for every r m [0,ro], see Liptser and Sh,ryaev (1989, Chapter 
4). Here 

t 0 

G , 0 ) = - r B , + ~  < Z >  + - I ) u ( d s ,  dx) (26)  

0 -o¢. 

and < Z > denotes the predictable quadratm variation of  Z. 
The local martingale M(r) can be used to evaluate the rum probabthty in the way 

that is now standard m risk theory. Let 

7-= mf{l > 0 X, < 0 }  

be the time of ruin. Then because a non-negatwe local martingale is a ~uper- 
martingale and because Mo(r) = 1, it follows that 

l _> E(M,A,( , ) )  > E(MT(,')I~- < t)P(~- < t) 

for every r in [0,ro] and t > 0 Hence 
e-lit 

P ( r  _< t) < E(exp[_G~(, .)]lr  < t) for all r e  [0,,o], (2 7) 

where we have used that X,- < 0 oil {r  < t}, see al.so Gerber (1979, p 133) 
By Jensen's inequality we see that 

E(exp[-G~(,')]l r _< t)- '  _< E(exp[G~(,)] l r  < t) (2 8) 

Note that Gr(r) Is a strictly convex functmn of  r sausfymg that GT(0) = 0 and 

// -G'T(O ) = B, + xu(d,',d.x ) > 0 (29)  

0 --co 

by the net-profit condition (23)  That we can differentiate the integral with respect 
to u under the integral follows by a standald argument because zero is an interior 
point in the range of r-values for which the integral exists From these observations 
it follows that 
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E ( e x p [ - r u  + GT(r)][r < t) 

is a smct ly  convex function of  r which decreases from the value 1 at r = 0 When 
(2.4) holds for all r > 0, It increases to plus mfimty as r ~ oo Hence there exists a 
unique r* E [0, ro] for which this function attains its minimum, and by (2 8) 

P(T _< t) _< (210)  
E ( e x p [ - G , ( r * ) ] l r  _< t) 

Is probably often close to the best evaluation of  the ruin probabdlty obtainable from 

(2.7). 
A simpler  evaluation of  the ruin probablhty is obtained if an r-value Rt > 0 exists 

for which the denominator  of  (2 7) equals one. This r-value need not be unique, and 
~t typmal[y depends on t We see that 

P ( r  < t) < e - < "  (2 11) 

l f R ,  exlsts for a l l t > 0 a n d  f i R =  hm Rtexls t s ,  then 

P ( r  < oo) < e - 'm (2 12) 

Example  2.1 Confider the clasmcal risk model perturbed by a Winner process W 

Nt 

X , = u + c t + c r W , - Z  Y' (2 13) 
t = ]  

Here c is the p temmm rate, N is a Pmsson process with intensity A, and the Y,'s are 
posmve independent idenllcally dlstllbuted random varmbles wllh distribution time- 
lion F and mean value tl. We a,;sume that W, N and {Y,} are independent This model 
has been studied by Gerber (1970), Dufi'esne and Gerber (1991), Fun'er and Schnudh 
(1994) and Schnudh (1995). 

In this particular case, B, = ct, < Z >t = o-2t and u(w; dt, dx) = XF* (dx)dt, with 
F*(x) = I - F ( - x ) ,  so 

G,(,)=g(,) t= (-,~ +~o2r2 + A[~l( - , ) -  l])t, (214)  

where ~F(S) = fe S'dF(x) is the Laplace transform of  F Since X in this case is a 
process with independent increments, it is well-known that M,(r) Is a martingale for 
every r in the domain of  ',Pr We see that R, = R is the positive solutmn of  g(r) = 0 
When cr 2 = 0, R is the classical  adjustment (or Lundberg) coeffmmnt 

A bound on finite time ruin probabilit ies,  which is more precise than exp ( - R u ) ,  
can m some cases be obtained as fol lows For r E JR, r0] we have that g(r) _> O, so 
by (2 7) 

P(r < t) < e x p [ - r u + g ( , ) t ]  f o r a l l ,  ~ [R, r0] (215)  

