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ABSTRACT 

An overview of the potential of Generalized Linear Models as a means of 
modelling the salient features of the claims process in the presence of rating factors 
is presented. Specific attention is focused on the rich variety of modelling 
distributions which can be implemented in this context. 
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1. INTRODUCTION 

The claims process in non-life insurance comprises two components, claim 
frequency and claim serverity, in which the product of the underlying expected 
claim rate and expected claim severity defines the pure or risk premium. 
Specifically, considerable attention is given to the probabalistic modelling of 
various aspects of a single batch of claims, often focusing on the aggregate claims 
accruing in a time period of fixed duration, typically one year, under a variety of 
assumptions imposed on the claim frequency and claim severity mechanisms. 

In this paper, attention is refocused on the considerable potential of generalized 
linear models (GLMs) as a comprehensive modelling tool for the study of the 
claims process in the presence of covariates. Section 2 contains a brief summary of 
the main features of GLMs which are of potential interest in modelling various 
aspects of the claims process. Particular attention is drawn to the rich variety of 
modelling distributions which are available and to the parameter estimation and 
model fitting techniques based on the concepts of quasi-likelihood and extended 
quasi-likelihood. Sections 3 and 4 focus respectively on the modelling of the claim 
frequency and claim severity components of the process in the presence of 
covariates. An overview of the potential of GLMs as a means of modelling these 
two aspects of the claims process is discussed. Relevant published applications are 
referenced, although an exhaustive search of the literature has not been conducted. 
A number of the suggested modelling techniques are illustrated in Section 5. 
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2. GLMs. QUASI-LIKELIHOOD. EXTENDED QUASI-LIKELIHOOD 

Focus intially on independent response variables {Yi: i=  1, 2 . . . . .  n} with either 
density or point mass function, as the case may be, of the type 

(2.1) f(yilOi,~,)=exp{yiO'-b(O') + c(yi,dp,)} 
a ((Pi) 

for specified functions a (.), b (.) and c (.), where 0i is the canonical parameter and 
~p~ the dispersion parameter. The cumulant function b(.) plays a central role in 
characterising many of the properties of the distribution. It gives rise to the 
cumulant generating function, K, of the random variable ~ ,  assuming it exits, 
according to the equation 

b {a (~bi) t + Oi} - b {Oi} 
(2.2) Ky, (t) = 

a 6Pi) 

Our immediate concern therefore is with distributions with at most two parame- 
ters. 

Let ,ui = E(Y/) throughout. Comparison of the density or point mass function of a 
standard distribution with expression (2.1) establishes membership or otherwise of 
this class of distributions. It also determines the specific nature of the canonical 
parameter 0~ and function a( .)  up to a constant, as well as the nature of the 
dispersion parameter ~b i and the other two functions b(.) and c(.). To uniquely 
determine 0~ and a (.) it is also necessary to compare the variance of the standard 
distributions with the general expression (2.6) or, more specifically, expression (2.8) 
for the variance of Y/. 

For inference, the log-likelhood is 

(2.3) 

The identity 

. . . .  IyiOi_b(Oi ) } 
l= i=~ l,= i=~ ( a - ( ~ )  + c(Yi'dP')" 

f0/.1 
(2.4) E.~--2-' } = 0  ~ E(Yi)=kt,=b'(O,) 

100iJ 

where dash denotes differentiation. Thus, provided the function b' (.) has an inverse, 
which is defined to be the case, the canonical parameter 0i = b'-J(/.ti), a known 
function of/.ti .  

The identity 

E~ '32/~l  + E l (0 /_  i )2  l = 0  = Var(Y~)=b"(Oi)a(dp~) 
L 00, J LL00d J 

the product of two functions. Noting that b"(.) is a function of the canonical 
parameter 0i and hence of kt;, the identity 

(2.5) b" (Oi) = V (,u,) 
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is established and hence the so-called variance function V(.) defined. Hence the 
variance or second cumulant is 

(2.6) Vat  (Y/) = K(2 i) = V (ffi) a (q~i) • 

The other function a (.) is commonly of the type 

¢, 
(2.7) a (qSi) - 

O)i 

with constant scale parameter ~b and prior weights w; so that 

V (~i )  
(2.8) Vat (Y~) = - -  

wi 

This is assumed to be the case throughout. We remark that by setting ~p = 1, 
l / w  i --d~i, the reciprocals of  the weights may also be re-interpreted as non-constant 
scale parameters q~i. 

We shall also have occasion to examine the degree of skewness in the Y/s. Here 
the identity 

EI03li~ + 3E{ 02/i Olil + EI(0// /3I=0 => E{(Yi-fli)3,=b"(Oi)a2(dpi) 
( - ~  J 00~ OO, J tkoo, J J 

so that, in terms of the variance function V(.), on using equation (2.5), the third 
cumulant of  Y, is 

dV K~ i)= V {a (q)i) } 2 
dm 

Hence the coefficient of skewness 

"(~) dV 
(2.9) "'3 _ V-|/2 {a(dpi)}l/2 

{K~i)} 3/2 dlx i 

The expressions for the second and third cumulants can also be derived from the 
cumulant generating function (2.2). 

