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A B S T R A C T  

The paper extends earlier results by demonstrating that there is an optimal range of 
values for the period for amortizing valuation surpluses or deficiencies, in the case 
when there is a one year time delay between fixing a contribution rate and the 
accounting information about current fund levels. The optimal range is compared 
for the cases where there is no time delay and there is a one year time delay. 
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INTRODUCTION 

We shall consider the financial structure of a defined benefit pension scheme, as 
represented by a simple mnathematical model, which can be regarded as an extension 
to that originally proposed by TROWBRIDGE (1952). We focus on the effect of 
varying investment returns on the contribution rate and fund level for the scheme 
and consider possible choices of two important control parameters: the spread 
period and the delay in fixing contribution rates. 

We consider defined benefit pension schemes where the benefits promised in the 
event of various contingencies are defined by a formula while the contributions are 
to be determined by the actuary by means of the valuation process. The funding 
method then represents the means by which the contribution rate is fixed at each 
valuation. We shall consider the case of annual valuations: at which the actuary 
values the prospective liabilities, allowing for future contributions to be paid, and 
compares this result with the value of the assets currently held. 

The paper provides a natural follow-up to the earlier work of DUFRESNE (1988) 
and HABERMAN (1992) and gives a comparison with these earlier results. 

As in these earlier papers, we shall consider the funding methods described by 
the following pairs of equations: 

(1) C(t) = NC(t)  +ADJ( t )  

where C(t) is the contribution rate at time t, NC(t )  is the norrnal cost at time t and 
ADJ(t)  is an adjustment to the contribution rate at time t, represented by the 
liquidation of the unfunded liability, UL(t). UL(t) is defined by: 

(2) UL (t) = AL (t) - F (t) 
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where A L ( t )  is the total actuarial liability in terms of all members at time t and F( t )  

is the fund level at time t, measured in terms of  the market value of the underlying 
assets. 

We are using a discrete time approach with t taking integer values 0, 1,2 and so on. 
At each time t, a valuation is carried out to estimate C( t )  and F( t )  based on the 

membership of the scheme at that time. As t changes, however, we allow for new 
entrants to the membership so that the population remains stationary. See the 
assumptions listed below. 

In the ensuing mathematical discussion, we make the following assumptions: 
I. All actuarial assumptions are consistently borne out by experience, excep t  for 

investment returns. 
2. The population is stationary in size and structure from the start. 
3. Salaries increase at a deterministic rate of  inflation. For simplicity, each active 

member 's  annual salary is set at I unit at the minimum age at entry. There is no 
promotional salary scale. We allow for salary inflation by considering the real 
rate of  investment return i.e. the rate in excess  of salary inflation. In parallel, we 
assume that benefits in payment increase at the same rate of  salary inflation. 

4. The real interest rate assumption for valuation purposes is fixed. 
5. It is assumed that the contribution income and benefit outgo occur at the start of  

each scheme year. 
It is straightforward to relax some of  these assumptions e.g. replace 2 by allowing 

the population to grow at a fixed compound rate (i.e. be stable in the sense of  
KEYFITZ (1985)); include a promotion salary scale in 3; use a different timing 
assumption in 5. 

Assumptions I.-4. imply that the following are constants with respect to time, t 
(after rescaling to allow for the predetermined growth in line with salary 
inflation): 
N C :  the total normal cost. 
A L  : the total actuarial liability. 
B : the overall benefit outgo per unit time. 

