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ABSTRACT

Some practical applications of SUNDT’S (1992) generalized class of counting
distributions are discussed The numerical stabilities of some recursive formulas n
Sundt’s class are investigated
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| INTRODUCTION

To model the claims from an tnsurance portfolio over an accounting pertod, assume
that the claim frequency N 1s a non-negative integer-valued random vaniable with
probabihity function (p f.) {p,}i=o Further assume that, conditional on N, the N
clams X, X,, .., Xy are positive integer-valued random variables. mutually
independent and indentically distributed with common discrete density { f(x)}7.,
called the claim seventy p.f. We are interested in the total claim amount

S=X,+ .. +Xy,

which has a compound distribution with p f.

(1 gl)= Y puf*(v),  x=0,1,2,...

n=0

Equation (1) may be difficult to use because of the high order of convolutions
involved.

PANIER (1981) observed that the widely used Poisson, negative bionomial and
binomial claim frequencies share the common recursive pattern

b
(2) p,,=[a +—)p,,-,, n=1,23, ..

n

! The authors wish to thank the anonymous referees for numerous suggestions which improved the
presentation and readability of the paper
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and showed that the corresponding compound distribution can be evaluated
recursively

X

3) gx= 2, (a+bijfmg<x—n, v=1,2.3,..

y=1 X
g =py.

The recursive formula (3) 1s very handy for computer programming and
significantly reduces the computing tuime comparing with a direct convolution
approach (1)

SunDT and JEwWELL (1981) showed that Poisson, negative binomial and binomal
distributions are the only members of the class defined by equation (2).

DE PriL (1985) derived recursions for the n-fold convolution of an arbitrary
non-negative discrete distribution, which can be viewed as a variant of evaluating a
compound binomial distribution.

SCHROTER (1990) generalized the recursion (3) to the class of counting
distributions satisfying the recursion:

b c
pp=la + — 1Py + —Pyoas n= 1’2<3* . p—l=0~
n n

which 1s further generalized by SUNDT (1992) to a class of counting distributions
satisfying:

I3
b
(4) p"=z [aj-‘-“ljpn-lﬂ n=1,2,

1=1 R

with p,, =0, for n < 0 It turns out (SUNDT, 1992, p. 65) that every discrete density

{PospP1s---s pi} (k can be «) with py > 0 can fit into (4) by choosing
5) a=- p=2,P =12 k.
Po Po

Sundt also discussed the properties of convolutions of members of this general-
1zed class (4), giving a general result including the one n DE PrIL (1985) as a
special case

For a claim frequency distribution 1n the class (4), by a condiuonal probability
argument, Sundt derived a recursion for the corresponding compound distribu-
{1on

1

k
by
(6) gy= ), gk-v) X, (a, + i]f*d(,w, x=1,2,...
v=i J=1 Jjx

g(o)=Po,

which umifies the results of PANIER (1981) (when k=1) and SCHROTER (1990)
(when k=2 and a,=0).
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In this paper, SUNDT (1992) extended the class (4) even further by loosening the
recursive range

: b,
(7> PI1=2 aj+_ p”—|» n=w+l,w+2,.

J=1 n

and derived a recurston for the corresponding compound distributions.

1 A b
®) gtx) = ), glx-y) z (a, + Ly)f*’(yﬂ
J= Jx

y=1

w A
+ 2 {P" z [a +—1]p,, ,:'f*"(r) x=12,..

n=1 n

g0 =pg

However, the model fitung of the class (7) in practical applications and the
computatuonal aspects of the recursions (7) and (8) are not discussed 1n SUNDT
(1992) Our present paper 1s devoted to addressing these concerns.

2. MODEL FITTING AND COMPUTING EFFORT

In fitting probability models, the parismony principle 1s observed In pracucal
applicattons, since it 1s desirable to try to fit a claim frequency model with
relatively few (2 or 3) parameters, the recursive relation (7) 1s useful only when the
claim frequency distribution can fit into (7) with small k& and w.

There are many well known counting distnbutions which can fit to (7) with
k=2and w= 1.