Covariates may be either explanatory variables, or explanatory factors, or a 
mixture of  both. In all three cases, covariates enter through a linear predictor 

rh= ~ xofl j 
J 

with known covariate stricture (x,j) and unknown regression parameters flj and are 
linked to be mean, /xi, of  the modelling distribution through a monotonic, 
differentiable (link) function g with inverse g-~ ,  such that 

g ( u i )  = r L or ~ i  = g -  t (q i ) .  
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To fit such a model structure, maximum likelihood estimates for the f l js  are 
normally sought. These are obtained through the numerical solution of the 
equations 

" Y, - #i  O#i 
(2.10) ~ o 9 , - - - - - 0  V j  

,=~ C v ( m )  a,flj 

derived by setting the partial derivatives 

Ol Oli 01, Olz i 01, OOi OlZi 

of the log-likelihood with respect to the unknown parameters flj to zero. 
Equations (2.3), (2.4), (2.5) and (2.7) are needed in the evaluation of the first two 
partial derivative terms on the right hand side. These estimates are sufficient in the 
case of the canonical link function, defined by 9' = b'  - ~. 

To broaden the genesis of equations (2.10) by relaxing the constraints imposed 
by the full log-likelhood assumption (2.3) and its associated distribution assump- 
tion (2.1), define 

(2.11) q = q ( y ; / z ) =  ~ q,= wi ' Yi-___~s ds 
i=l i=1 C V ( s )  

to be the quasi-likelihood (strictly quasi-log-likelihood) function. Then by setting 
the partial derivatives of q (rather than l) with respect to flj to zero, equations (2. i0) 
are again reproduced. Equations (2.10) are called the Wedderburn quasi-likelihood 
estimating equations. The resulting quasi-likelihood parameter estimates have 
similar asymptotic properties to maximum likelihood parameters estimates and are 
identical to maximum likelihood parameter estimates for the class of distributions 
defined by equation (2.1). This latter class of distributions includes the binomial, 
Poisson, gamma and inverse Gaussian distributions, all of which are of potential 
interest in a claims context. The individual details are summarised in Table 2.1. The 
overriding feature of both the quasi-likelihood expression (2.11) and the Wedder- 
burn quasi-likelihood estimating equations (2.10) is that a knowledge of only the 
first and second moments is required of the modelling distribution of the ~s. 
Hence, by this means, it is possible to relax the full log-likelihood assumption (2.3) 
and extend the range of distributions which can be readily linked to covariates in 
practice with an attendant shift in emphasis from maximum likelihoo.d estmation to 
maximum quasi-likelihood estimation. This has important implications for the 
claims process which are discussed in context later. 

The goodness-of-fit of different hierarchical model predictor structures is moni- 
tored, in the first instance, by comparing the differences in model deviances. To do 
this, compare the current model structure, denoted by c, and whose fitted values are 
denoted by fli; with the full or saturated model structure, denoted by f, and which is 
characterised by the fitted values fii = Yi, the perfect fit. Let O~ and Oi denote the 
corresponding values of the canonical parameter, defined by Oi = b ' - I ( ,ug) ,  the 
inverse of b' .  Since we are concerned here exclusively with changes to the structure 
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T A B L E  2.1 

DETAILS OF SPECIFIC G L M  DISTRIBUTIONS 

P o i s s o n  b i n o m i a l  g a m m a  i n v e r s e  G a u s s i a n  

e - I']L~ in 
d.f./p.m.f. ( 3, ) i p (I - p ) "  -y 

y[ 

parameters  g > 0 pt: (0, I ) 

range y = 0 .  1 ,2  . . . .  y = 0 ,  1 .2  . . . . .  m 

canonic par. O=log(/,) 0 = l o g f - - f f - - )  

"1 - p ]  

scale par. q~ = I ~ = I 

weights  ~ = I to = I 

b(O) exp(O)  m log (I + e  °) 

. , , .o> -,ogl.,. ,og {C,)} 

ttle° 
I+ (07 exp (0) 

I + e  ° 

(,+) V(O) ,u 9 I - -  
I?1 

. . . . . .  " +-"'+I 
l+,v>O ,t+, z > 0 

y > 0  y > 0  

I 
0 = - / , - t  0 =  - - - I  ~ - 2  

2 

q~= t , - '  q ~ = r  

o o = l  r .o= l  

- l o g  ( - 0 )  - ( - 2 0) It2 

v l o g  (v) + ( v -  I) log ( ) ' )  I I 

2 . 