Also, assumptions 1., 2., 4. and 5. imply that the following equation of 
equilibrium holds : 

A L  = ( I + i) (AL + N C  - B) (3) 

or equivalently 

B = d .  A L + N C  where d =  i ( l + i ) - i ,  

the compound interest discount rate. 
This equation of  equilibrium can be also found in the earlier papers of  

TROWBRiOGE (1952) and BOWERS et al. (1976). 
We make the following further assumptions regarding the real interest rate earned 

on the fund and the stochastic nature of F( t ) :  
6. The real interest rate earned on the fund during the period (t, t + 1) is i (t + I), 

where Ei (t + I ) =  i, the real valuation rate of interest. Thus, the valuation rate is 
correct "on  a v e r a g e " .  This assumption is not essential mathematically but is in 
agreement with classical ideas on pension fund valuation. We further define o 2 = 
Vari( t  + 1). 
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7. It is assumed that the earned real rates of return i(t) for t >  I are independent, 
identically distributed random variables (with i ( t )>  - I with probability 1). 

8. Prob[F(O)  = F0] = I for some F0. 
Given these assumptions, the random variable i(t) leads to F(t) being a random 

variable and hence UL(t), ADJ(t) and C(t) being random variables, 
A continuous time formulation would be possible, in which case stochastic 

differential equations wold be utilised in the mathematical discussion rather than 
difference equations. 

We are not suggesting (through assumption 7) that the rates of  return actually 
achieved by pension funds form an independent and identically distributed 
sequence. Indeed, rates of  return are more generally viewed as autoregressive- 
moving average processes (for example, PANJER and BELLHOUSE (1980)). In parallel 
work, HABERMAN (1991, 1993) has investigated the effect of  using dependent 
investment return models, in particular autoregressive models of low order. These 
more sophisticated models are not pursued here. It is only because it keeps the 
mathematical discussion tractable that assumption 7 is imposed here. 

CHOICE OF ADJ: SPREAD PERIOD AND DELAY 

We consider a particular method for defining the contribution adjustment term 
ADJ(t) which is an approach widely used in the U.K. and involves putting ADJ(t) 
equal to the overall unfunded liability divided by the present value of  an annuity for 
a term of M years, calculated at the valuation rate of  interest i. It is common 
practice to use values of  M in the range 20-25 years, on the grounds that this would 
represent the average remaining active lifetime within the scheme of  the current 
membership. 

As in HABERMAN (1992), we shall allow for delays in the collection and 
processing of data and the preparation of  the accounts, and assume that the 
adjustment term at time t depends on UL( t -  I). Thus, with k = I/~JMq, 

(4) ADJ(t) = k.  U L ( t - q )  where q = 0  or q =  I. 

q = 0  corresponds to the analysis of  DUFRESNE (1988) and q =  1 corresponds to 
HABERMAN (1992). Then: 

(5) C(t) = NC + k. (AL - F ( t - q ) )  where q = 0  or q = 1. 

We shall now view k (and hence M) and q as being control parameters which the 
actuary may choose with the objective of  meeting certain specified criteria (see 
later) connected with controlling the behaviour of  C(t) or F(t) over time. The 
choice of M would not be completely free : M would probably have a lower bound 
to limit the income tax deductibility of  contributions and an upper bound to prevent 
large increases in UL(O. 

Equation (5) includes a negative feedback component, whereby the current status 
is compared with a target and corrective action is taken to deal with the 
discrepancy. 

With q = I in equation (4) we see that an element of  delay is introduced into the 
way that changes in F ( . )  feed back into changes in C( . ) .  
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Other values of q are considered in detail in ZIMBImS and HABERMAN (1993) and 
are not discussed here. 

We note that this choice of  A D J ( t )  uses the same fraction of the unfunded 
liability regardless of  the latter 's  sign, so surpluses and deficiencies are treated in 
the same way, which would not always be the case in practice. 

MOMENTS OF F(t)  and C(t)  

In the case of  q = 0, we repeat from DUFRESNE (1988) the recurrence relation for 
F (t) : 

(6) F ( t +  I ) =  [ u ( t +  I)/ u ] ( p F ( t ) + r )  

and from HABERNAN (1992) the corresponding relation when q =  1 

(7) F ( t + l )  = [ u ( t + l ) / u ] ( u F ( t ) - u k  F ( t - l ) + r )  

where we have introduced the subsidiary parameters 

tt = ( l + i ) , p  = ( l + i ) ( l - k ) ,  r = (1 + i ) ( N C - B + k A L )  

and 

u ( t + l )  = I + i ( t + l ) .  