The Delaporte distribution (RUOHONEN, 1988; WiLLMOT and SuNDT, 1989),
which 1s in the class of SCHROTER (1990), satisfies (7) with k=2 and w =0 The
Pélya-Aepph distribution (JOHNSON et al, 1992, p. 329-330), which 1s not n the
classes of PANJER (1981) or SCHROTER (1990), satisfies (7) with k=2 and w =0.
Other 1nteresting examples for the general class (7) can be found among the mixed
Poisson distributions in WILLMOT (1993). The Poisson-Pareto 1s obtained by mixing
the Poisson mean A over a Pareto density:

h(x):—ﬂ—— .
(‘ll+x)a+|

The Poisson-Pareto p f. satisfies recursion (7) with k=2 and w =1
l+a+u u
(9) pn=(l - _—J Pno1 t — Pu-2, n=2’37
n n

with the boundary condition p, =a—(x+ 1) pg.
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The Poisson-Truncated-Normal p.f., where the Poisson mean A has a Normal
density left truncated at point zero satisfies recursion (7) with k=2 and w =0

u—o? o’
(10) Pn= Po-t ¥ —Ppo2,s n=1,2, .
n n

with p_, =0

On the other hand, many other counting distributions cannot fit into (7) with
finite number of parameters. For exampple, the Poisson-Inverse-Gaussian (P-1G) 1s
a two parameter distribution with a p.f. sausfying (WiLLmMoT, 1987)"

B2n-3) u’
(an Pp=————Ppoy ¥ ————————p
(1+28)n (1+2B8nn-1)

n=2» ‘n22’

with intial values
pozeuﬁ"ll—mzﬂ)‘”l, pr=u(1+28)""p,

[t 1s noted that recursion (11) s not of the same type as (7), and an infinite
number of a, and b,’s would be needed to fit 1t into (7).

Another example 1s the Generalized Poisson with a p.f. (GOOVAERTS and
Kaas, 1991)-

0(64‘”/{)"-1 e—0—nl
Pn= , n=0,1, ...

n!

ISLAM and ConsuL (1992) suggested the Generahized Poisson distribution for
automobile 1nsurance claim data. On the other hand, ELVERS (199!) reported that
the Generalized Poisson dit not fit well the data sets which he studied GOOVAERTS
and Kaas (1991) derived a recursive scheme for the compound Generalized Poisson
distnibutions. Again, the two-parameter Generahzed Poisson cannot fit it into (7)
with finite number of a, and b,’s.

Now consider the computing work needed 1n evaluating the compound distribu-
tion for an arbutrary frequency ( pg,py..-.,p,} (r can be ) with pg > 0. For this
arbitrary frequency, most probably 1t would fit into class (4) with k& = r (as 1n (5)).
Compare Sundt’s recursive scheme (6) with the direct convolution approach (1)
First, both (6) and (1) need to evaluate convolutions up to the k-th fold After that,
Sundt’s recursive scheme (6) needs one more recursive evaluation, while (1) needs
taking an weighted average of the obtained convolutions. Therefore, for an arbitrary
claim frequency, the computing effort using Sundt’s recursive scheme (6) 1s of the
same order of magnitude as that needed by a direct convolutin approach

To conclude, Sundt’s recursive scheme (6) or (8) 1s practically useful only when
the clam frequency can fit into (4) or (7) with relatively few parameters (1. when &
and w are small).

3. STABILITY AGAINST ROUND-OFF ERRORS

SunpT (1992) did not discuss under which circumstances the recursion was of
practical utility When computational use s concerned, one needs to know the
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numerical stability of the recursions against round-off errors. Since computers can
only represent finite number of digits, round-off errors are inevitable. The recursive
nature makes computer evaluation very sumple to implement, but it may also create
problems due to the accumulation of round-off errors in the evaluation process.

PANJER and WaNG (193) studied the numencal stability of recursive formulas
against round-off errors A recursive evaluation is said to be stable if the relative
error grows linearly, and unstable otherwise If a recursive evaluation is unstable,
the accumulated error grows rapidly and makes the solution no longer useful For
example, one may get incorrect large negative numbers 1n evaluating a probability
distribution when using unstable recursive evaluations.

In this Section, we try to give some general insight into stability theory.

