
I VOlume z~l., iNO. 1 

ASTIN 
tvlay t ~ q  

BULLETIN 
EDITORS : 

Hans Biihlmann 
Switzerland 

D. Harry Reid 
Umted Kingdom 

Co-Eor roRs  : 

Alois Gisler 
Switzerland 

David Wilkie 
Umted Kingdom 

EDrEORIAL BOARD: 

Bj6rn Ajne 
Sweden 

Marc  Goovaerts  
Belgium 

Jacques Janssen 
Belgium 

William S. Jewell 
USA 

Jean Lemaire 
Belgium/USA 

Walther Neuhaus 
Norway/Austraha 

Jukka Rantala 
Finland 

Axel Reich 
Germany 

James A. Tilley 
USA 

A Journal of the International Actuarial Association 

CONTENTS 

EDITORIAL AND ANNOUNCEMENTS 

Guest Editorial 

ARTICLES 

H. H MUI.LER, E CHEVALLIER 
Risk Allocation m Capital Markets 
Portfoho Insurance, Tactical Asset Allocation and G R O 1 5 

O. HESSELAGER 
A Recurslve Procedure for Calculation of some Compound 
Distnbuuons 19 

D.C M. DICKSON 
Some Comments on the Compound Binomial Model 33 

G PARKER 
Limmng Distribution of the Present Value of a Portfoho 47 

WORKSHOP 

J HOLTAN 
Bonus Made Easy 61 

J LEMAIRE, HONGMIN ZI 
High Deductibles instead of Bonus-Malus Can it Work'~ 75 

K-H WALDMANN 
On the Exact Calculatmn of the Aggregate Claims Distribution 
m the Individual Life Model 89 

G C TAYLOR 
Modelhng Mortgage Insurance Claims Experience: 
A Case Study 97 

M BOSKOV, R.J VERRALL 
Premmrn Rating by Geographic Area Using Spatial Models 131 

SHORT CONTRIBUTIONS 

H U. GERBER 
Martingales and Tad Prob,tblhtle~ 

Actuarial Vacancy 

145 

147 

Ceuterick 



E D I T O R I A L  P O L I C Y  

ASTIN BULLETIN started m 1958 at a journal providing an outlet for actuanal studies m non-hfe 
insurance Since then a well-estabhshed non-hfe methodology has resulted, which is also apphcable to 
other fields of  insurance For that reason ASTIN BULLEIIN has always pubhshed papers written from any 
quanmatwe point of  v i e w - - w h e t h e r  actuarial, econometric, engmeermg,  mathematical, stat~sucal, 
etc - - a t t ack ing  theoretical and apphed problems m any field faced with elements of insurance and nsk  
Since the foundatmn of the AF1R sectmn of IAA, ~e since 1988, A571N BULLETIN has opened ItS 
editorial pohcy to mclude any papers deahng with financml risk 

ASrIN BULLETIN appears twice a year (May and November), each ~ssue consisting of at least 
80 paget 

Detads concerning submission of manuscripts are gwen on the ms,de back cover 

MEMBERSHIP 

ASTIN and AFIR are secUons of the International Actuarml Assoctauon (IAA) Membership is open 
automatically to all IAA members and under certain condmons  to non-members  alto Apphcauons  lot 
membership can be made through the National Correspondent or, m the case of countries not 
represented by a nauonal correspondent, through a member  of the Committee of  ASTIN 

Members of ASTIN recewe ASTIN BULLETIN free of charge As a service of ASTIN to the newly 
founded section AFIR of IAA, members of  AFIR also recewe A37IN BULLETIN free of charge 

SUBSCRIPTION AND BACK ISSUES 

ASTIN BULLETIN IS pubhshed and printed for ASTIN by Ceutenck s a ,  Brusselsestraat 153, 
B-3000 Leuven, Belgmm 

All queries and communlcat~om, concerning subscriptions, including clauns and address changes, and 
concermng back ~ssues should be sent to Ceutenck 

The current subscnpuon or back Issue price per volume of 2 ~ssues including postage ~s 
BEF 2 500 

Back ~ssues up to i,,sue I0 (= up to pubhcauon year 1979) are avadable for half of  the current 
subscnphon price 

INDEX TO VOLUMES 1-20 

The Cumulative Index to Volumes 1-20 ~s also pubhshed for ASTIN by Ceutenck at the above address 
and is avadable for the price of  BEF 400 

Copyright o 1994 Ceuterick 



EDITORIAL AND ANNOUNCEMENTS 

GUEST EDITORIAL 

At the ASTIN Colloquium m Cambridge Wdlem de Wit has left the ASTIN 
Committee which he has served for many years. The editors have therefore invited 
him to write a Guest Editorial reflecting his thinking and his great experience from 
which ASTIN has profited over decades We are happy that he has accepted this 
task. 

THE EDITORS 

ACTUARIAL SCIENCE 

P A S T  - P R E S E N T  - FUTURE 

The concept of insurance is very old, if tradmon Is to be believed. Already m 
ancient rimes we find traces of insurance business 

Obviously we are talking about risks, and it ~s well known that already the 
Asipus collected data to describe risks and to point the way how to cope best with 
these risks. One could say that this was a very first start of risk management. Their 
descnpuon of risks was mainly based on concepts like certainty, trust and expernse 
(which we fundamentally still acknowledge today), while even religious consider- 
ations were taken into account. Good as well as bad results were recognized, but the 
concept of probabdlty was unknown to them. 

The roots of thoughts on probability we find at Anstoteles, but for the 
development of the concept of probability we have to wait until the 16th century, 
when Cardano (1565) wrote h~s ideas about that concept, while the final break- 
through was reahsed by Pascal and Fermat (1654) and Huygens (1657). 

LIFE 

Then the time was ripe for the first actuarial actwlty' John Graunt (1662), Johan de 
Witt (1671) and Edmond Halley (1694) made a mortality table. They used data 
which were taken from censuses. For the sale of annuities (among others) they used 
this historical material For the time being they had to manage with different, 
uncertain sources, until the 19th century when regular censuses started, from which 
up-to-date mortahty tables could be derived. 

In fact life insurance mathematics has always been very simple and the invention 
of commutation columns can be seen as the most important invention m life 
insurance mathematics. Recently the complexity has, also because of the use of 
computers, increased very much, on the one hand because of the apphcatlon of 
stochastic techniques, on the other hand because of asset-hablhty-management. 

ASTIN BULLETIN. Vol 24. No I. 1994 



2 GUEST EDITORIAL 

N O N - L I F E  

For the non-life branch we had to walt somewhat longer Not only was there no 
data for a long time, but also the theory started later. If we consider the work of 
Lundberg (1909) as the start of actuarial activities In the field of non-hfe insurance, 
then we can ' t  yet celebrate the centenary. 

Still in 1940 the applicauon of the theory of probabflmes was described as 
doubtful After the Second World War non-life insurance business became more 
nnportant, and theories developed further, m which automobile insurance acted as a 
pioneer. However observaUonal data still remained scanty and often one had to 
deal with hmited samples. In contrast with life .nsurance, where only a simple 
two-&menslonal development (mortality table) exists, non-hfe insurance moved 
quickly on to economemcal models, where numerous variables play a role. Still 
today one has to conclude that a number of fields of non-life insurance business are 
even yet very difficult to handle. 

O B S E R V A T I O N A L  DATA 

It appears very hard m many Countries to collect the adequate observational data 
and ~t is remarkable that sometimes for practical application one has to make use of 
old data, even sometxmes from other counmes 

Slowly but surely this situation improves, but considering the coming of bigger 
and open markets, especmlly m Europe, it ~s very important to collect the adequate 
observational data It ~s also necessary to be sure that the data are mutually 
comparable. 

FUTURE 

In the succession of mortality tables actuaries notices soon a decline of mortality. 
First they tried to find an " e x p l a n a t i o n "  for this, on the base of Newtoman 
determinism, but that failed. The consequences of a further decline of mortality are 
becoming more and more apparent, because of the recent shift from insurances of 
death rv~k to insurances w~th a long hfe risk Yet ~t appears impossible m any 
rehable way to make a good forecast of future mortahty And that ~s just what we 
need. Also m non-hfe insurance this forecasting plays an important role Next to the 
process of mflauon, one could also think of, for example, a changing risk structure, 
but also of changing legal and socml wews. 