I 
_ _ ( _ 2 0 )  - t n  

0 

u"  ,u 3 

2i ts  ~z  31t5 ~2 

of the predictor, the scale parameter ~ remains the same throughout. Then 
define 

It 

(2.12) d*(z;  ~ ) = - 2 ( l ~ + ~ - / ( f ) ) = - 2  ~ __~°i{(yi0i-b(03)-(y~0i-b(03)},  
i = 1  q~ 

minus twice the log-likelihood ratio, of c relative to f, based on equations (2.3) and 
(2.5), to be the scaled deviance and 

(2.13) d( . / ;  E) = qd* (y_; E) 

to be the (unscaled) deviance of the current model c. Using the identity 

I : ' ' y ~ - s ( b ' ( ) )  I °' b,,.TX-~2s_, ds = (Yi - b' (t)) d, 
x Of 

it follows from equations (2.12), (2.13) and (2.5) that the expression for the 
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deviance can be written as 

" " f:" Yi - s 
(2.14) a ( z ; , u ) =  • di= ~_~ 2wi - - a s : - 2 ~ b q ( y ; ~ _ )  

i=~ i=% Ju, V (s ) 

where q(,y_;&) is the quasi-likelihood function. Hence in common with the 
construction of the quasi-likelihood and quasi-likelihood estimating equations, a 
knowledge of only the first and second moments is required of the modelling 
distribution of the Y~s to construct the model deviance. 

A trivial re-arrangement of equation (2.14) implies the the quasi-likelihood, q, 
satisfies 

tl  

- 2 q =  ~ d i  
- - ,  

i=1  

To accommodate inference on any parameters, such as ~b, which might be present 
in the variance of the response variables Yi, define the extended quasi-likelihood 
(strictly the extended-quasi-log-likelihood) q + where 

(2.15) - 2 q +  = ~., + ~ log{dpV(yi) } + log(2~/wi) . 
i=  i=  I i=  

Note that this expresssion is minus twice the log-likelihood for independent 
normally distributed responses Y/- N(,ui, a2), for which ~2= ~b, V(,ui)= 1; but is 
not an exact log-likelihood expression for any other case. The final term in the 
brackets is constant for a given data set, and may be omitted. 

Diagnostic checks, based on a thorough graphical analysis of residuals, are 
conducted before the final adoption of a specific model structure. Deviance 
residuals 

r i = sign (Yi-12i) " ~f~ 

where d~ is ith component of the deviance defined in equation (2.14), are advocated. 
A suitable estimate for the constant scale parameter ~b, if required, is provided by 
the moment estimator based on generalized Pearson residuals 

(2.16) q~ I i 
(y i - f i i )  2 

~ - -  O )  i - -  

v i= I V (/ai) 

where v denotes the number of degrees of freedom associated with the fit. 
Implementation is possible using the GLIM software package, BAKER & NELDER 

(1985) which is expressly designed to fit models of this type, while the reader is 
referred to the text by McCULLAGH & NELDER (1989) for further detail. 

3. C L A I M  F R E Q U E N C Y  

Claim fi'equency data are denoted throughout by (u, n,,, eu), comprising the 
observed number of claims, n,,, accruing from exposures, e,,, defined for a set of 
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units {u}. Typically the units are of the type u ~ (i~, i2, i3 . . . .  ), a cross-classified 
grid of cells defined for preselected levels of appropriate covariates, often rating 
factors. A number of different possible modelling scenarios can be implemented. 

Focus first on targetting the underlying or expected claim rates, denoted by 2 . ,  
based on the Poisson modelling assumption N,, l All- Poi (eu~.). with independence 
over all cells or units u, and where n u denotes the realisation of the random variable 
N,,. Here it is assumed that the claim rates, 2 . ,  are constant within cells. In the 
notation of Section 2, the responses Ys ~ N,, with 

mean/2,, = E ( N . )  = el,;~l,, variance function V(/2u) =/2. ,  scale parameter ~ = I 

and log-likelihood 

n 

(3.1) l = ~ { - /2 .  + n,, log (/2.)] + constant. 
u =  I 

Two link functions are of particular interest in this context, namely the log-link 
and the parameterised power-link. 

To implement the canonical log-link, for which 

r/l , = log (/2,,) = log (el,) + log (21,) = log (e.) + ~ xl , j f l  j 
Y 

the vector of log (eu) terms is declared as an offset. Such terms from part of the 
linear predictor and are characterised by a known regression coefficient with value 
one. Thus the target, 2 . ,  is linked to covariates through the relationship 

giving rise, possibly, to a multiplicative model structure for rating factors. 
A number of applications appear in the literature. Thus MCCULLAGH & NELDER 