Consider the linear homogeneous recursion in the forward direction

(12) g)= 2 A gle-p), x>x,  A,(x)=20,

=1

where m 15 the order of the recursion Under some regulanty conditions (CasH,
1979, p. 2, Wimp, 1984, p. 19, p. 272), recursion (12) has a fundamental set of m
basic solutions {g“”(x), h=1,.. ,m} such that

e ¢ (x) outgrows all the other solutions

(1)
him g—('—rl=00 for 2<h=<m;
== g™ ) ’

e every solution g(x) of (12) can be expressed as their linear combimations

9=, gV )+ ..+, (),
where g(x) 1s called a dominant solution 1f ¢, # 0, or a subordinate solution 1f
o=
On the other hand, the round-off error propagation e(x), as a disturbance
solution, can be written as a linear combination of the fundamental set

(13) e)=6, 9" X))+ .. +e,gd"K),

where ¢, 1s small, but with probaility 1 that £, #0.
Since g, #0, one has

o if g(x) 1s subordinate

(14) lim
v ® (
96 £ if g(x) 1s dommant
€

€
where —- can be made arbitranly small by using sufficient number of digits.
G




10 HARRY H PANJER AND SHAUN WANG

It 1s the rate of relative growth of the desired solution with respect to other
solutions that determines whether or not a recursive computation Is successful. As a
sufficient condition for stability, the recurstve evaluation using (12) 15 stable 1f the
desired solution g(x) 1s a dominant solution and unstable 1f the desired solution 1s a
subordinate solution.

4 PERRON’S THEOREM AND POINCARE’S LEMMA

In this Section, we shall introduce Perron’s theorem, which we believe 1s the most
important asymptotic result for the solutions of recursive formulas of finite
order.

Assume that

Iim A @)=k, J=1,...,m.
The polynomial equation:
(15) d(z)=z" - Z #,2" =0,

15 called the characteristic equation for recursion (12).

Theorem 1 (Perron): Let t,,17,,. ,t, be the roots of the characteristic equa-
tion (15) and assume that they all have distinct modulus. Then the recursion (12)

has a fundamental set of solutions {g”"(x), h=1,. ,m} such that
()
x+ 1
(16) Iim —guf—)=t,,, h=1,.. ,m.
== g

Proof: See MILNE-THOMPSN (1968, p 548)
When the characteristic equation (15) has repeated roots, Poincaré’s result may
be useful.

Lemma 1 (Poincaré): Let ¢ be a number whose modulus 1s greater than that of
every root ¢, of the charactenistic equation (15), then for every solution g(x) of the
recurston (12),

=0

a7n lim 9

o .
v C

Proof: See MILNE THOMSON (1968, p. 551)
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Definition 1: For a function g defined on non-negative integers, we define the tail
index as: ’

(18) pg= hm M (if exists).

1o |g('\)|

If g(x) has only finite support, we define py= — 1. We say the g(x) has a thicker
tail than 4 (x), if p; > p,

5. CONVOLUTIONS OF MEMBERS IN PANIER’S CLASS

SunDT (1992, p 70-71) presents a nice argument on convolutions of the members
of the class (4). The following 1s a special case of convolutions of members in
Panjer’s class It may be usetul in combining independent portfolios each having a
claim frequency distribution 1n Panjer’s class.

Let R, [a, B] denote a member 1n Panjer’s class (2) with parameters ¢ = o and
b= Since the convolutuon of R, [a, B,] and R, 3,] 18 R |, e+ 3, + ;). we
can drop this trivial case. In the following, we assume that @,’s are different from
each other

Lemma 2: The convolution of r distributions R, |, 3,1, ..., R, [, , 5,1 can be
evaluated recursively as

. b
(19) Pu= 2, (ﬂj + —’jpn-p

=1

with
J
20) a=(-1y"" )y IIT . =1 .0,
lsl|<12< <ler =1
r J-1
@y b=(-1Y*" Y B, > @,  (=2...r),
v=1 s <h< <1_|5r1=|
L#Evu=1, j=1)
I
(22) b=, 8.

J=1
Proof: See SUuNDT (1992, p. 70-71)
Lemma 3 (Bender): Let g+ /i denote the convolution of counting distributions
g{x) and h(x) We have

pg"’h = max {pgv ph}
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Proof: See BENDER (1974); WiLLMOT (1989)

Theorem 2: In evaluating the convolution of r distributions

Rl[al’ﬂllv !Rl[ar’ﬂrlv

the recursion (19) 1s stable 1n the forward direction 1f the @, which has the largest
absolute value in {®,, ,«,}1s positive, and 1s unstable in the forward direction 1f
the o, which has the largst absolute value in {«,,. ,a,} 1s negative

Proof: Here we assume that at least one «, 1s non-negative and leave the discussion
for the casc where all the a;’s are negative to the next Section.