Now that developments m the world are happening rapidly, so also are risks, the 
basis of insurance, evolwng at the same rapid pace. But all our observauonal data 
come from the past There are too few attempts that try to make a forecast for the 
future. If this ~s already being done, ~t ~s often not much more than the continuation 
of an observed trend from the past. Popper once wrote that a forecast in social 
science ~s m principle impossible (m my opinion we should conceive actuarial 
science at a social science) He warns particularly against assuming a contmuauon 
of what happened in the past into the future The elaboration of scenarios m which 
the parameters of the model can be changed in different ways seems to be an 
obvious alternative. 
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S O C I E T Y  

Actuarial science becomes more and more socially involved. Because of  the fact 
that in many countries the government is partly withdrawing from social insurance, 
pravate insurance companies are confronted with new problems, like affordabdlty,  
obligatory acceptation, and so on, In shor t ,  with problems of sohdanty.  

W H E R E  T O  ? 

Besides further development of  the theory, m my opinion actuarial science in the 
future has especially to be working on 

- -  collecting the adequate data, mutually comparable,  
- - d e v e l o p i n g  scenarios for the future to forecast the consequences for the 

fu ture ,  

- -  considering life, non-life and financial services as one and the same branche, 
- -  social problems. 

One must search for the greatest possible smlphclty with regard to the above, 
both for our own practice as well as for those countries where the concept of  
insurance is not yet so far developed. After all they have to join in too 

G .W.  DE WIT 





ARTICLES 

RISK A L L O C A T I O N  IN CAPITAL M A R K E T S :  
P O R T F O L I O  INSURANCE,  TACTICAL ASSET A LLO CA TIO N  

AND COLLAR STRATEGIES 

BY ERIC CHEVALLIER AND HEINZ H MULLER 

Universtty of Zffrtch 

A B S T R A C T  

The theory of  risk exchange is applied on the allocation of financial risk m 
capital markets It Is shown how the shape of  individual payoff functions 
depends on risk tolerance and cautiousness. For  the special case where the 
Neumann-Morgenstern utility functions of all individual investors belong to 
the HARA class and have non decreasing risk tolerance it is proved that 
generalized versions of  "po r t foho  insurance",  "tactical  asset al locat ion" and 
"co l l a r s "  are the only strategies occurring in price equihbrium. 

K E Y W O R D S  

Non linear risk sharing, price equilibrium; portfoho insurance. 

| .  I N T R O D U C T I O N  

For quite a long time the MARKOWlTZ (1952) approach and the Capital Asset 
Pricing Model (SHARPE, 1964; LINTNER, 1965) played a predominant role m 
financial economics In such a framework only linear risk allocations can 
occur. However, in 1973 BLACK and SCHOLES pubhshed their famous ophon 
pricing formula, which allows m particular for a replication of  options by 
means of  dynamic strategies. Options and their dynamic rephcation became 
increasingly popular. Nowadays, non linear investment strategies, such as 
portfolio insurance, tactical asset allocation and collars are widely used. 

In actuarial science non linear risk allocations are a central issue in the 
reinsurance context. Already in 1960 Borch's theorem on Pareto efficient risk 
sharing was pubhshed. Later on, BUHLMANN (1984) proved the existence of  a 
price density leading to a Pareto efficient risk allocation which is typically non 
linear. In BOHLMANN (1980) and LIENHARD (1986) price densities were 
explicitly calculated for some special cases. 

LELAND (1980) was the first who applied the actuarial results on non linear 
risk sharing in financial economics. By means of  Borch's theorem he analysed 
the occurrence of  portfolio insurance m the context of capital market equilib- 
rium. MULLER (1990, 1991) apphed Btihlmann's equilibrium model on the 
capital market and obtained some first results about the qualitative shape of  
risk allocations. 

ASTIN BULLETIN, Vol 24, No I, 1994 



6 ERIC CHEVALLIER AND HEINZ H MOLLER 

In this article total financial risk has to be allocated to n investors. Following 
the tra&tton of  RUBINSTEIN (1976), BRENNAN (1979) and LELAND (1980) all 
investment decisions have to be made at one point of  time. First, the main 
results of  the theory of  risk exchange are shortly summarized. Thereafter, 
different types of  investment strategies such as portfoho insurance, tactical 
asset allocation and collars are explained m the context of  risk exchange. It is 
shown how the type of investment strategy chosen by an individual investor 
depends on the risk tolerances of  all investors and their sensitivity to wealth 
changes. Finally price equlhbrla are analysed in the special case where the 
Neumann-Morgens tern  utdity functions of  all investors belong to the H A R A  
class. Generahzed versions of  portfolio insurance, tactical asset allocahon and 
collars are the only investment strategies which can occur. 

2. THEORY OF RISK EXCHANGE 

2.1. The model 

As in RUBINSTEIN (1976), BRENNAN (1979) and LELAND (1980) trade takes 
only place at one point of  ttme 

There are n Investors i = 1 . . . . .  n with the following character is t ics  

1) All investors have the same planning horizon and the same expectations. In 
particular, their expectations with respect to total financial wealth (aggre- 
gate market  value of  all financial assets in an economy) at the end of  the 
planning period are given by a random variable if'. 

2) Moreover,  the value of  investor /'s (i = 1 . . . .  , n) initial endowment at the 
end of  the planning period can be represented by random variables ..~,, 
s.t. 

X , ~ 0 ,  ~ ~ , =  if ' ,  a.e. I 
s = l  

3) Each investor i = 1 . . . .  n evaluates his wealth at the end of  the planning 
period by a Neumann-Morgenstern  utd~ty function 

u,:  R ~ R ,  i =  i . . . . .  n .  

Hence, for the investors i = 1 . . . .  n with the inttlal risk allocation 

( x ,  . . . .  , xn)  

t If mmal endowments consist only of the market portfoho and a nskless asset, then 

~,=a,+~,  I~, ae t= l, ,n, w,th ~ a,=O, Z s,= l 
i I I I 

holds 
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a reallocation of total financial risk 

(2,  . . . .  ,2n)  

has to be found. 

with ~ Z, = if/ 
l= l  

W 

lmtlal allocation of total fmancml wealth 

i 

Realloeat~on of total financial wealth 
FIGURE 1 

Obviously, thin framework allows for the application of standard results in 
risk theory (e.g. BORCH (1960), BOHLMANN (1980, 1984)) 

2.2. Theory of risk exchange: standard results 

The following assumptions will be useful" 

A.I. a) The random variable 17" is given by the probability space (R, B, P), 
where B denotes the Borel-a-algebra. There exist constants m, M with 
0 < r e < M <  m, such that 

P[m_< ff" < M ] =  1. 
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b) There  extst measurable  functtons h,, i = i . . . .  , n such that  

.~, = h,(ff ' ) ,  a.e. 2. 

c) ~[2,]  > 0. 

A.2. The Neumann-Morgens t e rn  utility functions u,, R ~ R, t =  1 . . . . .  n are 
twtce differentlable and satisfy 

u/(x)  > O, u,"(x) < 0 Vx. 

A.3. The  Neumann-Morgens t e rn  utility functions u,; R ~ R, i = 1 . . . .  n are 
three ttmes cont inuously  differenttable 

Moreover ,  the following definttions are needed:  

Definition 1 : An n-tuple o f  r andom varxables (Z.i . . . . .  2 , )  ts called a feasible 
allocation if it satisfies 

~ 2 , = i f ' ,  a.e. 
t=l  

Definition 2: A measurable  function 

¢ :  [m, M] ~ [0, ~ [  

is called a price density If It satisfies 

E[~b(/,~")] = 1. 

Remark: Under  a price density ¢ the value o f  a random variable Z, = f , ( f f ' )  is 
given by 

(1) E [ f , ( f f ' )  ¢ ( f f ' ) ]  = I f,(w) ¢(w) dP(w) 

Definition 3:  The tuple {~, (ZI* . . . . .  Z~*)} consisting o f  a price density ~b and 
a feasible al location ( 2 ~  . . . . .  2,*) ts called a prtce equdibrtum tf for all 
z =  1, . . . ,  n 2,* is the solution o f  

max E[u,(Z,)]  
2, 

under  

E[Z ,  ~ (I,~')] _< E[,Y, ~(W)] .  