(1983 & 1989), using data provided by the Lloyd's Register of Shipping concerning 
damage incidents caused to the forward section of cargo-carrying vessels, model the 
reported number of damage incidents classified by the three factors- ship type, year 
of construction, pe.riod of operation. To allow for possible inter-ship variability in 
accident proneness, over-~dispersion is introduced into the model through the 
retention of the scale parameter which is then estimated as described in Section 2, 
rather than setting its value to one. This modelling refinement has an impact on the 
standard errors of the parameter estimates but not on the parameter estimates 
themselves (the solutions to equations (2.10)). AnDRADE E SILVO (1989), BROCK- 
MAN & WRIGHT (1992) and BOSKOV (1992) have each applied this same model to 
motor claims data using a variety of potential rating factors in the predictor. 
CENTENO & ANDRADE E SILVO (1991) discuss the case when there are certain fixed 
linear relationships between covariates in the predictor. STROINSKI & CURRI (1989) 
discuss the selection of rating factors in automobile claim frequency modelling. 
RENSHAW & HABERMAN (1992) have modelled both sickness inception and sickness 
recovery rates as well as death rates from sickness with the predictor reflecting both 
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age at sickness inception and, where applicable, sickness duration. A feature of 
some of this work involves the use of break-point predictor terms in which the 
positions of the knots or hinges are determined by deviance profiles, constructred 
by scanning the positional choices of the knots. RENSHAW (1991) has also 
demonstrated the potential for this model in the graduation of the force of mortality 
in the construction of life tables. 

To implement the parameterised power-link function in this context, the 
alternative form of the log-likelihood expression: 

f } ~ T//u 
1= e. - 2 .  + - - l o g 0 . . )  + constant; 

. = I e u  

obtained by substituting ,u. = e.2,, into expression (3.1), is exploited. This implies 
the declaration of y. = n./e.  as Poisson responses with prior weights e.,  while the 
predictor link is denoted 

with link parameter ~'. The case y = I corresponds to the identity-link, while the 
case y = 0 corresponds to the log-link. The optimum value of y for a specific 
predictor structure is determined by constructing the deviance profile over the 
viable, range of values of y. Examples of this are to be found in RENSHAW & 
HABERMAN (1992) and in RENSHAW (1990). 

The Poisson model (with ~--  I) assumes that the claim rate, 2,,, is constant 
within cells. Heterogeneity across risks as opposed to time heterogeneity discussed 
by BERG & HABERMAN (1992) is historically introduced into the claim frequency 
process by modelling 2,, as a random variable. Focus on the weighted Poisson 
responses Y. (= N,,/e.) with Y.-  Poi (2,,) so that 

(3.2) E(Y.) = E{E(Y.  12.)1 = E(2,,). 

Vat (Y,,) = E{Var (Y,, 12.)} + Var {E(Y,, 12.)} 

and hence 

(3.3) Var (~,) = E(2,,) + Var (2,,). 

Note that when 2.  is constant. E ( 2 , , ) = 2 . ,  V a r ( 2 . ) = 0  and the within cell 
homogeneous Poisson model is reproduced. For the heterogeneous case, 
Var(Y,,) > E(Y,,). that is. the model is over dispersed. There are a number of 
feasible practical possibilities available: 

1) Allow for heterogeneity through the introduction of a constant scale parameter 
~0 as described in some of the applications identified above. 

2) Allow for heterogeneity through the introduction of non-constant scale parame- 
ters ~,, and generate their values through the introduction of a second stage 
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GLM chosen to model identifiable patterns of heterogeneity across cells; a 
technique known as joint modelling. An example, applied to life insurance, is to 
be found in RENSHAW (1992). 

3) Allow for heterogeneity by nominating a specific distribution for the claim rate 
~u. Thus commonly in the claims context, 2,, is given a gamma distribution 
with mean E(,,I,) and variance 

1 1 
(3.4) Var(~, , )=--  {E(2, )}2=--  {E(Y,,)} 2 v > 0 ,  

V 

on using equation (3.2). Then, it is well known that Y, has the negative binomial 
distribution, for which the 

1 2 
mean B, = E(Y,), variance function V(,u,,) =/.,t,, + - - u , ,  scale parameter q~ = 1 

v 

on substituting expression (3.4) into equation (3.3). Note that as v ~ 0% then for 
finite u,,, the distribution reverts to the Poisson distribution. Another possibility, 
BESSON & PARTRAT (1992), TREMBLAY (1992), is to assign an inverse Gaussian 
distribution with mean E(2,,) and scale parameter 7. It then follows from the 
relevant column of Table 2.1 that 

Var(~.u)=rlE(~,)}3=r{E(Y,)} 3 7 > 0  

so that Y, now has the Poisson-inverse Gaussian distribution with 

mean iz,, = E(Y,), variance function V(,u,,) =u,, + r u,3,, scale parameter ~ = 1. 

This reverts to the Poisson distribution as r ~ 0. Neither of these cases are 
members of the class of distributions defined by expression (2.1) so that their 
implementation lead to quasi-likelihood estimators for the fljs in the predictor. If 
these models are to be implemented, explicity expressions are needed for the 
deviance components defined in equation (2.14). These are 

2~o~ {y. log Y~-~ ] + ,  (Y"+v) l°gl~"~+vllky. + v jj 

for the negative binomial distribution, and 

2 w. y,, + + \l~u? 2 ~1 +Ty,~ @ s i n  

for the Poisson-inverse Gaussian distribution. 