By Lemma 3, the tail for the convolution of R, |e,,3,] and R, |a,, §,] has the
same tail index as the one with a thicker tail Then the convolution of m
distributions

Rl[alvﬂllv"‘7Rl [ar’ﬂr]’

has a tail index of max {¢&;, .., «,}
The characteristic equation of recursion (19) is

%
(23) ®()=7" - Y, a7t7'=0.
J=1

From (20), we can factonze @ (z) nto.
4
(24) P@)=[] c-a)=0
J=1

Applying Perron’s Theorem to the characteristic equation (24), recursion (19) has
r basic solutions with tail indexes |a, l, «, |, respectively
If the a,which has the largest absolute value in {a&,, .,a,} 15 positive, then

max {«,;, .,a,}=max la, |,...,|a,| ),
the convolution of r distributions

Rllal’ﬁllv" le [ar!ﬂrly

1s a dominant solution of (19) and the recursive evaluation by (19) 1s stable.
If the largest «, which has the largest absolute value in {«;, ..., ,} 1s negative,
then

max {«y,...,a,} < max { Ia‘ I,...,Ia,l !,
the convolutions of r distributions
Rl[al#/))ljv 'le[arvﬁr]’

is a subordinate solution of (19} and the recursive evaluation by (19) 1s unstable
O
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Corollary 1: Let «, and 3, be given as in Lemma 2.

I The curston (19) 1s stable in the forward direction in evaluating any finite
number of convolutions of Poisson and/or negative binomial distributions.

2. The recursion (19) 1s unstable 1n the forward direction n evaluaung convolu-
tions of Poisson and binomial distributions.

3. For the convolution of a binomial R («,,f,) and a negative binomal
R, (a,, B,), the recursion (19) 1s
e stable in the forward direction if Ial | <y,
¢ unstable 1n the forward direction 1f Ial | > 0.

If the recursion (4) for the claim frequency 1s stable, then the recursion (6) for the
compound distribution 1s hikely to be stable, since it involves terms of the same
form. As a special case, recursion (4) is stable in evaluating the Delaporte
distribution which s a convolution of a Poisson with a negative binonual It can
also be viewed as a mixed Poisson with a shifted gamma mixing density (WILLMOT
and SunpT, 1989) The recursion (6) is also stable in evalvating compound
Delaporte distributions.

6. CONVOLUTIONS OF BINOMIAL DISTRIBUTIONS

Generally, if the desired solution of a recursive evaluation has only finite support, 1n
either direction, the desired solution grows up at the beginning points and damps
out at the end points Therefore, the recursive evaluation 1S only stable at the
beginning and become more and more unstable when they move to the other end
Over any specified range, the more stable 1t 15 1n forward direction, the more
unstable 1t 1s 1n the backward direction, and vice versa.

As a direct apphcation, for a probability function { py,p,, ..., p:} with finite
support (k <) and p;> 0, the recursion (4) with a, and b, given in (5) 1s
unstable.

A bimomual distributton with parameters (N, 8) is defined as

P g"(1-0O"""<0, n=0,1, . N,

(N-—n)!n!
which has a finite support and sausfies (2) with

6 b=(N+l)0

a= - —,

1-6 -0

Left undiscussed 1n the proof of Theorem 2 is the case where all the a;’s are
negative, 1.e., convolutions of r binomial distributions Since the convolution of r
binomial distributions with parameters (N,, 8,) (i=1, . , r) has only fimite support,
in either direction, the recursion (19) 1s only stable at the beginning and become
more and more unstable when they move to the other end. In this case, one utihze
two directions to get a stable evaluation.
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To 1llustrate thts, we consider the convolution of two binomuial distributions with
parameters (N, 8,) and (N,.#,) where 8, #6, From Lemma 1, the convolution
gives a p.f. satisfying

b, b,
(25) Po=lay + — Py +|dy + — [ Pyo2,
n n
with
0, 6, 6,6,
a,= = — - ) aHh= - ————,
-6 1-0, (I-0)( -0y
(N|+ 1)61 (N2+l)92 (N|+N2+2)0|62
bl= + . I)2= -
1-6, 1-0, (1-6)(1-86,)

and mmtial values
9(=N=0,  gO=0-68)"(1-6)".
One can eastly re-write (25) nto a backward recursion with starting values

GIN|+N))=01185,  g(N, +N,+1)=0.