Using conditional expectation and variance based methods, DUVRESNE (1988) 
obtains explicit  equations for the expectation and variance of  F(t)  and C(t)  for 
finite t when q =0 .  In the limit as t ~ oo, he demonstrates that. providing that 
M > I ,  

and 

lim E F ( t )  = AL 

lim E C(t)  = N C  

and that providing that y ( I  - k )  2 < 1 

(8) lira Vat F(t)  = 
t .--> ~c 

o 2 
where y = a - + u  , and 

(9) lira Var C(t)  = 
t --4 oc 

o2 AL 2 

u 2 ( 1 - y ( 1 - k)'- ) 

o2 k2 AL 2 

u2(l  - y ( I  -k) 2) 

In this discussion, we exclude pay-as-you-go funding and temainal funding for 
which A L = O  and initial funding. 
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Using conditional expectation and generating function based methods, HABER- 
MAN (1992) similarly obtain equations for the first two moments of  F( t )  and C(t )  
when q = 1. In the limit as t ~ co, he demonstrates that 

lim E F ( t )  = A L  

lim E C( t )  = N C  

providing that M_>2 and OMT> 1. 
Under more complex restrictions on the pararneters (Appendix I), HABERMAN 

(1992) obtains, for the case q =  I, that 

o2AL~-(I + uk) 
(lOa) lira Var F(t)  = 

' ~ ~ u 2 ( I + ku - y (1 - uk + k 2 + uk 3)) 

and 

o2k2AL2( I  + uk) 
(lOb) lim Var C(t)  = 

' ~  u 2(1 + k u -  y ( l - u k  + k 2 + u k  3)) 

[Note that there is a typographical error in equations (14), (15) and (B.6) in 
HABERMAN (1992)]. 

TRADE OFF IN VARIANCES 

We introduce the following notation for the scaled variances 

ai (M) = 
lim Var F( t )  

(lim E F( t ) )  z 
f o r q = i  where i = 0  or I 

and 

(1 I) rii(M) = 
lim Var C(t)  

(lim E C( t ) )  2 

Then Dufresne has shown that, if y >  I, then there exists M* such that 
i) for M - < M  *, O~o(M) increases and r io(M) decreases with increasing M, 
ii) for M > M * ,  both a o ( M )  and r io(M) increase with increasing M and that 

1 I 
aM,1 = - - w h e r e  k* = 1 - - . 

k* y 

In a sense, the choice of  M in the range of  (I,  M*) is " o p t i m a l " .  If our objective 
in choosing M is to reduce uncertainty and to keep the limiting variances of  F( t )  
and C(t )  to a minimum, then any M > M *  is to be discarded since clearly some 
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other M < M *  would at least reduce a0(M) while keeping f lo(M)  the same. For 
most pension funds, it is likely that the variance of  C(t)  will be the principal 
criterion of  interest. 

We shall now consider the extent to which similar properties hold for the case 
q = l .  

We firstly note that, for M >  I, 

(12) 

ot0(M ) < ot I (M) 
/ 

and ( 

f lo(M) < t31 (M),J  

(as demonstrated in the numerical examples in HABERMAN (1992)). 
The proof is straightforward. We consider 

c q ( M )  f l j ( M )  (1 +uk) ( I  - y ( l  - k )  2) 

C~o(M) f lo(M) 1 + uk - y ( I - k u + k 2 + u k  3) 

I - y ( I  - k )  2 

I - y (1 - ku + k 2 + uk 3)/(1 + uk) 

1 - y ( I  + k Z - 2 k )  

I - y ( l  + k  2 -  2 u k / ( l  + uk))  

The difference between the terms in the numerator and denominator is the 
coefficient of  " 2 k " .  Now, if M >  I, 

u 1 
- -  < 1 because l + u k - u  - 
1 + uk aM] 

- - - - i > 0 .  

oq (M) 3, (M) 
Hence - - -  > 1. 

ot o (M) 13 0 (M) 

(HABERMAN and ZIMB|DIS (1993) show that these inequalities hold for higher values 
of  q). This result is intuitive : the introduction of  a one year time delay means that 
we have lost information about the fund since time t -  1 and we would expect the 
resulting variances to be increased. 