- I ~  '~ ([Z,, - Yu )2 } 

1 + (ry,,,u,,) 2 + r(y~ +/.t~) 

Implementation also requires a 
knowledge of the variance function parameters v and 7. This is discussed in 
Section 5. 

Focus secondly on targetting the probability of a claim (or at least one claim), 
denoted by p , ,  based on the binomial modelling assumption N,, Ip,,- bin (e,,p,,), 
with independence over all cells or units u, where again nu denotes a realisation of 
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the random variable N,,. In the notation of Section 2, the responses Y/-= N, with 

mean lz , ,=E(N,,)=e~p~, variance function V ( p . ) = p , , ( I -  P")'e,,) scale parameter 

= 1 and log-likelihood 

l = ~ n. log 
, = I \ e .  j 

The canonical log-odds or logit link 

\e,, - / t , ,  J 

with linear predictor 

+ ( e , - n , , ) l o g ( e " - I k t " l t  + constant. 
\ e,, )) 

\1 - p , , j  

e qu 

1 + e 'l" 

q,,= ~ x,,jfli 
J 

is likely to be of interest in a non-life claim frequency context, while its application 
in this context would appear to be somewhat limited. An application of its use in 
targetting the probability of at least one claim in the context of (Belgium) car 
insurance claims is given by BEIRLANT et al. (1991). A number of researchers, 
including COUTTS (1984), have used this predictor-link structure to target claim 
proportions, over a network of cells but with estimation by weighted least squares. 
The binomial modelling distribution assumption, used in conjunction with the logit 

' and other link functions, has wide application in the construction of life tables, 
RENS~AW (1991). 

4. CLAIM SEVERITY 

Claim severity or loss distributions, defined on the positive real line, are invariably 
positively skewed. There is an extensive literature, see for example, HOGG and 
KLUGMAN (1984), documenting the modelling of homogeneous batches of empirical 
claim amounts by specific parameterised distributions. These include the gamma, 
Pareto, log-normal, log-gamma and Weibull distributions only the first of which is 
of the type defined by expression (2.1). HABERMAN & RENSHAW (1989) have 
indicated how certain loss distributions, not of the type defined by expression (2. l), 
may be fitted in the absence of covariates by the adaption of the associated 
likelihood function in a special way. Here we address the question: which loss 
distributions are capable of sustaining covariates? 

Mean claim amounts are denoted throughout by x,,, categorised over a set of 
units {u}. Thus data summaries take the form (u, n,,, xu) where x~ denotes the claim 
average in cell u based on n~ claims. The independence of the number n,, and the 
claim average x,, within each unit u is assumed. Again typically the units 
u -= (i~, i 2, i 3 . . . .  ), a cross-classified grid of cells defined for preselected levels of 
appropriate covariates, often rating factors. Denoting the underlying expected claim 



MODELLING THE CLAIMS PROCESS IN THE PRESENCE OF COVARIATES 275 

severity in cell u by ,u~ and assuming the independence of individual claim 
amounts, the ceils means X,, are modelled as the responses of  a GLM with 
E(X,,) =H,, and Var (X, )=  q)V~, , ) /n  u. Covariates defined on {u} enter through a 
linear predictor, linked to the mean ,u,. 

Focus first on the gamma distribution. Precedence for its use in this context is to 
be found in McCULLAGH and NELDER (1983 & 1989) in which a re-analysis of the 
celebrated car insurance data of  BAXTER, COUTTS and Ross (1979) is presented. 
The data comprise (u, n , , , x , )  the number n, and average cost of  claims x,,, 
cross-classified by policy holder 's  age, car group and vehicle age. Modelling is 
based on independent gamma distributed individual claim amounts, for which the 

• mean responses, Xu, satisfy 

mean ,u, = E(X,,), variance function V ( u , )  =,u~, scale parameter ~ = v - t  > 0 

with weights n,, so that Var (X,,)= q)kt,2,1nu. In the analysis, a linear predictor r/ , ,  
composed of  the additive main effects of  the three factors only, is linked to H,, 
through the canonical reciprocal link function. Factor interaction terms are found 
not to be significant. Use of the reciprocal-link function, a member  of  the 
parameterised family of power link function 

(4.1) /x~ = r/u 

with y = - 1 ,  is justified on the basis of  the deviance profile constructed by 
allowing for incremental changes in y. The model proposed by MACK (1991) for 
rating automobile insurance makes identical distributional assumptions to these 
(formulated in terms of cell sums rather than in terms of cell averages) but restricts 
the modelling to the log-link, the limiting form of the power link as y tends to zero 
in order to focus on a multiplicative structure. The detail is presented in terms of 
two rating factors so that u-= ( i , j )  with model structure 

log ( ~ i j )  = Oli -t- f l j  ; 

while the maximum likelihood parameter estimating equations discussed by MACK 
(1991) are special cases of  equations (2.10). Implementation is readily achieved 
using the GLIM software package. MACK (1991) also goes on to apply the same 
model structure in the claims reserving context. BROCKMAN & WRIGHT (1992) use 
the identical model structure to MACK (1991) in their analysis of  the severity of  
motor claims data. 