The right hand side of  (215)  attains its minimum at r*, which Is given as the 
solution of g ' ( r  °) = u/t, provided there is a solution in [0. r0]. Otherwise the 
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mlnl .num .s attained at r* = r0, m which case g'(r*) < u/t.  If t <_ u/g '(R) ,  the 
convexity of  g implies that r" >_ R, so 

P(r  < t) <_ exp[-r*u + g(r*)t] f o r t  < u/g'(r) (2 16) 

Since g(r*) < (r* - R)u / t  for r* > R (using again the convexity of  g and the fact 
that g(R) = 0), we see that the right hand side of  (2.16) is strictly smaller  than 
e x p ( - u R )  when t < u/g'(R).  Concermng (2 16), see also Gerber  (1979, p 139). 

3 A P A R T I C U L A R  TYPE OF RISK MODELS 

In this section we consider a particular type of  the general risk models studied in 
Section 2 Specifically,  we assume that 

! 

X, = u + B, + cr,dW, - Y,~ (3 1 ) 
t : l  

0 

where B is as in the previous section, W is a standard Wiener  process, and c~ is a 
predictable process The value of  o-¢ at rime 3 only depends on things which tire 
known at that tilne The process N is a counting process with predictable intensity A, 

t 

i e. ~ is a predictable stochastic process such that N, - f A d s  is a local martingale 
0 

The positive random variables Yi,Y2,.,  the claims, are assumed to be mutually 
independent The distribution of  the claim Y, may depend on the time at which the 
t ' th jump  occurs, but is otherwise non-randoln and independent of the N-process .  
Thus the Y-s can depend on the N-process  only through the tune-dependence of  the 
distributions of  the Y,-s. An example  of  n ine-dependence ~s when the claims are 
subJect to inflation 

Under these smlphfymg assumptions u(dt,dx) = A,F,*(dx)dt, where F, is the 
c la im-size distt lbutlon at tram t, and F,*(x) = 1 - F,( -x)  is the dls tnbuuon of  
- Y ,  at time t. Hence 

I I 

a,(r) = -,B, +~ 
0 0 

where ~o~(u) = f e -"XdF, (v )  ,s the Laplace transform of F, 
For the models  considered here, the net-profit  condition (2.3) is 

t 

B, > /IL~A,cLs 

0 

for all t > 0, where it,, denotes the mean clalln size at time s 

(3 2) 

(3 3) 
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We shall now describe smlple SltUanons where the ruin probability can easily be 
evaluated. Wesuppose  that for each t > 0 there exists a distribution function Ft such 
that F,(x) >_ Ft(x) for all x > 0 and all ; _< t, i e the cla2m-slze dlsmbutlon at time s 
is stochastically donunated by a single dlstnbutmn Ft for all s _< t This is, for 
instance, the case if the clmms are subject to deterministic inflation Under the 
condition just imposed, It, -< t-/, for s < t and 

j ' [ ~ , , ( - , ) -  l]A,,du_< [ ~ , ( - r ) -  I]A, f o r s  _< t: (34)  

0 

I 

where t~, denotes the mean value of/~r, ~,(u) = .re .... dF,(x),  and A, = fA~cl.s ,s 
the integrated intensity of  N 0 

Now we inake the further assumption that the insurance colnpany adopts the 
prudent pohcy that for some constant c > 1 

B~ > cfi, / A,,du (3 5) 
, J  

0 

2 for s < t If, moreover, o- s is bounded by a constant (t 2 for s < t, (3.4) and (3.5) 
imphes that 

1 q 2 G,(,') ~_ [-rcf i t  + ~ t ( - r ) -  l]a~-t-.~, '-~ts 

= g,(r)A~ + ½r2(~s (3 6) 

for all s < t The function g,(r) Is well-known from classical risk theory Under the 
condmons imposed it is convex, g,(0) = 0 and g',(0) < 0, so there is a range [0,R,] of  
r-values for which g,(r) < 0 Note that R, is an analogue of the classical adjustment 
coefficient. For r E [0, ro] It follows from (2 7) that 

e .... +~((2, 
P ( r < t ) <  (3 7) 

