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A B S T R A C T  

Some practical applications of SUNDT'S (1992) generalized class of  counting 
distributions are discussed The numerical stabilities of  some recursive formulas m 
Sundt 's class are investigated 
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I INTRODUCTION 

To model the claims from an insurance portfoho over an accounting period, assume 
that the claim frequency N is a non-negative integer-valued random variable with 
probability function (p f.) {P,}~=0 Further assume that, conditional on N, the N 
claims X~,Xz, ..,XN are positive integer-valued random variables, mutually 
independent and lndentlcally distributed with common discrete density { f (x)}~= i, 
called the claun severity p.f .  We are interested in the total claun amount 

S =  X I + . .  + X N ,  

which has a compound distribution with p f. 

(1) g ( x ) =  E p,,f*"(x), x = 0 ,  1,2 . . . .  
n =0  

Equation (1) may be difficult to use because of  the high order of  convolutions 
Involved. 

PANJER (1981) observed that the widely used Polsson, negative blonomial and 
binomial claim frequencies share the common recurslve pattern 

(2) p,,=[a + !)pn_,, n = 1 , 2 , 3 ,  .. 

i The authors wish to thank the anonymous  referees for numerous  sugges tmns  which mlproved the 
presentat ion and readabil i ty o f  the paper  
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and 
recurs,vely • 

showed that the corresponding compound distribution can be evaluated 

(3) g ( x ) =  Z a + b  f ( j ) g ( x - j ) ,  r =  1 , 2 , 3 , . .  
j = l  

g(0) = P0- 

The recurslve formula (3) is very handy for computer programming and 
significantly reduces the computing time comparing with a direct convolution 
approach (1) 

SUNDT and JEWELL (1981) showed that Polsson, negatave binomial and bmomml 
d,stnbutlons are the only members of  the class defined by equation (2). 

DE PRIL (1985) derived recurslons for the n-fold convolution of an arbitrary 
non-negative &screte d~stnbuuon, which can be viewed as a variant of  evaluating a 
compound binomial d~strlbuuon. 

SCHROTER (1990) generalized the recursion (3) to the class of  counting 
distributions satisfying the recursJon: 

P,, = + P,, - i + - P , . -  ,_, n -- 1, 2,3, P -  t = 0, 
I1 

which is further generalized by SUNDT (1992) tO a class of counting distributions 
sausfymg : 

with p,, = 0, for n < 0 It turns out (SUNDT, 1992, p. 65) that every discrete density 
{ Po, Pl . . . . .  p~} (k can be ~)  with Po > 0 can fit into (4) by choosing 

Pj P~ 
(5) a j =  - - - ,  b j = 2 j - - ,  j =  1,2, . , k .  

Po P0 

Sundt also &scussed the properues of convoluuons of members of  this general- 
ized class (4), giving a general result including the one m DE PinE (1985) as a 
special case 

For a claim frequency &strlbutlon in the class (4), by a condmonal probability 
argument, Sundt derived a recurslon for the corresponding compound distribu- 
tion 

(6) g ( x ) =  ~ g ( x - y )  ~ j + - -  f * ~ ( y ) ,  x = 1 , 2  . . . .  
v = l  / = l  JX 

g (0) = Po, 

which unifies the results of  PANJER (1981) (when k =  1) and SCHROTER (1990) 
(when k = 2  and a 2 =0) .  
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In this paper, SUNDT (1992) extended the class (4) even further by loosening the 
recurs~ve range 

(7) P,,= ~ + P,,- I, n = c o +  1 , ~ o + 2 , .  
j =  

and derived a recurslon for the corresponding compound distr ibutions.  

g(x )  = ~ g ( x - y )  ~ j + f * ' ( y ) +  
y=l  j = l  JX J 

+ ~ P , , -  .I + bj ."8 . . . .  
, = 1  j=l -~ P n - j  J k x ) ,  

(8) 

x =  1 , 2 , . .  

g(0)  = P0 

However, the model fitting of  the class (7) in practical apphcations and the 
computatLonal aspects of the recursaons (7) and (8) are not discussed m SUNDT 
(1992) Our present paper is devoted to addressing these concerns. 

2.  MODEL FITTING AND COMPUTING EFFORT 

In fitting probabdlty models, the pansmony principle is observed In pracucal 
apphcatlons,  since ~t is desarable to try to fat a claim frequency model wath 
relauvely few (2 or 3) parameters, the recurslve relation (7) is useful only when the 
claim frequency dis tnbunon can fit into (7) with small k and co. 

