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ABSTRACT 

The recursive algorithm of HESSELAGER (1994) is extended to a more general class 
of counting distributions, which includes SUNDT'S (1992) class as well as all the 
mixed Poisson distributions discussed by WILLMOT (1993). 
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I. INTRODUCTION 

In the collective risk model, compound distributions are used extensively in 
modeling the total claim for an insurance portfolio: 

N 

(l) s =  ~ xi ,  
i=1  

where the claim sizes Xt's are independent and identically distributed and 
independent of the claim frequency N. 

If the claim frequency N has a probability function (p.f.) {Po,Pl . . . .  }, and the 
claims sizes {X t , X 2 . . . .  } have a common p.f. : 

f , . = P r { X = x } ,  x = 0 , 1  . . . . .  

then the total claim S has a compound distribution with a p.f. 
c c  

(2) g.~= Y~ ~*" P,,L~ • 
n = 0  

Since PANJER (1981), many resursive algorithms have been derived for a broad 
class of claim frequency distribtions (see WmLMOT and PANJER, 1987; SUNDT, 
1992; WmLMOT, 1993; and others). 
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HESSELAGER (1994) recently considered a class of  claim frequency distributions 
satisfying : 

(3) P . -  P , , - i ,  n = 1, 2 . . . .  
Z~ = 0 b i  n i 

for some positive integer k, and derived recursions for the related compound 
distributions. For some counting distributions such as Generalized Waring, Hyper- 
geometric and Polya-Eggenberger, Hesselager 's  method is more efficient than the 
ones provided by WmLMOT and PANJER (1987). However, Hesselager 's  class (3) 
does not include many other counting distributions such as Sichel, Poisson-Beta, 
Poisson Generalized Pareto, Poisson Inverse Gamma,  Poisson Transformed Gamma 
and Poisson Transformed Beta (see WILt.MOT, 1993). 

In this paper, we extend Hesselager 's  recursive scheme to a broader family of  
counting distributions, which includes al the counting distributions which satisfy a 
finite order homogeneous recursion with polynomial coefficients. All the mixed 
Poisson distributions in WILLMOT (1993) are of  this type (where the non- 
homogeneous terms can be eliminated). 

2 .  R E C U R S I O N S  F O R  T H E  E X T E N D E D  C L A S S  O F  C O U N T I N G  D I S T R I B U T I O N S  

Assume that the claim frequency N has a p.f. {Po, Pl . . . .  } satisfying: 

( 4 )  bin p,,= aj, i ( n - j ) '  p, ,_j ,  n = c , c +  1 . . . .  
i = 0  j =  i = 0  

where c is a positive integer and p,, = 0 for n < 0. 
HESSELAGER (1994) introduced the following auxiliary functions 

( 5 )  gi, .,- = ~ n i P , , f ,  .* ' ,  x = O, 1 . . . .  ; ( i  = O, I . . . .  ) 
I1 = 0  

(with 0 ° =  I) and defined the vector 

g.," = (go . . . . . . . . .  gk, .0 ' .  

Note that go,, is the p.f. for the total claim distribution of S in.(2). 
Before we generalize Hesselager's result, we first introduce another auxil iary 

function : 

c - I  k s c - I  k 

i r ~n . f  ~n (6) o(x)= Z Z bi, - Z Z Z a,.,(,,-j)"p,,_, . . . .  
n =  I i = 0  j =  I n = j  i = 0  

where c- i .Z .=j  is zero i f j  > c -  1. By letting a0. i=  -b~  the expression for .Q(x) may 
be written as 

s c -  I k 

2 Z ,,.,(,,-J)'p,,-,f,*°. 
j = 0  n = J  i = 0  
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Note that'_Q(x) does not depend upon the values of  ~'.,.. In the special case of  
k = s = c = 2 ,  we have 

2 

(7) -Q(x)=Ptf,. ~ bi-Pof,.al.o. 
i=0  

As in HESSELAGER (1994), let m be the smallest integer for which f,,, > 0. 

Theorem 1. For the claim frequencies in (4), the compound distribution 9x = 9o..~ 
can be evaluated by the following recursive method: 

(8) ~.,. = L -  '7~, x _> m V 1, 

where 

(9) ( 1 - mix 0 ... 