E(exp[-g, ( r )AT] I T _< t) 

The Laplace transform of AT is rarely known, but when the Laplace transform of 
At is known, ~t is sometimes possible to proceed m a way analogous to the 
derivation of the upper bound (2.16). Qtute generally we can use that 
- lu  + 5r%/t hat a m m m m m  at r = u/(t(]), which lmphcs the mequahty 

P(r _< t) < e ~":/(<') 

prowded u/(t(]) _< R,. In general, we have the result 

I ~ \  
P ( T <  t) < e x p  -Rtu+-~RTQt ) 

This evaluatmn is, of course, most precise when we can choose R, such that g,(R,) = 
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0. Note that we could, In a sm-ttlar way, treat the case where ~] is a random varmble 
independent of  AT provided the Laplace transform of ~] ts known Another posstble 
and manageable assumpnon IS that the process o .2 is bounded by a constant nines the 
mtenmty A 

Finally, we make the stronger assumption that for s < t the mtenmty A~ is 
bounded by a constant d, > 0 By (2 7) 

e-rll 

P(r _< t) _< E(exp[_h,(t)r] l r _< t) (3 8) 

l 3 ~ 3  with h ,0 )  = &(r)d, + 2r-qT. The right-hand side of  (3 8) is of  the type considered 
m Example 2. I, and many ideas that have been used to study that exalnple can be 
apphed here too Obviously, 

P(r <_ t) <_ e x p ( - R , u ) ,  (3 9) 

where R, is the umque smctly positive solution to Ih(r) = 0 Here we use that hi(r) is 
strictly convex with hi(0) = 0 and /4(0  ) < 0 provided the snong net-profit condmon 
(3 5) is satisfied 

4 THE M A R T I N G A L E  CASE 

Sometnnes It can be proved that E(M,(r)) = 1 for all t > 0. Then it follows that the 
supermartmgale M,(r) IS a martingale We shall briefly consider this mtuanon, where 
more accurate results can be obtained, see e.g. Gerber (1979) and Schmldll (1995). 
A nice way of  seeing this, which also shows how the theory is related to the theory 
of exponential falmhes of processes, is to define for each r E [0, r0) a new prob- 
abllxty measure Qr by 

Qr(A) = f M,(,')dP (4 l) 

,4 

for A E 5ct and for all t > 0 By the fundamental identity of  sequential analysis (see 
e g Kuchler and SOrensen, 1994) 

e ( r  E B) = EG(exp[rX¢ + G~(r)]l{~ e BI)e r,, (4 2) 

where B C_ ]R The right-hand side can be evaluated as discussed eather. 
The family of  probability measutes {Q, 0 < r < r0} was also studied in S0r- 

ensen (1993) Under an addlnonal assumption on u it is the exponential [amdy of 
proces.ser generated by the semmmrtlngale X. This is, for instance, the case for the 
general type of  lnodels conmdered in Section 3 when the claim-size d~smbuhon is 
constant. We will now concentrate on such models 
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Under Qr the process X is of  the form 

t 
f p rt X, = u + B, + ~dg:~ - ~ Y,, (4 3) 

I = l  
0 

where I~" is a standard Wiener process, N has intensity ~p(-r).X, the clmm-slze 
distribution is exp [rx - log 9~(-r)]dF(x) (i e. it belongs to the exponentml family 
generated by F), and 

B , = B t - r <  Z >  
t 

All independence assumptions made under P hold under Q, too These results, 
follow e.g from Jacod and MEinin (1976), see also Kuchler and SCrensen (1989). 