2 Assumpt ion  A 1 b is made for expository convemence As m BOIILMANN (1984) one could 
define Jrl,  . ,.~n as random variables on a common  probablhty  space (122, A , / / )  Using the 
subscquent  a n a l y m  one could show afterwards that if' = ~," i .Y, is a sufficient statistic for the 
problem under consideration 
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Definition 4:  The  feasible al locat ion (Zl* . . . .  , 'Zn*) IS called Pareto effictent if 
there exists no feasible al locat ion (Zi . . . .  , Z , )  satisfying 

E[u,(Z,)]  >_ E[u,(Z,*)] ,  t = i . . . . .  n 

with strict inequali ty for at least one rE{l,  . . . ,  n}. 
The  s tandard  results for this model  can be summar ized  as follows (B~HL- 

MANN (1980, 1984)): 

Theorem I : 

1) Under  A.I . ,  A 2., A.3. 3 there exists a price equi l ibr ium {~, (Zl*, . . ,  2,*)}. 
2) Unde r  A 1., A.2. each price equi l ibr ium {~, (Zl* . . . . .  Z,*)} has the following 

propert ies  : 
a) The  risk a l locat ion (Zl*, .- , Z,*) IS Pare to  efficient. 
b) There  exist ~1 . . . .  , yne(0,  oo) such that  

(2) u,' (Zn*) = Y, ~ ( i f ' )  4, a e i = I . . . . .  n .  

As an immedia te  consequence one obta ins"  

Corollary 1: Under  A.I . ,  A.2. for each price equlhbr lum {~, (Zl*, . . . ,  2,*)} 
there exist measurab le  funct ions f ,  such that  

(3) ~,* = f ,  ( I~) ,  a.e., t = 1 . . . . .  n.  

In the context  o f  financial economics  it is o f  par t icular  interest to have some 
informat ion  abou t  the shape of  the funct ionsf~ . . . . .  fn and ~b. Some results on 
this issue are derived m the next section. 

3. ANALYSIS OF PRICE EQUILIBRIA 

3.1. Portfolio insurance, tactical asset allocation and collars 

The  term " p o r t f o l i o  i n su rance"  is widely used for  investment  strategies where 
a reference por t fo l io  is protected by a put  opt ion.  Obvious ly  such strategies 
lead to convex p a y o f f  functions.  Therefore ,  LELAND (1980) in t roduced the term 
"gene ra l  insurance po l i cy"  for  convex p a y o f f  functions.  In this article we use 
the following te rminology:  

Definition 5:  An inves tment  s trategy leading to a twice differentmble payo f f  
funct ion 

f ' [ m ,  M] - ,  R 

Instead of A3 BOHLMANN (1984) assumes that the functions p , ( x )  = - u , " ( x )  satlfy a Llpschltz u: (x) 

condmon In E Chevalher 's forthcoming thesm assumpttons A I, A 2, A 3 wdl be relaxed 
4 See also BRENNAN/SOLANKI (1981) 
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is called 

a) "Por t fo l io  insurance" if f "(w) > 0 Vwe[m, M]. 
b) "Tactical  asset a l locat ion" i f f "  (w) < 0 w s [m, M]. 

c) " C o l l a r "  if 
f "  (w) > 0 Vw e [m, w0) and 
f"(w) < 0 Vwe(w0, M], where m < w0 < M 

fCv)  

v 

Portfoho insurance 

f ( v )  

Tactacal asset aUocauon 

f ( v )  

/ 

Collar 
FIGURE 2 

Remarks: 

1) Of course strategies with a continuous payoff function f(w) can be 
approximated by buying and selling put and call options with &fferent 
striking prices (see also LELAND (1980)). 

2) The term "tactical  asset a l locat ion" is motivated by the widely used " b u y  
low, sell h igh"  strategies. The term "co l l a r "  is used for the popular 
investment policy where a reference portfolio is held, a put option is bought 
and a call option is sold. 

3.2. Risk tolerance, cautiousness and properties of price equilibria 

The following definition will be useful for the discussion of price equihbrla. 
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Definition 6 : 

a) u,'(x) . 
z,(x) - Is called the risk tolerance of  investor  i. 

u,"(x) 

d 
b) R,(x) = - -  r , ( x )  is called the cautiousness of  investor t 5. 

dx 

Some well known characteris t ics  o f  price equilibria can be formula ted  as 
follows : 

Proposition 1: U n d e r  A.I . ,  A.2. a price equi l ibr ium {~, (f~ (if,") . . . . .  f , ( f f ' ) ) }  
where ~ and f l , . - . , f n  are dlfferentiable has the proper t ies :  

a) ~ f , ' ( w ) =  I ,  
t = l  

~, (f, (w)) 
b) f , '  (w) = ~ (0, 1), 

c) ,~ (w) > 0, ,~' (w) < 0,  

¢'(w) l 
d) - -  

~(w)  E" ~ ( f ~ ( w ) )  j=l 

Proof:  e.g. BOHLMANN (1984, p 16-17) or HUANG/LITZENBERGER (1986). 

In order  to decide whether  a p a y o f f  funct ion f ,  co r responds  to po r t foho  
insurance,  tactical asset a l locat ion or a collar s t ra tegy its second derivat ive 
f , " (w)  has to be known.  The  not ion o f  a " r ep resen ta t ive  i nves to r "  will 
considerably  simplify the analysis o f ~ "  (w). 

Definition 7:  Given a price e q u l h b r m m  {~b, ( f l  ( i f ' )  . . . . .  f , ( l ~ ) ) }  a funct ion vm 
with 

v;,, (w) = 4' (w) 

is called N e u m a n n - M o r g e n s t e r n  utility funct ion o f  the representat ive inves- 
tor. 

Remark: The  representat ive investor  is a fictious individual  represent ing the 
market .  Under  the con&t ions  o f  Propos i t ion  1 and different iabihty assump-  
uons  the risk tolerance r m (W) and the caut iousness  Rm (w) of  the representa twe 

Hence, the cauuousness R, ~s a measure for the sensmv~ty of the risk tolerance r, (x) with respect 
to wealth changes 
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investor are given by 

(4) rm (w)  - v',,, (w) _ ¢ (w) _ y~j=l,, zj ( f j  (w)) , 
v~, (w) ¢' (w) 

d ]E" (5) Rm(w) = - -~m(w)  - ,=, Rj(f~(w)) ~,(f~(w)) 
d~ x;'=, ~,(f~(~)) 

Hence, the rtsk tolerance Zm(W ) Is the sum of  individual risk tolerances, 
whereas the cautiousness R m (w) is a weighted mean of  ind,vldual cautiousness 
terms. 

Now the result on the second derivatives of  the payoff functions f and the 
price density ¢ can be formulated as follows: 

Theorem 2: Under A 1., A.2., A.3. a price equihbrlum {¢, ( f i  (I.~'), ... ,f,(ff/ '))} 
where ¢ and f ,  . . . .  f , ,  are twice differentiable has the properties'  

a) 
f , "  (w) 1 

L'  (w) 

¢"(w) 

~.,(w) 
- -  { R , ( f , ( w ) ) - R m ( w ) } ,  i = l ,  . , n ,  

1 
b) - -  - {l + R,,, (w)}, 

¢' (w) ~., (w) 

d 
c) - - I n  - - -  , t , J  = 1 . . . . .  n 

dw / £ ' ( w )  ~m(W) 

C o m m e n t s :  

1) In particular Proposition I and Theorem 2 contain the key result 

~, ( f ,  (w))  
(6)  f , '  (w) - , ~ -- I . . . .  , n ,  

~ ( w )  

(7) sign {f," (w)} = sign {R, ( f ,  (w)) - R m (w)}, i = 1 . . . .  , n 

In other words, the slope of  the payoff  function f,  is given by the ratio of  the 
risk tolerances z , ( f ` ( w ) )  and r,,,(w), whereas the curvature o f f ,  is related to the 
difference of  the cauUousness terms R,(f , (w))  and R.,(w). 

2) Theorem 2.a) leads to the following criteria 
a) An investor re{1 . . . .  , n} chooses p o r t f o h o  i n s u r a n c e  If and only if 

(8) R,( f , (w))  > Rm(w) Vw 6 
b) An investor ie{l  . . . . .  n} chooses t a c t i c a l  a s s e t  a l l o c a t i o n  if and only if 

(9) R , ( f , ( w ) )  < R , . ( w )  V w .  