L 
0 I - mLr ... 

' 5 =  

(bo-l~=,aj.ofd) (b,-.Zj:=,aj. lfd) . . . . . .  

and 7., = (to . . . . . . . .  ttk..O' is given by 

,x { } ~1 m + y y - x ( 1 0 )  t , . x = - -  f , . + y  g ~ + ,  . . . .  ., + - -  g~ . . . . .  :, , 

f m  ~ X X , =  

x k s 

(11) tk.x= E E E aj. ify *jgi.. ,--x+Q(x), 
3 , = 1  i = 0  j = l  

with starting values 

gi. o = Z,, = o n p,  fo ,  i = 0  . . . . .  k; 

g,..,. = O, 

0 
0 

(bk - Yj =, a~, ~-fd) 

i < k ;  

i = 0  . . . . .  k; x = l  . . . . .  m - 1 .  

P roo f :  Let F(z)= Z.~'=0fiz ~ be the probability generating function for the claim 
size distribution. 

d 
From the identity - -  [F(z)"]  = nF(z)"-i  F' (z), we have 

dz 

(12) [ 1 O= ~ o  (n+ l ) -Y  - I A . f ~ . .  
. = X 

Multiplying (12) by p,,n' and summing over n -> 0 yields 

(13) 
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By omit t ing the zero terms corresponding to y = 0 . . . . .  m -  I and taking out the 
terms involv ing  ~., ,  we get for i < k, 

m 
(14) gi..,- - - -  g~+ ~..~ = t~ ..... 

x 

where t ..... is g iven in (10). 
Note that f,.*" - Y" ¢ , : c , u , - J )  f o r j = l ,  , s .  • - -  y = 0 J y  J a - ~  . . . .  
Mult ip ly ing  the left-hand side of  (4) by f,*", mul t ip ly ing  the j - th  term of  the 

: * J r  *{"-J) and sum m ing  over  n > c, we obtain the r ight-hand side of  (4) by Z~. = 0J:. s.,--.~, , 
relation (for x -> I) : 

k ' k "  r i r ~ t l  
b , g , . x  - o i n  p , : . , .  : 2 ~ a, ,f,,*'J g, .... y 

i = 0  n = l  t=0  y=0  i = 0  j = l  

S C~I k 
Y+ 2 aj ,(,, "' r ,  , -- - J )  P n - j J x  ' 

j =  I n = j  i = 0  

By collect ing the leading terms involv ing  g ...... we get 

(15) b , -  aj. ifl; gi..,. 
i = 0  j =  

' k k = Z aj.i~,*J g i . x - , , + O ( x ) ,  x - -  > 1, 
y = l  i = 0  j = l  

where .Q(x) is as defined in (6). 
From equat ions  (14) and (15), we obta in  the l inear equat ions  (8). 

R e m a r k  1 : 
recursions : 

[ ]  

As a special case, for m = 0 (i.e. f0 > 0), we have the fol lowing 

v y-+ } 
(16) gi . . ,  : T -  ~ fy  g t + l  x - v  -I- - -  g i . . , - . , ,  , i < k; 

.to .,= I X 

I 
(17) gk..,. = x 

a "J gi..~ + S2 (x) aj ,  i,1~, * j  gi ,  r - y + j. iJO T b i  " 
:.:1 i=0 j=~  i=0 j=~ 

R e m a r k  2 :  HESSLAGER'S (1994) recursive formula can be recovered from (8) as 
a part icular case of s = c = I. 

3. EXAMPLES OF MIXED POISSON DISTRIBUTIONS 

Mixed Poisson distr ibut ions are natural candidates  for model ing  the claim frequency 
for heterogenous risk portfolios. WILLMOT (1993) considered various mixed Poisson 
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distributions and derived recursions for their probabili ty functions. Some of  the 
mixed Poisson distributions belong to the Pearson system (see ORD, 1972, p. 8) and 
WH.LMOT (1993) derived recursions for their compound distributions. However,  
many mixed Poisson distributions, which are not in the Pearson system, belong to 
the generalized class (4). So our generalized recursive procedure can be used in the 
calculation 'of the compound distributions for these mixed Poisson frequencies. 