There are many well known counting dlstnbutlons which can fit into (7) with 
k_<2  and ~o_> 1. 

The Delaporte distribution (RuoHONEN, 1988; WILLMOT and SUNDT, 1989), 
which as in the class of SCHROTER (1990), satisfies (7) with k = 2 and oJ = 0 The 
P61ya-Aepph dastnbuuon (JOHNSON et a l ,  1992, p. 329-330), which is not m the 
classes of  PANJER (1981) or SCHROTER (1990), satisfies (7) with k = 2 and w = 0. 
Other anterestmg examples for the general class (7) can be found among the mixed 
Poasson distributions m Wn.LMO7 (1993). The Po~sson-Pareto ~s obtained by maxmg 
the Polsson mean 2 over a Pareto densi ty:  

o~,u c' 
h (x) - 

~ +x) '~+1 

The Polsson-Pareto p f. satisfies recurslon (7) wi th k = 2 and ~ = 1 

( I+°z+/~lp,,_, +--p,,_2, n=2,3, ., (9) p,, = 1 - 
?l /3 

with the boundary condition p~ = o~ - (o~ +/~)P0. 
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The Poisson-Truncated-Normal p.f., where the Poisson mean 2 has a Normal 
density left truncated at point zero satisfies recurslon (7) with k = 2 and w = O' 

/ t  - 0 2 o 2 

(10) P . -  P, , - I  + - - P , , - 2 ,  n = l , 2 ,  .. 
I~l t l  

with p_~ = 0  
On the other hand, many 

finite number of parameters. 
a two parameter distribution 

other counting d lsmbunons  cannot fit into (7) with 
For exampple,  the Polsson-lnverse-Gausslan (P-IG) is 
with a p.f. satisfying (WILLMOT, 1987)' 

/3 (2 n - 3) ~2 
( 11 ) P,, - P ,  - 1 + P,, - 2, n :> 2, 

(1 + 2 f l ) n  (1 + 2 f l ) n ( n -  1) 

with renal values 

p 0 = e  ufl-' [I -II  +2/~)'''1 , pj  = f l (1  +2fl)-Inpo 

It is noted that recurslon (11) is not of  the same type as (7), and an mfimte 
number of  ag and b f s  would be needed to fit it into (7). 

Another example IS the Generalized Polsson with a p.f. (GOOVAERTS and 
KAAS, 1991)'  

0 (0 + n2)"-  I e - 0 -,,~ 
Pn = , n = 0, 1 . . . .  

H 1 

ISLAM and CONSUL (1992) suggested the General ized Polsson d,strlbUtlOn for 
automobile insurance claim data. On the other hand, ELVERS (1991) reported that 
the General ized Po~sson dlt not fit well the data sets which he studied GOOVAERTS 
and KAAS (1991) derived a recurslve scheme for the compound Generahzed Polsson 
dls tnbunons.  Again, the two-parameter  General ized Polsson cannot fit at into (7) 
with fin,te number of  a I and bfs .  

Now consider the computing work needed ,n evaluating the compound dastrlbu- 
tlon for an arbttrao, frequency {Po,Pl . . . . .  Pr} (r can be 2 )  with P0 > 0. For this 
arbitrary frequency, most probably it would fit ,nto class (4) wath k = r (as in (5)). 
Compare Sundt 's  recurslve scheme (6) with the direct convolution approach (I )  
First, both (6) and (1) need to evaluate convolutions up to the k-th fold After that, 
Sundt ' s  recursive scheme (6) needs one more recurslve evaluation, while (1) needs 
taking an weighted average of  the obtained convolutions. Therefore, for an arbatrary 
clmm frequency, the computing effort using Sundt ' s  recursive scheme (6) ~s of the 
same order of  magnitude as that needed by a d~rect convolutm approach 

To conclude, Sundt 's  recurslve scheme (6) or (8) is practically useful only when 
the clam frequency can fit into (4) or (7) with relatively few parameters (I.e when k 
and ~o are small). 

3.  STABILITY AGAINST R O U N D - O F F  ERRORS 

SUNDT (1992) did not discuss under which circumstances the recurslon was of 
practical utility When computational use is concerned, one needs to know the 
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numerical stability of the recurs~ons against round-off errors. Since computers can 
only represent fimte number of digits, round-off errors are inevitable. The recurslve 
nature makes computer  evaluation very s~mple to implement, but it may also create 
problems due to the accumulauon of  round-off errors m the evaluauon process. 