6 LFLAND (1980) derived a slmtlar result in a less formal  context  
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c) I f  an investor  t e{I  . . . .  ,n} chooses  a collar strategy there exists 
Woe(m, M) such that  

1) R , ( f l ( w o )  ) = Rm(wO) , 
2) R,( f  (w))-Rm(w ) is strictly decreasing in w0. 

3) An easy calculat ion shows that  under  A.2., A 3. u ;"  ( f ,  (w)) > 0, i = !, . . . ,  n 
tmphes  Rm(w) > - I. 

Therefore ,  one concludes f rom T h e o r e m  2b) :  

(10) ¢'(w) > 0 if u;"(f ,(w)) > o, i= 1, . . . ,  n. 

Proof  of  Theorem 2: 

a) Different ia t ion o f  the fo rmula  in Propos i t ion  l b) 

leads to 

(i1) 

o r  

(12) 

b) 

~,(L(~)) 
f ' ( ~ )  - 

rm(W) 

L"(w) - R, (f, (~)) L' (w) - 
T m ( W )  

L"(w) 1 

~, ( f ,  (w)) nm (~) 
~ ( ~ )  

f/(w) r,. (~) 
- -  {R, ( £  ( W ) ) -  nm (w)} .  

Different ia t ion of  the formula  in Propos i t ion  ld) 

¢(w) 
- - rm (w) 

¢' (w) 

leads to 

¢2 (w) - ¢ (w) ¢'  (w) 
(13) 

¢,2 (w) 

o r  

(14) I + Rm (w) = - Zm (W) - -  

C) F r o m  Propos i t ion  l b) one obta ins  

(15) 

and 

(16) 

= - -  R m ( w )  

¢" (w) 

¢' (w) 

[y/(w) ) = fn 
/ .//(w) 

d Z  m(W) 
R~ (f~ (w)) ~(f~(w)) 

~ (f~(w)) ~m(W) 
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4. ANALYSIS OF PRICE EQUILIBRIA FOR THE HARA CLASS 

In Section 3 general properties of price equilibria were derived. Now we look at 
the special case where the risk tolerance functions z,(x) are linear. Assumption 
A.2. and A.3. are replaced by the assumption: 

A.4. The Neumann-Morgenstern utility functions are increasing, concave and 
satisfy 

a) z,(x)=a,+R,x>O, with R , > _ O , i =  1, . . , n ,  
b) Not all R~ identical. 

R e m a r k s  : 

I) Assumption A.4. allows for all Neumann-Morgenstern utility functions 
which belong to the HARA class and have a non negative cautiousness 7. 

2) In the case where all Rj are identical the risk allocation is linear and a 
detailed analysis can be found in BOHLMANN (1980) and LIENHARD 
(1986). 

3) For R, > 0 the Neumann-Morgenstern utility function u, is only defined 

on the interval Ri ,  oo . Therefore, assumption A.2 is not satisfied and 

existence of a price equilibrium is not guaranteed by Theorem I However, 
it can be easily verified that Proposition 1 and Theorem 2 are still valid if 
Assumption A 2 and A 3. are replaced by A.4. 

By restricting the analysis to the HARA class one obtains: 

Lemma 1: Under A. 1., A.4. a price equilibrium {~, ( f l  (I,~') . . . . .  f n (# ) )}  where 
and f t  . . . . .  f,, are differentiable 8 has the property: 

Rm (w) is strictly increasing. 

P r o o f :  A.4 and (5) lead to 

(171 Rm(w) ~.,(w) = ~ Rj~j(~(w)),  
j= l  

(18) R~(w) Ln(w)+R],(w) = ~ R~fj'(w) 9. 
./=I 

7 A negattve cautiousness would lead to problems wtth sattat~on and an unreahstlc investment 
behavtour (see ARROW (1965)) 

s If ~ , f l ,  ,fn are dlfferentlable, then due to Proposthon Ib), Id) and A 4 they are also twtce 
dtfferenttable 

9 From the detavatton of formula (18) it becomes obvtous that Lemma I depends cructally on the 
assumptton that each investor t has a constant cautiousness R, (A 4 a) 
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Moreover ,  Proposi t ion Ib), (5) and (18) imply 

z" R~ (f, (w)) R,.(w) E" R~j(f~(w)) (19) R;, (w) = j = I _ j = I 
2 

and the strict monotonlc l ty  o f  R,,(w) follows from 

(Rj- R.,(w)) Rjr,(fj(w)) 

= Z (R~-R.,(w)) Rj¢~(f~(w))+ 
Rj> Rm(w) 

+ ~ (Rj-R,,,(w)) Rj~(f~(w)) > 
Rj< R~(~ 

> Z (Rj-R.,(w)) R.,(w) rj(f~(w)) = 0.  
j= l  

L e m m a  l leads to the mare result o f  this section 

T h e o r e m  3:  Under  A.I . ,  A.4. a prme equilibrium {~b, ( f i ( f f ' )  . . . .  f , ( f f ' ) ) }  
where ¢ and f i  . . . . .  f ,  are dlfferentlable has the propertms" 

a) The only investment strategies chosen by investors i = 1 . . . .  , 
- por t foho insurance, 
- tactical asset allocation, 
- collar strategy. 

n are 

b) Investors r e { l , .  , n} with R, = max Rj choose  por t foho  Insurancel°  
J= t ,  ,n 

c)  I n v e s t o r s  t e { I  . . . .  n} w i t h  R , =  min Rj choose tactical asset allocation I° 
1=1, ,n 

Proof :  Formula  (5) implies 

(20) rain R 1 < Rm(w) < max Rj Vw~ [m, M ] .  
J ~ l ,  ,n  J = l ,  ,n  

Now,  a), b) and c) follow immediately from Theorem 2a) and L e m m a  1. 
Some a d d m o n a l  informat ion about  price equdibria  in the H A R A  case is 

provided by the next result. 

to See also MULLER (1990) 
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P r o p o s i t i o n  2 :  Under  the assumption o f  Theorem 3 one obtains 

a) f , ' ( w ) =  
a , +  R, f , (w)  

a + ~ RiG(w) 
j=l 

, where a = ~ aj, 
j= l  

d(f, '(w))__ R,-Rj 
b) - -  In 

dw ~' (w) z., (w) 

P r o o f :  Special case o f  Proposi t ion I b) and Theorem 2c). 

C o m m e n ~ :  

1) In par t icular  Proposi t ion 2b) imphes 

d [f/Oo)] eO R, (21) - -  "~" R, 
dw ~L'(w) / 

i , j=l  . . . . .  n.  

2) For  sufficiently large values o f  w one can show f , (w)  > 0 for i = 1 . . . . .  n 
and Proposi t ion  2 leads to the following inequalmes 

a,+ R,~(m) 
a ' ) f , ' ( w )  > with a = aj, Rma x = max Rj, 

a-t-w gma x j = l  j = l ,  ,n 

d [I,'(w))__ R,-R, , R,. b ' ) - - l n  > if R , >  
dw ~fj'(w) a+w'Rmax 

Finally, an example illustrates some typical propert ies o f  a price equil ibrium 
in the H A R A  case. 

E x a m p l e :  

- -  The  r andom variable if '  representing total financial wealth is uniformly 
distr ibuted over  [0.3, 20]. 

- -  There  are n = 3 investors with risk tolerance functions 

t l  ( x )  = 2 0 . x ,  
tz(X ) = 2.5"x,  
r3 (x)  = x 

and an initial risk al location 

(Y, ,  -'Y2, -Y3) = (0.16. if', 0.35. if', 0 49. if/). 