Focus next on the Pareto distribution with density 

f ( x  I/3, 2) - flZ'8 , x > 0 
(2 + x )  t~÷ ' 

and parameters/3,  2 > O. It follows that 

2 ,822 
E ( X )  - , Var (X) - 

/ 3 -  1 ( / 3 -  1 ) 2 ( / 3 - 2 )  
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provided fl > 2. Introducing the reparameterisation 

3. ,8 
u = - - ,  ~ b = - - ;  

/3-1 /3-2 

a 1:1  mapping (/3, 3 . ) ~ ( , u , ~ )  with domain R>2 ×R>0 and image set 
R> 0 x R>~, implies that we can construct a GLM based on independent Pareto 
distributed claim amounts for which the mean responses, X., satisfy 

mean u,, = E(X.), variance function V( ,u . )=u~,  scale parameter ~ > 1 

and weights n. so that again V a r ( X . ) = q ~ / n . .  Apart from the mild extra 
constraint on the scale parameter, these details are identical to those of the GLM 
based on independent gamma responses, and the two different modelling assump- 
tions lead to essentially identical GLMs. They differ only in respect of the nature of 
the parameter estimation criterion, maximum likelihood in the case of the gamma 
response model and maximum quasi-likelihood in the case of the Pareto response 
model. 

Focus next on the generalization of these distributional assumptions through the 
introduction of the parameterised power variance function 

(4.2) V(,u) = V(u,  ¢)=,u ¢ . 

The gamma and Pareto distributions are essentially identical special cases with 
= 2. The characteristics of this family of distributions are discussed in detail by, 

for example, JORGENSEN (1987). Simplifying the notation slightly by writing 
equation (2.4) as 

,u = ~ (0) = b '  (0) with inverse 0 = ,u - i (~),  

it follows that the cumulant function b(.), corresponding to a specific variance 
function V(.), is determined by solving the equations 

db d I 
- / ~  ( 0 ) ,  - -  ~ - ~ ( ~ )  = 

dO d~ v (~) 

First, the solution of the second of these equations determines u-~( . ) .  This is 
then inverted to provide the expression for the right hand side of the first equation, 
which is then solved in turn for b (.). For the power variance function defined by 
equation (4.2), the special solution of these equation obtained by setting the 
arbitrary constant of integration to zero is given by 

exp (0) ~ = 1 

(4.3) b(O)= - -  ~ ~ 1 ,  2 
O~ 

- l o g  ( -  O) ~ = 2 

where 

(4.4) 
~ - 2  
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Equation (4.3) characterises the properties of the distribution in question, while 
equation (4.4) is reproduced graphically in Figure 4.1. 

For ~ > 2 (0 < oe < I), b(O) is the cumulant function of an extreme stable 
distribution with index o~, see EATON, MORmS and RUBIN (1971). The cumulant 
generating function and hence moment generating function is obtained by substitut- 
ing expression (4.3) into equation (2.2). It generates GLMs with parameterised 
power variance function, equation (4.2) with ~ > 2; has positive support, and is 
positive skewed. Equations (4.2), (2.7) and (2.9) determine the coefficient of 
skewness 

~tt~ ~ > 2. 

The family of distributions has therefore all the major characteristics of a loss 
distribution. It includes the inverse Gaussian distribution (~ = 3) and has the gamma 
distribution (~ = 2) as a limiting case. It represents a generalisation of these two 
cases. COUTTS (1984) suggests the potential of the two specific cases in the claim 
severity modelling context. For a given predictor-link structure, the optimum value 
for ~-> 2 is determined by scanning (minus twice) the extended-quasi-likelihood 
profile, expression (2.15) namely 

rl n 

_ 2 q +  = ~ d. - - +  ~ log{4~V(y.)} 
u = l  ~p u = l  
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for incremental changes in ~. To compute these values, ~p is estimated by 
expression (2.16) and (4.2), while evaluation of the integral in expression (2.14) for 
the power variance function given by equation (4.2), yields the deviance compo- 
nents 

f 1 ) I-¢) + _ _ ( / . z 2 - ~  x2-~) ~ ¢ 1 , 2 .  d , =  2~, ,  x,, (u~ - ~ - x .  
i - ¢  2 - ~  

Implementation is possible using the GLIM software package. McCULLAGH and 
NELDER (1989) illustrate the extended-quasi-likelihood profile for the BAXTER et al. 
(I 980) car insurance data set, which is optimal in the vicinity of  ~ = 2.4. They also 
demonstrate for these data how contour plots of  the extended-quasi-likelihood 
determine the joint opt imum position for the parameters (~, ~) when the parameter- 
ised power link function (4.1) is used in combination with the parameterised power 
variance function (4.2). 