We consider the behaviour of a~ (M) as M varies. It is convenient to view a~ ( ) 
as a function of  k and then use the 1-1 correspondence between values of  k 
and M. 

We can show that 

d o 2 2 y ( k ( l  + ku) 2 - u) 
(13) - -  oq (k) = 

dk u2(l + ku - y(1 - u k  + k2 + u k 3 ) )  2 " 

We are interested in the turning points of  c~l (k) in the range for k of  (d, 1), 
corresponding to values of  M in the range (1, oo). 
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The cubic equation p (k) = k (1 + ku) 2 -  u has only one real root since 

1 
D = - - ( 2 7 u  2 + 4 ) > 0  

ii 4 

(see Appendix 1I). We let k~ be this real root. 
We note that p (d) = u ( i -  1) < 0 (if ] i ] < 100%) and p (1) = I + u + u 2 > 0. 
Then p ( k ) < O  for d < k < k ]  and p ( k ) > 0  for k t < k <  1. 
k[ depends on the value of  tt and numerical experiments indicate the following 

values : 

i II k I 

0 I 0.4656 
1% 1.01 0.4666 
5 % 1.05 0.4704 

10 % 1.10 0.4707 
20 % 1.20 0.4818 

In each of  the cases, k t approximately corresponds to M~ = 2. 
Hence 

d 
- - o q  (k) < 0 for d < k < k l  
dk 

and 

d 
- - ~ e j  (k) > 0 for k I < k <  I 
dk 

(subject to k satisfying the constraints implied by Appendix I) which are equivalent 
to 

d 

dM 
- - o q ( M ) < O  for I < M < M  l = 2  

and 

d 

dM 
- -  o q ( M ) > O  for M I < M <  oo. 

We now consider the behaviour of fll (k), viewed initially as a function of  k. We 
can show that 

d 
(14) - - ~ , ( k )  = 

dk 

0 2 2 k(l - y + ku (2 - y) + u 2 k 2 ( 1 + y)) 

u 2(I + k u -  y ( l - u k + k  2+uk  3))2 
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We are interested in the turning points of/31 (k) in the feasible range k of  (d, I), 
again subject to the constraints implied by Appendix I, corresponding to values of 
M in the range (1, oc). 

The quadratic equation s (k)  = 1 - y + k u ( 2 - y )  + u2k2(I +y)  has one real root 
in the specified range since y > 0 . 8 .  We let kz be this real root. 

We note that s (0) = 1 - y < 0 

and s ( l ) = l  - y + u ( 2 - y )  + u2(l +y)  = 
u3(u - 1) + 2u + I + ~ 2 ( / u 2 - M -  I) 

so s ( I ) > 0  if i > 6 1 . 8 % ,  given that u > 0  

u 3 ( u - l )  + 2 u  + I 
or s ( I ) > 0  if o 2 <  = o~, say. 

I + It - u 2  

[This restriction on o 2 is not too onerous! It would correspond to the following 
values : 

i o~ 2 

0 300% 
1% 306 % 
5% 333% 

10% 375% 
20 % 493 %] 

Clearly k2 corresponds to a minimum value of fl(k). 
The explicit value of  k 2 is 

- ( 2 - y )  + { y ( 5 y - 4 )  
(~5) k2 = 

2u(1 +y)  

Thus 

d 
- - i l l  (k) < 0 for d < k < k  2 
dk 

and 

d 
- - i l l ( k )  > 0 for k 2 < k <  1. 
dk 

If k 2 corresponds to M2 we can translate this statement into 

d 

dM 
- - / 3 1  (M) < 0 for 1 < M < M  2 
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and 

d 
- -  fll (M) > 0 for M 2 < M < ~ .  
dM 

Given the restrictions on the parameters mentioned in the above discussion, we 
see that for the case of  q = I that is also a trade off between variability in C(t) and 
variability in F(t) and that there is an optimal choice of  M, and hence of  k, if our 
objective is to keep the limiting variances to a minimum. The optimal spread period 
in this case is (1, M2). 