Example 1: Assume that
6, =3, 0,=1, N, =100, N, =200,

and 10 digits are used, then (25) 1s unstable i both directions As in the compound
binomial case (PANJER and WANG, 1993, p. 249-52), negative values are observed
duning the evaluatnon. However, both directions produce the same values n their
first 8 digits over the muddle range |165,199], which suggests that a combined
range of two directions can given at least 8 significance digits over the whole
range [0,300].

In Example 1, one can also first calculate the discrete density of each of the two
binomial distributions and then convolute them It 1s numencally stable to do
convolutions

7 PREFERARI.E RECURSIVE SCHEMES

A probability function can satisfy many different recursions. In applications, among
various recursive schemes, 1t would be good to know which one 1s preferable based
on the tollowing criterna-

(1) stability,

(n) simplicity,

and

() computing effort
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The Generalized Pélya-Aeppli frequency models: Let the claim frequency be 1n
R [a, B] and the claim severity have a geometric distribution:

(26) fy=pg*~',  (@=1-p, x=1,2, )

then the total claim has a compound distribution, which 1s called the Generalized
Pélya-Aepph distnbution (JOHNSON et al, 1992, p 329-330)

MiLipiu (1985, p 10) generalized a result of EvaNs (1953) and gave a recursion
for the Generalized P6lya-Aeppli distribution:

b, b,
27 g(.r):(al + —] glx-1) + [az + ——] glx—2), x=1,

x x

with

28) {a|=2q+a(l—q), by==-2q+B(-9),
a,=—qlg+a(l —q)), by=2q(qg+a(l -q)),

and 1nithal values
(¢-)
(29) g0 =(l-a)« ) g(-nH=0.

To evaluate the Generalized P6ly-Aepph distribution, recursion (27) 1s stable n
the forward direction if a = 0; in this case, (27) 1s preferable to Panjer’s recursion
with a geometric severity

The recursion (27) can be verified being unstable for « <0 (1e binonual
frequency). It 1s interesting that, by a re-parametrization, a compound binomial
geometric can be turned into a compound negative binomial geometric (PANJER and
wiLLmor, 1992, p 270), which can be evaluated stably by recursion (27)

The compound Generahzed Pélya-Aepph distribution can be evaluated using
Sundt’s recursion (6); on the other hand, one can evaluate the compound
Generalized Pélya-Aeppli distribution by a two-stage Panjer’s recursion (3). Again,
we would say that Sundt’s recursive scheme (6) 1s preferable.

The Poisson Inverse Gaussian (P-1G) frequency models : WiLLmoT (1987) fits 6
sets of claim frequency data and finds that the P-1G provides superior fit He also
discussed the parameter esumation in the model fitting

Even though one can view the P-IG as a compound Poisson ETNB (Extended
truncated negative binomial, WiLLMOT, 1988), the preferable mcthod for generating
the probability function of the P-1G 1s the recursion (11). For the compound P-1G,
as a member n the Sichel fanmuly, WILLMOT and PANJER (1987) derived recursive
formulas 1n terms of auxihary functions Based on our expenence, the preferable
method 1s a two-stage Panjer’s recursion (3) by viewing the P-1G as a compound
Poisson ETNB, since the computation is both simple and stable.
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Combining insurance portfolios: Assume that two independent insurance portfol-
10s have the same severity distnbution and have claim frequency distributions in
Panjer’s class. When combining these two portfolios, the claim frequency distribu-
ton 1s a convolution of two members in Panjer’s class, and the total claim
distribution can be evaluated by recursion (6). Comparing with the approach of first
evaluating each portfolio by using Panjer’s recursion and then taking convolutions,
Sundt’s recursive scheme (6) generally requires less computing efforts.

The numerical stabihty of Sundt's class (4) has many interesting structures. In
WANG and PANIER (1993), some critical points are identified for the recursion (9)
only starting from these critical points one can get a stable evaluation of the Potsson
Pareto probabilities, Also, the stability of the recursion (10) for the Poisson-
Truncated-Normal probabilities depends directly on whether u > ¢ or u < ¢°. A
complete account for the numerical aspects of the recursions (7) and (8) remains
open for further studies.
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