So far we have dealt with the cases ~ --> 2. The case 2 > ~ > 1 (o~ < 0) is also of  
considerable interest but in the slightly different context of  aggregate claims. It is 
discuss by RENSHAW (1993). Of  the remaining cases, ~ = 1 reproduces the Poisson 
modelling distribution, 1 > ~ > 0 (or > 2) does not generale GLMs with distribu- 
tions of the type defined by equation (2.1), ~ = 0 generates the normal model, while 
finally 0 > ~ (1 < ~ < 2) generates extreme stable distributions with support on the 
whole of  the real line which, for this and other reasons, are of  no practical 
consequence here. 

Other claim severity modelling distributions capable of  supporting covariates are 
the log-normal and the log-gamma distributions. 

5. AN APPLICATION 

The motor insurance claims experience for a recent calendar year, made available 
by. a leading U.K. insurance company,  is available for analysis. By way of 
illustration, the data have been edited to read as follows: 

(t,  u,  e (t), _(t) ~(t),~ rt u , A u  ) 

where 

t- claim type (I-  insured vehicle, 2- third party property, 3- third party injury, 4- others) 

u -= (i,j ,  k, l, m) - units or cells based on 5 cross-classified rating factors 

pa : i = 1, 2, 3, 4, 5 - polyholders age (levels arranged in increasing age bands) 

vt : j  = I, 2, 3, 4, 5 - vehicle type (levels arranged in perceived order of increasing risk) 

va : k = 1, 2, 3, 4, - vehicle age (levels arranged in increasing age bands) 

rd : l = 1, 2, 3, 4, 5 - rating district (levels arranged in perceived order of increasing risk) 

cd : m = 1,2, 3, 4, - no claims discount (4 levels, arranged in order of  increasing 
discount) 
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e ( t )  exposures / /  - -  

n~, '~- number of claims 

x~ '~- mean claim severity. 

The independence of the number and the claim average within each cell for each 
claim type is assumed. The banding of the rating factors is deliberately left ill 
defined, and only selective features of the ensuing analysis presented by way of 
illustration. Other groupings of the rating factors are possible. 
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gamma claim severity models. 
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Classification by specific rating factor. 
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The modelling of the claim frequency and claim severity patterns across units u, 
for different claim types, provides estimates ~.I~ ) and fi~,') of the expected claim rates 
and expected claim severities respectively. The contribution, rp~ r), to the risk 
premium for claim type t is then the product ~.l~)fl~, ') and the risk premium, rio,,, 
determined by summation over all risk types t. Thus we have the sequences of 
mappings : 

(t, u, e~ t), ..(t) ~(t).~ .,, ,a,, ) ~ (t, u, 2~'),fi}:)) ~ (t, u, rp~, ')) ~ (u, rp,,) 

where 

r" ( t ) _  ] ( t ) .^ ( t )  and rp .  = Z __(t) iJ, - A u I~u tl:u . 
I 

We focus attention on the first mapping which represents the modelling stage and 
illustrate the application of various of the suggested modelling assumptions for 
damage to insured vehicle claim types (t = I). 

Consider first the Poisson claim frequency and gamma claim severity models, 
each with log-link functions and predictor structures composed of main effects and 
paired interaction terms. The improvements in the quality of the fits, monitored by 
the changes in deviance, as first main effects and then interaction effects are added 
to the predictor structures are examined. One such sequence of fits is reproduced in 
Table 5.1. An examination of such tables coupled with an examination of the 
resulting parameter estimates and their standard errors for each fitted model 
prompted the adoption of the predictor structure (expressed in GLIM notation 

pa  * (vt  + rd + c d )  + va 

comprising all five main effects and three second order interactions, all involving 
policyholders age pa ,  for the claim frequency model structure; and 

pa  * vt + va + rd  + cd  

comprising all five main effects and just one second order interaction term for the 
claim severity model structure. The various deviance residual plots are also highly 
supportive of the two fits. By way of illustration, only the deviance residual 
histograms are reproduced in Figure 5.1. The impact of the single interaction term 
on the claim severity model structure with parametric representation 

pa  * vt + va + rd  + cd: rlijkt,,, = kt + e~ i + f l j  + (olfl) 0 + y~ + 6t  + e,,, 

is illustrated in Figure 5.2 in which the estimated values of/~ + ~i +/3j + (~/3),~ are 
plotted against each level i of p a  for each level j of vt. Without the interaction terms 
(o~fl),j a series of parallel ' l ines '  would result as the structure is then additive in 
these factors on the log scale. For this model the expected claim severities are 
determined by /~;kt,,=exp (r/i,u,,). It can be informative to plot the resulting 