The  price eqmlibr ium {q), (fj (W),f2(l~),f3(ff'))} is dlustrated in Figure 3. 
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2O 

5. CONCLUSIONS 

In this article the theory of risk exchange was apphed to the allocation of 
financial risk Special emphasis was put on the shape of  the payoff  functions in 
price equilibrium. Under general conditions the role of  risk tolerance and 
cautiousness was analysed. The notion of  a representatwe investor was very 
useful for the interpretaUon of the results. Finally, in the HARA case a full 
characterization of all equlhbnum payoff functions was possible. 
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A R E C U R S I V E  P R O C E D U R E  F O R  C A L C U L A T I O N  OF SOME 
C O M P O U N D  D I S T R I B U T I O N S  

BY O L E  HESSELAGER 

University of Copenhagen 

ABSTRACT 

We consider compound distributions where the counting distribution has the 
property that the ratio between successive probabilities may be written as the 
ratio of  two polynomlnals.  We derive a recurslve algorithm for the compound 
distribution, which is more efficient than the one suggested by PANJER & 
WILLMOT (1982) and WILLMOT & PANJER (1987). We also derive a recursive 
algorithm for the moments  of  the compound distribution. Finally, we present 
an apphcat ion of the recursion to the problem of calculating the probablhty of  
ruin in a pamcu la r  mixed Poisson process. 

KEYWORDS 

Recursions; compound distributions; moments ;  probabhty  of  rum. 

I.  INTRODUCTION 

Let 

N 

x=Zr; 
i=l 

denote the aggregate claims amount  where X = 0 if N = 0. It is assumed that 
the severities Yi, Y2,- - are mutually independent and dxstrlbuted on the 
non-negative integers with common probabili ty function 

( I . I )  f,, = P ( r ;  = y), y = 0, l, .. 

It is further assumed that N is stochastically independent of  1:1, Y2 . . . .  with 
probabili ty function 

P n =  P ( N = n ) ,  n = 0 ,  1 . . . .  

The compound distribution 

(1.2) gx = P . fx  , 
n=0 

ASTIN BULLETIN, Vol 24, No 1, 1994 
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where f * "  denotes the n-th convoluhon of  f ,  can sometimes be calculated 
recursively. PANJER (1981) derived his by now famous recursive formula for the 
case where the counting probabilities p,  satisfy the recursive relation 

an+b 
(1.3) Pn - P , - i ,  n = I, 2, .. 

n 

SUNDT & JEWELL (1981) showed that (1.3) Is satisfied by the Polsson, the 
binomial, and the negative binomial &stributlons, and no other. PANJER & 
WILLMOT (1982) went on to consider the class of  counting distributions which 
satisfy a recursion 

k 

Z a,n' 
t=0 

(1.4) P , - - - P n - i ,  n =  1,2 . . . . .  k 

b,n' 
,=0  

for some k, and derived recursions for the compound distribution when k = 1 
and k = 2. These recurslons were further developed by WILLMOT & PANJER 
(1987). Recursions for a different extension of  the class (1 3) can be found m 
SCHROTER (1990) and SUNDT (1992). 

In the case of  arbitrary k, it is clearly not possible to give a complete 
characterization of  the class (1 4). OR D (1967) characterizes those &stnbut lons 
which satisfy a difference equation analogous to Pearson's &fferentlal equa- 
tion, and also derives a recurswe relation for the (factorial) moments.  Also 
GULDBERG (1931) considered recurswe calculation of moments  for certain 
members of  the class (1.4). 

Impor tan t  distributions satisfying (1.4), which are not already covered by 
(1 3), are the hypergeometnc distribution (k = 2), the Polya-Eggenberger 
distribution (k = 2), the Warmg distribution (k = 1), and the generahzed 
Waring distribution (k = 2). 

Note  that the coefficients a, and b, appearing in (1.4) are only specified up to 
a multiplicatwe constant. 

In this paper we consider the class (!.4) and derive a new recursion for the 
compound distribution (Section 2) The derivation is elementary, and is valid 
for arbitrary k. In Section 3 we derive a recurslon for the moments  of  the 
compound distribution. In Section 4 the proposed recurswe formula for the 
compound distribution is compared to that of  WILLMOT • PANJER (1987) for 
k = 1 and k = 2, and is found to be more efficient. In Section 5 we present an 
apphcatlon of  the recursion to problem of  calculating the probability of  
eventual ruin m a (particular) mixed Poisson process. 
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2.  R E C U R S I O N  FOR T H E  C O M P O U N D  D I S T R I B U T I O N  

Assume that p ,  satisfies (1.4) For  t = 0, . , k we define the auxiliary func- 
tions 

I ~t tt (2.1) at . ,  = n p , t f ,  , x = O, 1 . . . .  
n=0 

and note in particular that  90., is the c o m p o u n d  distribution (1.2). Let 

(2.2) 9,  = (90, ~, . . . ,  9k. 0 ' ,  

and let m denote the smallest integer for which f , t  > 0. Thus,  fy = 0 for 
y = 0 , . . ,  m -  1. The following result gives a recurslon for the vector 9.,, and 
hence the c o m p o u n d  distribution 90.,. 

Theorem ! :  Assume that  (1.4) holds true. With initial values 

t ~t (2 3) 9,,0 = p , n  Jo,  t = 0 . . . . .  k ,  
n~0  

a t ,  x ~ o r  

the c o m p o u n d  distribution g, = 9o., 
recurswely as 

9 ,  = T(-I  t , ,  

where 

(2.4) T~= 

and t.r 

(2.5) 

(2 6) 

t = 0  . . . . .  k, x =  1 . . . .  m - l ,  

may  be obtained by calculating g., 

x _ > m V  I ,  

1 - m / x  0 . . .  0 

0 I - m / x  . .  0 

+ 

0 0 

(bo-foco) (b~ -fool) 

= (to . . . . . .  t~.x)' is given by 

I ~  { m + y  
tt r - f , ,+)  - gt+l ,~-y 

' f m  y = l  X 

± i [ k , x  = f y  c t g t ,  x - ~  , 
y = m  V I t=0 

. °  . 

° .  

1 - -  m / x  

(bk-L -fock-t) (bk--foCk) 

y-x } 
9,..,_,, , t < k ,  

X 

with 
k 
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Remark  2.1. No te  that  T~ does not depend on the values of  9 .... and that  tx can 
be calculated when g~ is known for  all z < x. [] 

P roo f :  The  expression (2.3) is obta ined  f rom the de f inmon  (2 1) o f  g,,~ by 
not ing that  f0 * n = f 0  n. Also the fact that  g,,x=O for x =  l , . . . , m - I  is an 
immedia te  consequence  o f  (2.1) since f f l  n = 0 for  x = 1 . . . .  m -  1. 

F r o m  DE PRIL (1985) we have the identity, 

y-O X 

Mult ip lying (2.7) by pn n' and summing  over  n >_ 0 yields 

By o m i t t i n g  t e rms  c o r r e s p o n d i n g  to y = 0 , . .  , m - I  f r o m  the s u m m a -  
t ion and  s u b s U t u t i n g  x = x - m ,  we o b t a i n  a f t e r  a ht t le  r e a r r a n g e m e n t  tha t  

m 
(2 9) g,.~ - -  gt+l.* = t .... 

X 

where t,.~ Is given by (2.5). F rom assumpt ion  (1.4) we obtain  for n _> 1 that  

k k k 

(2.10) P" E b,n' = p._, E a,n' = p._, E c , (n-  l)', 
t=0  s=0 t=0  

where 

(2 11) 
k 

~ f f , ( n - I )  Mult iplying (2 10) byf~*"  = y=0JyJ , , -y  and summing  over  n > 1 yields 
for x ~ I the relat ion 

(2 12) E b,g,., = E f~,c,g,.x-y, x > I. 
t~0 ~-0 y = 0  

By ~solatlng terms revolving g,., on the left-hand side, we rewrite (2 12) as 

(2.13) E ( b , - f 0 c , ) g , , , =  tk, , ,  x>_ 1, 
t=O 

where t~. ~ is given by (2.6). The  hnear  equat ions  TxOx = t~, with T, given by 
(2.4), now follow f rom (2.9) for t = 0 . . . . .  k -  I and (2 13) Q E D  

Remark  2.2. It is useful to consider  separate ly  the to cases where m > 0 
(f0 = 0) and m = 0 ( f0  > 0). 
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m > O  

m = O .  

When f0 = 0 we note f rom (2.3) that  90,0 = P0 and g,,o = 0 for  i >  1 
Note  also that  the terms foe, in the last row o f  T, d i sappear  in this 
case. 