E x a m p l e  1 : The Sichel distribution is obtained by mixing the Poisson mean over 
the General ized Inverse Gaussian. WmLMOT (1993) derives a recursion for this 
mixed Poisson p.f. (for n = 2, 3 . . . .  ) 

(18) (1 + 2fl) n ( n -  l)p,,  = 2 f l ( n -  1) (n + 2 -  1)p ,_  i + , u 2 p , - 2 ,  

which corresponds to (4) with k = s = c = 2 and 

b 0 = 0 ,  b, = - ( 1  +2/3),  

a,.o = O, at.i = 2fl2, 
99 

a2, 0 =/A",  a l l  = O, 

b 2 =  1 +2 /3 ;  

a l ,  2 = 2,8; 

"/2,2 = O. 

E x a m p l e  2 :  The Poisson Beta is obtained by mixing the Poisson mean over the 
Beta distribution. WILLMOT (1993) derives a recursion for this mixed Poisson p.f. 
(for n = 2, 3 . . . .  ) 

(19) n ( n -  l)p,,  = ( n -  1 ) ( n - 2 + k t + o t + f l ) p , , _  t - , u  ( n -  2 + o0p, ,_2,  

which corresponds to (4) with k = s = c = 2 and 

b 0 = 0 ,  b~ = - 1, 

a<o=O,  al.  I = p t + o t + f l - l ,  

a2, 0 = - / . to t ,  a2, I = - t t ,  

b 2 =  I ;  

a l , 2 =  1; 

• a2. 2 = 0. 

E x a m p l e  3 :  The Poisson Generalized Pareto is obtained by mixing the Poisson 
mean over the Generalized Pareto. WmLMOT (1993) derives a recursion for this 
mixed Poisson p.f. (for n = 2, 3 . . .)  

(20) n ( n -  1)p,, = ( n -  I) ( n -  1 - O t - l t ) p , , _ l  + l . t ( n - 2 + f l ) p , , _ 2 ,  

which corresponds to (4) with k = s = c = 2 and 

b 0 = 0 ,  bl = - 1 ,  b2 = 1 ;  

al.0 = 0, al .  I = - (or +/.t), at.2 = 1 ; 

az.o=/~fl, az.i =/~, a2.2 = 0. 

E x a m p l e  4 :  The Poisson Inverse Gamma is obtained by mixing the Poisson 
mean over the Inverse Gamma. WmLMOT (1993) derives a recursion for this mixed 
Poisson p.f. (for n = 2, 3 . . . .  ) 

(21 ) n (n - 1) p,, = 01 - 1 ) (n - I - or) p,, _ + ~Pn - 2, 
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which corresponds to (4) with k = s = c = 2 and 

b0=O, b l =  - 1 ,  

al ,  0-~ O, a l ,  I = - o g ,  

a2, 0 = i f ,  a2, I = 0, 

b 2 = l ;  

al .2= I; 

a2, 2 = 0. 

Remark:  In all the above examples .Q(x) vanishes, which simplifies equa- 
tion (8). However, ~. becomes a singular matrix at x = m, so the recursive 
evaluation by (8) should start with initial values {g0 . . . . .  ~,,}. Other mixed Poisson 
distributions in the generalized class (4) are Poisson Transformed Gamma and 
Poisson Transformed Beta (see W1LLMOT, 1993). 

It is noted that SUNOT'S (1992) class is a particular case of  (4) when k =  1. 
However, when k = 1, Sundt's recursion involves only g0 .... while recursion (8) 
requires both g0..~ and gl.x. In the same way, for mixed Poisson distributions in the 
Pearson system, Willmot 's  recursive method (see WILLMOT, 1993) is simpler than 
recursion (8) in evaluating their compound distributions. On the other hand, when 
k ~- 2, as in the earlier examples of  this section where k = s = c = 2, the recursion 
(8) is more efficient than the ones given in WILLMOT and PANJER (1987). 

The numerical aspects such as stability concerns of  the recursion (8) need further 
study. 
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