PANJER and WANG (193) studied the numerical stabihty of recurs,ve formulas 
against round-off  errors A recurs,re evaluat,on is sa,d to be stable ~f the relative 
error grows hnearly, and unstable otherwise If a recurs~ve evaluation is unstable, 
the accumulated error grows rapidly and makes the solution no longer useful For 
example,  one may get incorrect large negative numbers m evaluating a probabili ty 
dls tnbuuon when using unstable recursjve evaluauons.  

In this Sect,on, we try to give some general insight into stab|hty theory. 
Consider the linear homogeneou,,, recurslon m the forward direction 

tit 

(12) g ( x ) =  ~ A j ( x ) g ( x - j ) ,  X>Xo,  a, , , (x)¢O, 
1=1 

where m ,s the order of the recurslon Under some regularity con&t~ons (CASH, 
1979, p. 2,  WIMP, 1984, p. 19, p. 272), recursion (12) has a fundamental set of  m 
basic solut,ons {g~h)(x), h = 1 . . . .  m} such that 

• g~)(x) outgrows all the other solutions 

g~l)(x) 
hm _ _ - o o  for 2 < - h < - m ;  

, ~ ~ g l h ) ( x )  

• every solution g(x) of  (12) can be expressed as their linear combinations 

g(x )  = c, 9 ( ~ ( x )  + . . .  + c, , ,9c'")(x),  

where g(x) is called a d o m i n a n t  solution if c~ ~: 0, or a s u b o r d i n a t e  solution ff 
C l = 0  

On the other hand, the round-off error propagauon e(x), as a d,sturbance 
solut,on, can be written as a hnear combmauon of the fundamental set 

(13) e(x) = et g~l)(x) + .. +emg°")(x), 

where el is small, but with proba,hty I that e, ~ 0 .  
Since e I ~ 0 ,  one has 

(14) 

'f g(x) Is subordinate 

f-Z hm 

' - ~  g ( x )  el If g o t )  Is dominant 

where - -  can be made arbitrarily small by using sufficient number of  digits. 
CI 
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It is the rate of relative growth of the desired solution with respect to other 
solutions that determines whether or not a recurslve computation Js successful. As a 
sufficient condmon for stability, the recurslve evaluation using (12) is stable if the 
desired solution g(x) is a dominant  solution and unstable if the desired solution is a 
subordinate solution. 

4 PERRON'S THEOREM AND POINCARE'S LEMMA 

In this Secuon, we shall introduce Perron's  theorem, which we believe is the most 
important asymptotic result for the solutions of  recurstve formulas of  finite 
order. 

Assume that 

h m  A j ( . t ) = p j ,  j =  1 . . . . .  m .  

The polynomial  equation:  

m 

(15) q~(Z)=Z'- E Pj z"'-J=O' 
j = l  

is called the cha rac t e r i s t i c  equa t ion  for recursion (12). 

T h e o r e m  1 ( P e r r o n ) :  Let t ~ , t 2 , .  ,t,,, be the roots of the characteristic equa- 
tion (15) and assume that they all have distract modulus. Then the recursion (12) 
has a fundamental set of  solutions {g~/°(x), h = 1,. , m} such that 

9 ~h~ (x + 1 ) 
(16) hm - t;,, h = 1 . . . .  m. 

, .._, ~ g l h l ( x )  

Proof: See MILNE-THOMPSN (1968, p 548) 
When the characteristic equation (15) has repeated roots, Pomcar6's  result may 

be useful.  

L e m m a  1 (Po inca r6 ) :  Let c be a number whose modulus is greater than that of 
every root t, of  the characteristic equation (15), then for every solution g(x) of the 
recurston (12), 

g(x) 
(17) hm = 0 

t - .~  oc C I' 

P r o o f :  See MILNE THOMSON (1968, p. 551) 



COMPUTATIONAL ASPECTS OF SUNDT'S GENERALIZED CLASS [ I 

Definition 1 : For a function g defined on non-negatwe integers, we define the tail 
index as : 

Ig(x+ 1)1 
(18) pg = ,--.=hm [g (x )  ] (ff exists). 