The  hnear  equat ions  Txg,  = t ,  are easily solved analyt ical ly in this 
case, and we obtain  that  

1 f y  g , + l , , : - y  + - -  g , , a - y  , i < k ,  
(2.14) 9,., f0 y=l x 

1 { .fy c , o , , , - y  + ( foc_b , )9 , ,  ~ . 
(2 .15)  9 k . x -  b k - f o c ,  y=t  ,=o ,=o 

The  initial values g,.o may  be expressed in terms o f  the derivatives ¢P(J)(f0), 
j = 0 . . . .  k, where {o(.) denotes  the probabi l i ty  generat ing funct ion of  the 
count ing  dis tr ibut ion However ,  for the class (I .4)  o f  count ing  distr ibutions,  
there is In general no simple expression for ¢(-). 

[]  

Example  1: The  War ing  dis tr ibut ion arises as a mixed geometr ic  dis t r ibut ion 
with a beta mixing function. I f  P ( N =  nip) = ( 1 - p ) p " ,  and p,-~ Beta (a, fl), 
then 

B(~+n,  f l+ 1)  
pn = 

B (o~, fl) 

and 

n + ~ - I  
P, - - -  Pn- t • 

n+~x+fl 

This cor responds  to (1.4) with k = I and 

a 0  = ~ - - I  a t = 1 

b 0 = ~ + f l  b l =  1, 

C 0 = 0 ~  C I = 1 

where c, is obta ined f rom (2 I I). []  

Example  2: For  the hypergeomet r ic  distr ibution with pa ramete r s  (s, D, S),  (o) ,o) 
n s - - R  

p,  = ,) 
S 
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it ho lds  that  

[ n - ( D +  1)] [ n - ( s +  1)] 
P ,  - Pn-  I,  

n [ n + ( S - O - s ) ]  

which c o r r e s p o n d s  to (1.4) with k = 2 and 

a0 = ( D +  1) ( s +  1) al = - ( D + s + 2 )  a2 = 1 

b o = 0  b I = S - D - s  b 2= 1. 

Co = Ds c I = - ( D + s )  c2 = I 

[] 

Example  3 :  The  Po lya -Eggenbe rge r  (Negat ive  H y p e r g e o m e t n c )  d i s t r ibu t ion  
arises as a mixed b inomia l  d i s t r ibu t ion  w~th a beta  m~xlng funct ion.  The  
p robab i l i t y  func tmn 

satisfies 

p. = 

o ~ + n - I )  f l + M - n - I  

n M - n  

( o~+fl+ M - 1 )  

M 

) 

p. = In - ( M  + I)] In + (~ - 1)] 
- - P . -  i ,  

n [ n -  ( M  +fl)]  

which c o r r e s p o n d s  to (1 4) with k = 2 and 

a 0 = - ( M +  1) ( c ~ -  1) a l  = - ( M - ~ + 2 )  a2  = 1 

b o = 0 bl = - ( M + / ] )  b2 = 1. 

c 0 =  - M ~  cl = ( o ¢ - M )  c2 = 1 

[]  

Example  4 :  The  gencrahzed W a r l n g  d i s t r ibu t ion  arises as a mixed negat ive 
b inomia l  d i s t r ibu t ion  with a beta  mixing funct ion,  

and  

F(c+.) F(~+I~) r(~+n) rq3+c) 
Pt l  ~" 

F(c)n! F(~) F(/3) F(~+/S+c+n) 

[n + ( c -  1)] [n +(~x- 1)] 
P. = - P.- l 

n [ n + ( ~ + p + c - 1 ) ]  
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This co r r e sponds  to (1.4) with k = 2 and 

ao = (oc-  1) ( c -  I) al = ( ~ z + c - 2 )  a 2  = 1 

bo = 0 bl  = o ~ + f l + c -  1 b2 = 1. 

C 0 : O~C C I : O~'q'-C C 2 = 1 

[]  

3. RECURSIVE CALCULATION OF MOMENTS 

F o r  the class (l 3) o f  count ing  d i s t r ibu t ions  It was po in ted  ou t  by DE PRIL 
(1986) that  also the m o m e n t s  m s =  EX ~, s = 0, 1 . . . . .  o f  the c o m p o u n d  
d i s t r ibu t ion  can be ca lcu la ted  recursively in a s imple  manner .  Express ions  for  
the m o m e n t s  m s are useful if one wants  to ca lcula te  the NP-  or  Edgewor th  
a p p r o x i m a t i o n  to the c o m p o u n d  d i s t r ibu t ion  as an a l te rna t ive  to the (exact)  
recursive me thod .  

Let  

/ ~ =  EYi ~ 

deno te  the s ' th  m o m e n t  a r o u n d  the origin o f  the severi ty d i s t r ibu t ion ,  and 
define 

09 

E xS , (3.1) m , . , =  . g , , ,  
a=0 

where g, , ,  is the aux lha ry  funct ion (2. I). No te  m pa r t i cu la r  that  rn s = rno. s IS the 
s ' th  m o m e n t  o f  the c o m p o u n d  d i s t r ibu t ion .  The  fo l lowing result  gives a 
recurs lon for the vec tor  (m0,~, . . ,  rnk. 0, s = 0, I . . . . .  and  hence the m o m e n t s  
m~ 

Theorem 2: Assume  that  (I 4) holds  true. Wi th  initial  values 

(3.2) m,, o = EN' = p,~n , t = O, . , k ,  
n=O 

the momen t s  ms = m o t  o f  the c o m p o u n d  d i s t r ibu t ion  may  be ob t a ined  by 
ca lcula t ing  (m0.s, . . . ,  ink . , )  recursive[y for s = 1, 2 . . . .  as 

~ - I  s - I  

(3.3) m ,  ~ = E I t s - j r n , +  I . j - -  It~ w m , . ~ ,  I < k ,  
s=0 j s=l 1 'E  k ? 

- c, I t ~ - j m , j +  E ( c , - b , ) m , . ,  
(3 4) mk, s b ~ - c l ,  ,~o j=o j ,=o 

Remark  3.1. When  (m0 . . . . . .  ink,.) is known for u < s, one calcula tes  rn,,~ for  
t = O, . . . ,  k -  1 f rom (3.3) and  then mk,  s from (3.4). [ ]  
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Proof:  According to (3.1) and (2.1) the initial values are given by 

m,,o= ~ 9,..,= ~ ~.~ n'p,,f~*"= ~.~ pnn'. 
~=0 ~ 0  n=O n=O 

To verify (3.3) we multiply (2.8) by x ~, s_> 1, and sum over x > 0  to 
obtain 

= L ~ y x  g,+~ , _ ~ + ( y x ' - l - x S ) g , , _ ~ } .  
x=0 y=0 

By changing the order of  summation and using the binomial formula 

(35) xS = ~ ( s ) j 

(and the simdar expression for x ~-I) it follows that 

Iy~ (s-I)ys_l_J(m,+lj+m,,j)_ ~ (s) 1 0 = fy y~-Jrn,,j 
y=0 j=0 J j ~0  J 

s 

j=o J j=o j 

Equation (3.3) now follows by extracting the term corresponding to j = s 
from the last sum and making use of  the fact that 

s - I  s - - I  

To verify (3.4), multiply (2.12) by x , s _> l, and sum over x >_ 0 to obtain 

Z b,m,,, = E xS~'g',~-y c'' 
~=0 t - 0  x ~ 0  y=0 

By changing the order of  summation and using (3 5), tt follows that 

2 2  " (3.6) b, rn,,, = . c,y "-j m,j 
t~0 t - 0  ~=0 j=0  J 

, ± ( s )  
_ _  C t fl~_jm~,j, 
t-O j~O J 

and (3.4) follows by solving (3.6) for ink, ~. QED 
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4. COMPARISON WITH THE RECURSIONS OF WILLMOT & PANJER (1987) 

In PANJER & WILLMOT (1982) It is demonst ra ted  how recursions for the 
c o m p o u n d  distribution may be obtained by use o f  generat ing funct ions;  in 
princJple for arbi t rary k when the count ing  distr ibution satisfies (1.4). Fo rmu-  
las for the cases k = I and k = 2 are found m WILLMOT ~t~ PANJER (1987). We 
cite the following recursive procedure :  

Define the auxiliary function 

(4.1) qo = m,  

( x + m ) f ~ + m  ~-~ fy+m 
- -  ~.~ ~ - q x - y ,  

q~ fm y=l A ,  

where m is the smallest integer such that f m >  O, and also 

t o = r - l ,  

( x + r ) ( x + r - l ) f ~ + r  ~ ( y + r ) f ~ + ,  
(4.2) t~ = - - -  tx-y ,  

rfr y=l rfr 

where r ~s the smallest integer such that rfr > O. 
For  k = I the class (1.4) may  be rewritten as 

fi(n-l)+,~ 
P, - P , -  t, n = 1, 2 . . . .  