J J ^  

estimated claim frequencies 2~ j) against their corresponding estimated claim 
severities rift). One such scatter plot is illustrated in Figure 5.3. In addition the 
contours displayed represent those of constant risk premium levels, ~.~) f l~l )= con- 
stant. Here also the impact of the different levels of a rating factor are highlighted 
by the use of a different symbol to represent each level of this factor. The clustering 
of the different symbols is informative. 
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TABLE 5.1 

EXAMINATIO N  OF MAIN EFFECTS AND TWO FACTOR INTERACTIONS ON THE DEVIANCES 

claim frequency claim severity 

dev. diff. dev. diff. d.f. 

I 15371 12111 
3295 5268 4 

+ ut 12076 6842.5 
4359 253.2 4 

+ p a  7716.8 6589.3 
327.3 773.2 3 

+ ua 7389.5 5816.1 
2039 192.8 4 

+ r d  5350.3 5623.3 
2172 572.3 3 

+ c d  3178. I 5050.9 
95.57 355.7 16 

+ v t .  p a  3082.5 4695.2 
26.67 19.3 12 

+ vt • va 3055.8 4675.9 
17.85 35.8 16 

+ v t .  r d  3038.0 4640. I 
70.88 4 | .3 12 

+ v t .  c d  2967. I 4598.8 
91.83 31.5 12 

+ p a .  va 2875.3 4567.3 
69.45 70.15 16 

+ p a .  r d  2805.8 4497. | 
457.4 35. I 12 

+ p a  • c d  2348.4 4462.0 
24.79 18.6 12 

+ ua • r d  2323.6 4443.4 
28.16 22.6 9 

+ va • c d  2295.4 4420.8 
42.63 29.9 12 

+ r d .  c d  2252.8 4390.9 

Reverting next to the power-link in combination with the same predictor 
structures as above, the resulting deviance profiles, constructed over a range of  
values of  the power index, are reproduced in Figure 5.4. For the Poisson claim 
frequency model, the optimum power is at y = - 0 . 1 7 ,  which is sufficiently close to 
zero to lend support to the log-link. Indeed if the one remaining paired interaction 
term involving the rating factor pa (and va) is added to the predictor structure, then 
the optimum value of the power is essentially at zero. For the gamma claim severity 
model the optimum value of  the power in the link is at y = - 0 . 3 1 ,  somewhat 
intermediate between the canonical reciprocal-link and the log-link. If the one 
interaction term is omitted from the model structure, the optimum power value 
shifts much closer to be reciprocal-link, a similar conclusion to that reported in 
MCCULLAGH and NELDER (1989) in their reanalysis of  the BAXTER et al. (1979) 
data set involving a main effects structure. 
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FIGURE 5.4. Deviance profiles, power links. Poisson claim frequency (top), 
gamma claim severity models. 

For the claim severity model with power variance function and exponent ~ >- 2, 
in combination with the log-link and the above predictor structure, the deviance 
profile over ~ --> 2 has a similar U-shape to Figure 5.4 with a minimum at ~ = 2.63. 
Thus the optimum positions of both the exponents in the power link and in the 
power variance function have so-far been chosen separately by allowing for 
variation in just one of the exponents while keeping the other exponent fixed. The 
joint optimum positions of the two exponents (Y, ~) when the power link function 
(4.1) is used in combination with the power variance function (4.2) is determined by 
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FIGURE 5.5. Extended quasi deviance profile, power link and variance function. 
Link exponent y, variance function exponent ~. 

scanning the extended quasi-deviance profile defined by equation (2.15), part of 
which is reproduced in Figure 5.5 showing an optimnum at ( -  0.75, 2.54). 

We revert finally to the introduction of heterogeneity into the claim frequency 
model through the use of either the Poisson-gamma or Poisson-inverse Gaussian 
distributions as described in Section 3. Each of the choices involves an unknown 
parameter, denoted respectively by v or ~:, in the corresponding variance function. 
One possible strategy for setting the value of the unknown parameter might be to 
optimise the extended quasi-likelihood but further work is needed in this respect. 

6. SUMMARY 

Discussion has focused on providing an overview of the variety of response 
variables available for modelling both the claim frequency and claim severity 
components of the claims process in general insurance in the presence of rating 
factors. Working within the rich class of GLMs it is necessary to specify only the 
first two moments of the associated response variables rather than the full likelihood 
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in order to effect implementation. By this means, it is indicated how suitably 
selected parameterised variance functions can be used to model heterogeniety in the 
claim frequency process and to provide a parameterised family of claim response 
variables which include the ganm~a response variable as a limiting case. Additional 
modelling flexibility is achieved through the introduction of the parameterised 
power link function which includes the log-link as a special case. The salient 
characteristics in the implementation of these features are illustrated. 
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