If g(x) has only fln,te support, we define p g =  - 1. We say the g(x) has a thinker 
tad than h(x),  ~f pg > Oh 

5. CONVOLUTIONS OF MEMBERS IN PAN.IER'S CLASS 

SUNDT (1992, p 70-71) presents a race argument on convolutions of  the members 
of the class (4). The following is a special case of convoluUons of members in 
Panjer 's class It may be usetul m combining independent porttbhos each having a 
claim frequency &stribuuon m Panjer 's class. 

Let Ri [oe,/31 denote a member m Pan.let's class (2) with parameters a = oe and 
b =/3 Since the convoluuon of R, [oe,/3,] and R I [OL, /32 ] IS R, [oe, oe+/3, +/32],we 
can drop thIs mv,al  case. In the following, we assume that % ' s  are different fiom 
each other 

L e m m a  2:  The convolunon of r distributions Ri lot1 , i l l ]  . . . . .  Rl [o6,/3r] can be 
evaluated recursively as 

t r  ( ) . 4 _  b) P,, = % - -  P, , - i ,  
j = I1  

(19) 

with 

(2O) 

) 

a , = ( - l y  +' ~ H oct,, ( j =  1, , r ) ,  
1 ~ / 1 < 1 2 <  < 6 - - < r  1=1 

r j - I  

(21) b , = ( - l Y  +' £ /3, £ H oq,, ( j = 2  . . . .  r ) ,  
~=1 I ~;/i < / z  < < 6  I ~ r l = l  

/ ,  ~ ~ 1: = I, . J  - [) 

r 

(22) b, = ~ g .  
3=1 

Proof :  See SUNDT (1992, p. 70-71) 

L e m m a  3 (Bender) :  Let g* h denote the convolution of counting dlstnbunons 
g(x) and h(x)  We have 

Pg* ', = max  {pg, Ph} 
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Proof: See BENDER (1974); WILLMOT (1989) 

Theorem 2 :  In evaluating the convoluuon of r d~strlbut~ons 

Ri [oq ,131], , Ri [o~, flrl, 

the recurslon (19) is stable m the forward dlrecUon if the % which has the largest 
absolute value m {oil, , ore} is posmve,  and is unstable m the forward direction if 
the % which has the largst absolute value m {oq, .  ,O~r} IS negaUve 

Proof: Here we assume that at least one % is non-negative and leave the discussion 
for the case where all the %'s  are negative to the next Secuon. 

By Lemma 3, the tall for the convolution of  R z [oq, fill and Ri [~2,132] has the 
same tall index as the one with a thicker tall Then the convolution of m 
d~stnbuuons 

RI [~] ,  131] . . . . .  RI [o~r, 13r1, 

has a tall index of max {oq . . . .  o~r} 
The charactensuc equation of  recurslon (19) is 

k 

(23) ~(Z)=Z ~ -  ~ ajz~-:=O. 
J = l  

From (20), we can factorize ~ ( z )  into. 

k 

(24) ~ ( z ) =  [ ' I  ( z - % ) = 0  
j = l  

Applying Perron's Theorem to the characteristic equahon (24), recurslon (19) has 
r basic soluuons with tall indexes 1o~. 1, , ]o~r [, respectwely 

If the %which has the largest absolute value m {o~, ., otr} is posmve, then 

m a x  In, ,  .,o rl =max If,r,  I . . . . .  IO rl I ,  

the convoluuon of  r distributions 

RI [oq ,131] . . . .  R~ [O~r,13rl, 

IS a dominant solution of (19) and the recurslve evaluation by (19) is stable. 
If the largest % which has the largest absolute value m {oq . . . . .  ce, } is negative, 

then 

max {a~ . . . . .  a~} < max {Ioq  [ . . . . .  I ,1 I, 
the convolutions of r distributions 

R I [oq, 1311 . . . .  RI [ ~ ,  13~], 

is a subordinate soluhon of (19) and the recurslve evaluation by (19) is unstable 
[]  
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C o r o l l a r y  1 : Let 09 and flj be given as in Lemma 2. 

1 The curslon (19) is stable In the forward directmn in evaluating any finite 
number of convoluuons of  Polsson and/or negauve binomial dlStrlbuuons. 

2. The recurslon (19) Is unstable in the forward direction in evaluating convolu- 
tions of Polsson and binomial distributions. 