o~n+ 1 

and the c o m p o u n d  distribution g~ satisfies the recursion 

p o q , +  ~ [ ( J 3 ( y - x ) + t c y ) f y - q y ] g . ~ _ y  
y =  I 

(4.3) gx = 
x (o~ - fifo) + qo 

For  k = 2 and b0 = 0 we may rewrite (1.4) as, 

f i ( n -  1) ( n -  2)+ x ( n -  l ) + g  
Pn = - -  P n - t ,  n =  1 , 2 , . . .  

n ( n -  I ) +  ~xn 

Define a new set o f  auxiliary funchons,  

(4.4) u , =  ~ yq~_y f y ,  v , =  ~ t.,_~fy, 
y=0 y~0 

and g~ can be calculated recursavely as 

Yx_yk~.,y 
y=[ 

(4.5) gx = , 
x [(x - t o - I ) ( I - fifo) + o~qo] 
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where 

(4.6) kx.y = (x -y )  {ty-Ctqv-flVy+[Ky+fl(x-y- 1)] ffy}-C-JUy. 

It is interesting to compare  the recurslons (4.1)-(4.6) to the one proposed m 
Theorem 1. 

Each step in the proposed  recurslon involves (k + I) summat ions  o f  the type 
Z'y=l f~.h,,y (for some function h.,.,.).. The number  o f  computa t ions  involved 
with the calculation o f  g, when g0 . . . . .  gx-~ are known is therefore propor-  
tional to x, and the number  o f  computa t ions  revolved with g,  is o f  order  x 2. In 
practice, the seventy distr ibution fy  has finite suppor t  such that fj, = 0 for 
Y > Ymax, say. In this case the sum E '  f~h involves only Ymax non-zero y = l  . ~ 

terms, and the number  o f  computa t ions  involved with g,  is of  order  x. 

TABLE I 

C O M P U T I N G  T I M E ,  mmutea seconds T O  O B T A I N  (.Jr F O R  k = 2 W H E N  fy HAS F I N I T E  S U P P O R T  

WITH )'max = 5 0  

m > 0 m = 0 Wdlmot & Panjcr 

200 
400 
600 
800 

1000 
[ 200 
1400 
1600 
1800 
2000 

0 04 
0 09 
0 14 
0 20 
0 26 
0 32 
0 39 
0 46 
0 54 
1 02 

0 04 
0 08 
0 13 
0 19 
0 24 
0 30 
0 37 
0 44 
0 51 
0 59 

0 07 
0 22 
0 45 
I 16 
I 54 
2 41 
3 37 
4 43 
5 54 
7 18 

Also the recursxons (4.3) and (4.5) o f  WILLMOT & PANJER (1987) involve 
summat ions  Z~,_ i. However ,  these sums do not  simplify in the case where f,. 
has finite support ,  and the total number  o f  computa t ions  is therefore o f  
order  x 2 

Table 1 shows for k = 2 thc total comput ing  time as a function o f  x for the 
recurslon o f  WtLLMOT & PANJER (1987) and for the proposed recurslon. For  
the latter, we have treated separately the two cases where m > 0 and m = 0 (see 
Remark  2 2). In the first case we have p rog rammed  the recurslon as presented 
in Theorem l, and the matrix T, has been inverted using STSC A P L  standard 
facilities. In the latter case we have used the formulas (2.14) and (2 15) The 
computa t ions  were done  on a 486,50 m H z  PC. The severity distribution has 
been chosen such that Ymax = 50 It should be noted that the comput ing  time 
does not depend on the actual choice o f  parameters  for the count ing 
distribution, and also not  on the actual choice o f  severity distribution (except 
for the choice o f  Ym~x) The results are also displayed in Figure 1, where the 
comput ing  t i m e s  ( in  seconds) are shown as a function o f  x It is seen that the 
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Computlng time = m>0 
Seconds - A . m = O  

W, l lmot & P a n j e r  

450 

405 

560 

515 

270 

225 

180 

1 35 

90 

45 

0 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

X 

FIGURE l C o m p u t i n g  t ime to o b t a m  ,9,, fo r  k = 2 when  fy has  fimte s u p p o r t  wi th  Yrnax = 50 

total computing time is linear in x for the proposed recurslon and quadratm for 
the recurslon of WILLMOT & PANJER (1987). 

With a hypergeometric counting distribution (k = 2) we have checked the 
recursions for numerical instabilities We consider two different severity 
distributions, 20 

fl,y = e-3Y/ ~ e-3Y, y = 0 . . . .  20. 
y ~ 0  

f2.y = 1/150, y = 0 . . . .  ,149 .  

The dlstribuuon f l  is very short-tailed with a high probabih tyf0  = 0.2837 of  
zero-claims. The second distribution f2 is more heavy-tailed with a " l a r g e "  
average claim size EY = 74.5 For  each of the severity dtstr ibutlonsfi  and f2 we 
have calculated the compound distribution using a hypergeometric counting 
distribution with parameters (s, D, S) (see Example 2), where D = S/4 and 
s =  qS, and (S, q) varies in the set {40, 100, 200} x {0.25,0.5, 0.75}. The 
corresponding average number of  claims, E N =  sD/S = qS/4 is shown in 
Table 2. For  the proposed recursion, m > 0, we have shifted the distr lbutionsfl  
and f2 one step to the right, such that m = I in this case. The check for 
numerical instabihtms was performed by simple graphical inspection. In 
Table 3 we have indicated by a * those cases where instabihtles were found. All 
computat ions were continued until the 99.5% fractlle of  the compound 
dmtnbutions was reached. 
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T A B L E  2 

AVERAGE NUMBER OF CLAIMS, EN = qS/4 

q = 0 2 5  q = 0 5  q = 0 7 5  

S = 40 2 5  5 7 5  
S = 100 6 25 12 5 18 75 
S = 200 12 5 25 37 5 

T A B L E  3 

NUMERICAL INSTABILITIES FOR COMPOUND IIYPERGEOMETRIC DISTRIBUTIONS 
INSTABILITIES ARE INDICATED BY A * 

Seventy  d is t r ibu t ion  f t  Seventy  d~s tnbuuon  f~ 

q = 0 2 5  q = 0 5  q = 0 7 5  q = 0 2 5  q = 0 5  q = 0 7 5  

m >  0 

S =  40 

S =  100 

S =  200 

m = 0  

S = 40 

S = 1 0 0  * 

S =  200 * * * * 

I Wdlmot  & Panjer  

S= 40 

SS= 100 * * 

= 200 * * 

It is noted that no instabtlities were found for the proposed recurston in the 
case where m > 0. The recursion of  WILLMOT & PANJER (1987) was unstable 
for the severity &str ibut ionf2,  when the average number of claims exceeds 10 
(m this case). These instabilities can be attributed the accumulation of 
round-off  errors. The proposed recurslon, when m > 0, was unstable for 
" l a r g e "  values of  S and " s m a l l "  values of  q--Irrespective of which severity 
distribution was used. An explanation for this instabihty can be found by 
examining the expression for gk.x m (2 15) This expression involves subtraction 
of  terms b,g, ,x ,  i < k, and subtraction (of equally large numbers) is known to 
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increase the relative errors. For the hypergeometric distribution it holds that 
b0 = 0 and b2 = 1, whereas bt = S - O - s  (see Example 2). For  the present 
combination of  parameters it holds that b~ = S ( 0 . 7 5 - q ) ,  which assumes its 
maximum when S is " l a r g e "  and q is "smal l  ". In general, we would therefore 
expect that the proposed recursion is unstable for rn = 0 when S - D  ~ s and 
stable when S - D  ~ s. 

It should be noted that all calculations were done with single preosion,  and 
that the results could (obviously) be improved by using double precision. 

Let 

5. CALCULATION OF RUIN PROBABILITIES 

Nit) 

s(t)= ~ z,, 
t=l  

where N ( t )  denotes the number of  claims incurred during [0, t], and 
Z~, Z 2 . . . .  , denote the corresponding claim amounts.  The amounts  Z, are 
assumed to be independent of  N ( t )  and mutually independent with common 
distribution H. The average claim size is denoted by u = EZt.  