We shall now consider the event {7- < oc}. The probablhty of this event under Qr 

is determined by the predictable drift of  X under Q~, given by 

/: B, - xexp[ rx  - log:(-r)]dF(x):(-, ')&sds = B, - r < Z > + : ' ( - r ) A ,  
• I 

0 0 

= - a ' , ( , - ) ,  

where we have used that, by standard exponentml family theory, the mean value of 
the clmm-size distribution under Q, is - ~ y ( - r ) / ~ ( - r )  We saw m Secuon 2 that 
under the net-profit condmon -Gf(r) is a smctly concave function of  r satisfying 
Gt(0) = 0 and -G~t(0) > 0. Now suppose the model is sufficiently ergodlc that 
t-IGf(r) converges almost surely to a non-random limit g(r), which will then be 
convex• Assume further that we can fred R > 0 such that g(R) = 0. Then 
- g : ( R )  < 0 ,  so -G ' , (R)  will tend to minus mflmty as t ~  oo. Hence 
Qr(T < oo) = 1 for r > R, so It follows from (4.2) that 

P(7- < oo) = Eo(exp[rX~ + a~(r)])e  ru (4 4) 

for r > R 

5 REFERENCES 

DASSIOS, A & EMBRECHTb, P (1989) Martmgale.s and insurance rtsk Comnmn Stattst Stochasttc Model~ 
5, 181-217 

DH.naEN, F & HAEZENDONCK, J (1989) A martingale approach to premmm calculauon prmctples m an 
arNtrage free market Insurance Math Ecollom 8. 269-277 

DUFRESNE, F & GERBER, H U (1991) Rtsk theory fol the compound Pot,,Non process that ts perturbed by 
dfffusmn Insurance Math Econom 10, 51-59 

FFURRt.R, H J & SC~Mff~u, H (1994) Exponentml mequalmes for rum probabdmes of risk processes 
perturbed by dfffuston In~uratlce Math Econom 15, 23-36 

GERBER, H U (1970) An extenston of the renewal equatmn and tts apphcatmn m the collectwe theory of 
risk Skand Aktuar Ttdskt 53, 205-210 

GERBER. H U (1973) Mamngales m nqk theory Schwetz Verem Vet~tcherungsmath Mitt 73, 205-216 



A SEMIMARTINGALE APPROACH TO SOME PROBLEMS IN RISK THEORY 23 

GLRBER, H U (1979) An IntJoductton to Mathemattcal Rt~k Theory Huebncr Foundatton Monographs, 
Phdadelphla 

GRAND•LL, J (1991) Aapects of Rtvk Theory Sprmgei-Vellag, New York 
JACOD, J & MEMIN, J (1976) C,uact6rt,,ttques locales et conditions de contmutt6 absolue pour les semi- 

martingales Z Wahr very Geb 35, 1-37 
JACOB]. J & SI[[RYAEV, A N (1987) Ltmtt Theolem~ for StochasttL Pioces~es Sprmger-Verlag, 

Hetdelberg 
KUClaLER, U & SORF.N~eN, M (1989) Exponentml famdtes ol stochasuc processes A umlymg 

,,emmlartmgale approach Intclnat Statt,~t Rev 57, 123-144 
KUCHLER, U ~¢~ SORENSEN, M (1994) E\ponentml famdte¢, ol stochastic pzoces,,e.s and 1.6vy processes 

J Stattat Plann Inference 39, 211-237 
LII'TSER. R SI! & SHIRYAEV, A N (1989) TheoJv of Maltmgale7 Kluwer Academic Pubh~,hezs, 

Dordrecht 
SCHMIDLI, H (1994) Martingales and msmance n~k Research Report 289, Dept Theoz Stanst, Umv of 

Aarhus 
SCIIMIDLI, H (1995) Cram6r-Lundbetg approxmmuons for rum probabdtt~es of risk processes perturbed 

by dtfluslon hs~urance Math Econotn 16, 135-149 
SORENSLN, M (1993) The exponenhal lamdy generated by a ~emml:trtmgale Research Repolt 269, Dept 

Theor Slallst , Unlv of A,uhus To appear m Ptoceedtng~ oJ the Fourth Fmmsh-Russtan SvmpoMttm on 
Probabthty Theory and Mathemattcal Statt~ttca 