3. For the convolution of a binomial R~(o~,133~) and a negative binomial 
Ri (ol2, f12), the recurslon (19) is 

• stable In the forward direction if ]~ I <  ~2, 
unstable in the forward direction ff oq > ot 2. 

If the recurslon (4) for the claun frequency is stable, then the recurslon (6) for the 
compound distrlbuuon is likely to be stable, since it involves terms of the same 
form. As a special case, recurslon (4) is stable in evaluating the Delaporte 
distribution which is a convolution of  a Polsson with a negative binomial It can 
also be viewed as a mixed Polsson with a shifted gamma mixing density (WILLMOT 

and SUNDT, 1989) The recurslon (6) is also stable in evaluating compound 
Delaporte distributions. 

6. CONVOLUTIONS OF BINOMIAL DISTRIBUTIONS 

Generally,  if the desired solution of  a recurslve evaluation has only finite support, in 
either direction, the desired solution grows up at the beginning points and darnps 
out at the end points Therefore, the recurslve evaluation is only stable at the 
beginning and become more and more unstable when they move to the other end 
Over any specified range, the more stable it is in forward direction, the more 
unstable it is in the backward direction, and vice versa. 

As a direct apphcauon,  for a probabili ty function {Po,P~ . . . . .  Ph} with fimte 
support (k < ~)  and P0 > 0, the recurslon (4) with aj and bj given in (5) is 
unstable. 

A binomial distribution with parameters (N, 0) is dehned as 

Ni 1 
p , -  0 " ( l - 0 ) u - " < 0 ,  n = 0 , 1 ,  . , N ,  

(N - n)! n I 

which has a fimte support and satisfies (2) with 

0 ( N +  1)0 
a -  b - - -  

I - 0  ' I - 0  

Left undiscussed m the proof of  Theorem 2 is the case where all the a j ' s  are 
negative, i.e., convolutions of r binomial distributions Since the convolution of  r 
binomial distributions with parameters (N,, 0,) (i = 1, . , r )  has only finite support, 
m either direction, the recursmn (19) is only stable at the beginning and become 
more and more unstable when they move to the other end. In this case, one utilize 
two directions to get a stable evaluauon. 
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To dlustrate thts, we consider the convoluuon of two bmomml d]stnbuuons with 
parameters (N I , 0j)  and (N 2, 02) where 01 ~ 02 From Lemma 1, the convolution 
gives a p.f. satisfying 

(25) p,,= al + P,,-J + 2 + P,,-2, 

with 

01 02 0102  
a j  - -  ~ a 2 = - -  

1 - O 1  1 - 0 z  (1 - 01)(1  - O z )  

(Nt + l)01 (N2+ I)02 (Ni+N2+2)O~02 
b I - + b2 = - 

1 - 0 1  1 - 0 2  ( 1 -  0 ~ ) ( 1 - 0 ~ )  

and initial values 

9 ( -  1 ) = 0 ,  9 ( 0 ) = ( 1  -Oz) u' (1 - 0 2 )  N2. 

One can easdy re-write (25) into a backward recurs,on with starting values 

g(Ni +N2)= 0~¢'0 u', 9(Ni +N~+ 1 ) = 0 .  

E x a m p l e  1:  Assume that 

01 = 3, 02 = 7, N I = ] 0 0 ,  N 2 = 200, 

and 10 digIts are used, then (25) is trustable m both directions As in the compound 
binomial case (PANJER and WANG, 1993, p. 249-52), negative values are observed 
during the evaluauon. However, both directions produce the same values m their 
first 8 digits over the middle range [165,199], which suggests that a combined 
range of  two d~rect~ons can given at least 8 significance d~g~ts over the whole 
range [0,300]. 

In Example l, one can also first calculate the discrete density of  each of  the two 
bmomml distributions and then convolute them It is numerically stable to do 
convoluttons 

"7 PREFERARI.E RECURSIVE SCHEMES 

A probablhty function can satisfy many different recurslons. In applications, among 
various recursive schemes, it would be good to know which one is preferable based 
on the to l lowmg criteria" 

(1) stability, 
(ll) sunphclty,  
and 
(lit) computing effort 
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The Generalized P61ya-Aeppli frequency models: Let the claim frequency be in 
R I [o~,fl] and the cla,m severity have a geometric &stnbution:  