A comparison of  the optimal periods defined by M* and M2 (for the cases q = 0 
and q = 1) would be useful. Again it is convenient to examine the corresponding 
annuity values, as represented by k. 

We note that 

s '(k*) = u ( 2 - y )  + 2u2(I  + y ) - -  ( y -  1) 

Y 

_ u [ 2 ( o 2 + u 2 _ u  ) + y2(2u  - 1)1. 

Y 

The sign of  s '(k*) depends on the values of  u and a. Clearly, if u ~ l  (i.e. i_>0) 
then s ' ( k * ) > 0 .  Since s(k) is a quadratic, with minimum at k=k2,  this implies that 
k* > k 2 and hence that M2 > M* (for i--> 0). 

This is confirmed by the numerical example given in HABERMAN (1992). As 
Table 1 illustrates, the values of  M2 and M* are numerically ~lose. 

T A B L E  I 

NUMERICAl. VALUES OF M *  AND M 2 

i 
Real valuation rate of  interest 

O 0 0.01 0.03 0.05 

M* and M 2 M* and M 2 M* M 2 M* M 2 
0.05 401 60 23 24 14 15 
0.10 101 42 20 20 13 14 
0.25 45 28 16 17 II 12 
0.20 26 19 13 13 10 10 
0.25 17 14 10 II 8 9 

C O N C L U S I O N S  

A simple stochastic model is used to represent the real investment returns for a 
defined benefit pension scheme. 
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The paper shows that in the presence of  a one year time delay between fixing a 
contribution rate and the information about current fund levels, it is possible to set 
up formulae for studying the limiting behaviour of  the expected values and 
variances of  the contributions and fund levels. The paper demonstrates that, as with 
the case when there is no time delay, there is an optimum range of  values for the 
spread period, M (for amortizing valuation surpluses or deficiencies). The relation- 
ship between the optimum range of values of  M in the case of  no time delay (q = 0) 
and with a one year time delay (q = I) is investigated. 

A C K N O W L E D G E M E N T  

This research work was performned under EEC contract SPES-CT91-0063. 

Appendix  I 

Based on HABERMAN (1992) Appendix C, we require the following conditions for 
the convergence of equations (10): 

With b = a 2 + u  2 - u k  

C : ( 0  2 -F U 2 )  k (u - k) 

e = (a 2+u2 )uk  3 

D = 2 7 e 2 + 4 c  3 - 1 8 b c e - b 2 c 2 + 4 b 3 e ,  

we require 
i) I + c > l b + e [  
ii) (a) if D > 0 ,  e 3 - b e + c  - 1 < 0  

1 
(b) i f O < 0 ,  Ib l  < - - ( 3 + c ) .  

2 

i) and ii) can be considered to provide restrictions on k (and hence M) or on a 2. 

Appendix  II - Roots  of  a cubic equat ion  

In general, the roots of  the cubic equation 

p ( x )  = x 3 - b x  2 + c x - e  

are 

1 
xl = - b + U + V  

3 

X2, X 3 = - - b  - - -  ( U +  V )  ± - - i ( U -  V) 
3 2 2 
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and 

PENSION FUNDING WITH TIME DELAYS AND THE OPTIMAL SPREAD PERIOD 187 

I b bc e 1 ~[DI 
= + - -  ± - -  

U, V I_'~ 6 2 6 ~  

D = 2 7 e 2 + 4 c  3 - 1 8 b c e - b 2 c 2 + 4 b 3 e .  
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