(26) f ( x ) = p q  ' -~ ,  ( q=  I - p ,  x = 1 , 2 ,  ) 

then the total claml has a compound &stribution, wh,ch ,s called the Generahzed 
P61ya-Aepph d,stnbutlon (JOHNSON et a l ,  1992, p 329-330) 

MILtDIO (1985, p 10) generalized a result of  EVANS (1953) and gave a recursion 
for the Generahzed P61ya-Aeppli distribution: 

(27) 

w,th 

(28) 

and lnlnal values 

(29) 

{ al = 2 q + c ~ ( I  - q ) ,  

a2 = - q ( q  + o~(1 - q)), 

'), 

/,~ = - 2 q + , 8 ( I  - q ) ,  

b2 = 2 q ( q  + o~(I - q)), 

g(-I)=O. 

To evaluate the Generahzed P61y-Aepph dlstnbunon, recurs,on (27) is stable In 
the forward &rection if o~ > 0; m this case, (27) ,s preferable to Panjer's recurslon 
w,th a geometric seventy 

The recurs,on (27) can be verified being unstable for o~ < 0 ( le  blnomml 
frequency). It ~s interesting that, by a re-paramemzanon, a compound binomial 
geometric can be turned into a compound neganve binomial geometric (PANJER and 
WILLMOT, 1992, p 270), which can be evaluated stably by recurs,on (27) 

The compound Generahzed P61ya-Aepph distribunon can be evaluated using 
Sundt 's recurslon (6); on the other hand, one can evaluate the compound 
Generalized P61ya-Aepph distribution by a two-stage Panjer's recurs,on (3). Again, 
we would say that Sundt 's recurswe scheme (6) ts preferable. 

The Poisson Inverse Gaussian (P-IG) frequency models: WILLMOT (1987) fits 6 
sets of  claim frequency data and finds that the P-IG provides superior fit He also 
discussed the parameter esnmatlon m the model fitting 

Even though one can v,ew the P-IG as a compound Po,sson ETNB (Extended 
truncated negative bmomml, Wn.LMOT, 1988), the preferable method for generating 
the probabdlty funcnon of the P-IG ,s the recurs,on (I I). For the compound P-IG, 
as a member in the Slchel famdy, WILLMOT and PANJER (1987) derived recurslve 
formulas m terms of  auxdmry functions Based on our experience, the preferable 
method ,s a two-stage Panjer's recurslon (3) by v,ewmg the P-IG as a compound 
Po~sson ETNB, since the computation is both simple and stable. 
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C o m b i n i n g  i n s u r a n c e  p o r t f o l i o s :  A s s u m e  that  two i n d e p e n d e n t  insu rance  por t fol -  

tos have  the  s ame  s e v e n t y  d t s t n b u t t o n  and  have  c la im f r equency  d i s t r ibu t ions  m 

P a n j e r ' s  class.  W h e n  c o m b i n i n g  these  two por t fohos ,  the clam1 f r equency  d t s t n b u -  

t lon ts a c o n v o l u t i o n  o f  two m e m b e r s  m P a n j e r ' s  class,  and the total  c l a tm 

d l s t n b u t t o n  can  be eva lua ted  by recurs ton  (6). C o m p a r i n g  wi th  the app roach  of  first 

e v a l u a t i n g  each  por t fo l io  by us ing  P a n j e r ' s  r ecurs lon  and  then tak ing  convo lu t t ons ,  

S u n d t ' s  r ecurs lve  s c h e m e  (6) genera l ly  requt res  less c o m p u t m g  efforts .  

T h e  numer i ca l  s t abd l ty  o f  S u n d t ' s  c lass  (4) has  m a n y  in te res t ing  s t ructures .  In 

WANG and  PANJER (1993) ,  some  crt t tcal  po in ts  are ident i f ied  for  the recurs]on (9) ;  

on ly  s ta r tmg f rom these  cn t t c a l  pomts  one  can  get a s tab le  eva lua t ion  of  the Po~sson 
Pare to  p r o b a b t h t t e s ,  Also,  the  s t ab th ty  o f  the recurs ton  (10) for  the Po tsson-  

T r u n c a t e d - N o r m a l  p r o b a b t l m e s  d e p e n d s  d i rec t ly  on w h e t h e r  ~ > o z o r / t  < o 2. A 

c o m p l e t e  a ccoun t  for  the  numer i ca l  aspec ts  of  the  recurs lons  (7) and  (8) r ema ins  
open  for  fu r ther  s tudtes .  
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