If  premiums are paid continuously at a rate B pr. time umt, the maximal loss 
incurred is 

L =  sup { S ( t ) - B t } ,  
t>O 

and the probability of  ultimate ruin is 

~ ( u )  = P(L  > u) ,  

where u denotes the initial capital. Assume that B =  ( l+0)2 /z ,  where the 
relative safety loading 0 is non-negative. It is a well known result (see e.g. 
BOWERS et al., 1986) that if {N(t)} is a t ime-homogeneous Poisson process with 
claims rate 2, then 

M 

(5.1) L ~ L,, 

where M has a geometric distribution 

I 
(5.2) P ( M = m ) = ( I - p ) p " ' ,  p - , m = O ,  1 . . . .  

1 + 0  

and L~, L2,. .  are mutually independent with common density 

(5.3) f ( y )  = (1 - n ( y ) ) / l ~ .  

PANJER (1986) suggested a discrete approximation to f ( y ) ,  and then to 
calculate ~ (u) recursively by means of  the Panjer-recursion, which is valid in 
the case of  geometric counting distributions. 
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Consider now the case where {N(t)), conditionally given A = 2, is a Poisson 
process with claims rate 2. Since, in this case, 

M 

(LIA = 2) -L-~ L,, 
~0 

with M and L, being distributed as before, it follows that 

M' 

L ~ L,, 
t=0 

where L, stdl is distributed according to (5.3), and M '  has a mixed geometric 
distribution. I f  we take a beta mixing function with parameters (~,fl) for p 
appearing in (5.2), it follows that M '  has the Waring &stribution from 
Example 1. Using the same method as suggested by PANJER (1986) for 
discrettzlng the density (5.3), we may then apply Theorem I with k = 1 to 
obtain a recurswe method for calculating ~ (u). 

Note,  that if p is beta distributed with parameters  (c~, fl), then the claims rate 
A ts distributed as (B/It)U, where U ts beta distributed with parameters 
(~, ~). 
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SOME COMMENTS ON THE COMPOUND BINOMIAL MODEL 

BY DAVID C.M. DICKSON* 

The Umversit3, oJ Melbourne 

A B S T R A C T  

We show how ruin probabilities for the classical continuous time compound 
Po~sson model can be approximated by rum probabilities for a compound bmomml 
model We also discuss rum related results for a compound binomial model with 
geometric claim amounts 

K E Y W O R D S  

Rum, compound blnomml model; recurslve calculation. 

1. INTRODUCTION 

GERBER (1988) presented some results for the compound binomial model which 
were analogues of results for the classical continuous time compound Poisson 
model These results were further discussed by SHIU (1989). WILLMOT (1992) 
presented some exphcit results for ultimate ruin probabilities for the compound 
binomial model. 

In this note we dertve some known re,,ults for the compound binomial model 
using very elementary methods. We also present results for a binomial clmm 
numbers/geometric claim amounts model which correspond to results for the 
classical continuous ume Polsson/exponential model Our mare purpose ts to 
consider the condiuons under which ulumate ruin probabdlties for a compound 
binomial model give good approximations to ultimate rum probabthties m the 
classical continuous time compound Po~sson rnodel 

We start by considering some basic results for a general discrete tmle risk 
model. 

2. A DISCRETE TIME RISK MODEL 

We will consider a risk model with the following charactenstlcs: 

(a) X, denotes the aggregate clatm amount in the /-th time interval; 
(b) {X,},~ I is a sequence of  independent and identically distributed random 

variables, each dtstnbuted on the non-negative integers, 
(c) the insurer's premium income per unit time is I ,  
(d) E ( g , ) <  l. 

* Part of  th~s work was completed whde  the author  was  at Henot -Wat t  Umvers~ty, Edinburgh 

ASTIN BULLETIN Vol 24, No I 1994 
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We will assume throughout that the insurer 's  initial surplus, denoted u, is an 
integer. 

The insurer 's  surplus at time t ( t=  l, 2, 3 . . . .  ) is denoted Z(t) and given by 

I 

Z ( t ) = u  + t - ~ X, 
t = l  

The ultmaate ruin probabdity for this model is defined by 

~p(u)=Pr[Z(t)<-O for some t, t = 1 , 2 , 3  . . . .  ] 

This definmon corresponds to that gwen by GERBER (1988) but differs from that 
used by SHIU (1989) and WILLMOT (1992). The reason for choosing this defimnon 
will become clear m Section 5 Note that ruin does not occur at nine 0 if the initial 
surplus is zero. The survival probabdlty is denoted 6 (u) and 6 ( u ) =  I - 'qJ (u). 

We define the severity of  ruin function G(u,y) for u = 0 , 1 , 2 , . ,  and 
y =  1,2, 3, by 

G(u,y)=Pr[T<oo and Z ( T ) >  - y ]  

where T is the discrete tmle of  rum and Is defined by 

T = m m { t  Z(t)<--O, t = 1 , 2 , 3  . . . .  ] 

=oo if Z ( t ) > 0  for t = 1 , 2 , 3  . . . .  

Thus G(u, ~,) represents the probabili ty that ruin occurs and that the deficit at the 
time of  rum is at most v -  l 

We denote by b(k) and B(k) respectively the probabili ty function and distribu- 
tion function of X,. 

3 G E N E R A L  R E S U L T S  

Resu l t  1:  For u = 1 , 2 , 3 ,  

It 

(3.1) 6(u)=6(0) + Y~ d ( k )  l l - B ( u - k ) ]  
/~=1 

P r o o f :  By consldenng the possible aggregate clam1 amounts m the first time 
period we have that 

and for u = 2 , 3 , 4 ,  . 

(3.2) 

6 ( 0 ) = b ( 0 )  b ( l )  

I I - -  ) 

6 ( u - 1 ) = b ( 0 l d ( u )  + Z d ( j ) b ( u - j )  
2=1 
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Hence, for u = 2, 3, 4 , . .  
u - I  u u ~ - I  

6(k)=b(O)  ~ b(k)+ ~ ~ 6(j)b(k-j) 
/ . = 0  ~ = l  l . = 2  J = l  

u u -  I 

=b(O) ~ d ( k ) +  ~ d(k)[B(u-k)-b(O)l 
/ . = 1  ~ = 1  

u - I  

= b (0) 6 ( . )  + ~ 6 (k) B (u - k) 

Thus 

u - I  

b(0) d ( u ) = d ( 0 )  + ~ 6 ( k ) [ l - B ( u - k ) ]  
/ . = 1  

u - I  

= 6 ( . - I ) -  ~, b(k)b(u-k) 
/ . = 1  

(by (3 2)) 

I t -  l 

so that d ( u - 1 ) = 6 ( 0 )  + ~ 6(/,') [I - B ( u -  I - k ) ]  
k = l  

for u = 2, 3, 4, , or eqmvalently, 
u 

d ( u ) = 6 ( 0 ) +  Y~ 6(k) ll-B(u-k)] for 
~.=1 

u = 1 , 2 , 3  . . . .  

Result 2: The rum probabd W from initial surplus zero is gwen by 

(3.3) "qJ (0) = E(X,) 

Proof:  For y=0 ,  1,2, define g(O,y) to be the probabdlty that ruin occurs from 
mmal surplus zero and that the defimt at the ttme of ruin is y Note that when the 
initial surplus is u ( > 0 ) ,  g(0, y) can be interpreted as the probabdlty that the 
surphls falls below tts inmal level for the first ume and by amount y When y=0 ,  
g(0, y) gives the probabdlty that the surplus returns to ~ts mltml level for the first 
ulne without prewously having been below its mmal level Using thts interpretauon 
we can write 

11 

(34) d ( u ) = d ( 0 ) +  ~ 9(0, u - y ) d ( y )  
v = l  

The first term on the nght hand side gwes the probabihty that the surplus never 
falls below its imtlal level. For a fixed value of y (<  u), g(O, u - y )  d (y) gives the 
probaNhty that the surplus falls below its mmal level for the first time to y and that 
surwval occurs from surplus level y. A smular mterpretanon applies when y =  u. 
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Summing over y gives the probability that survwal occurs and that the surplus 
process has not always been above its mmal level. 

By (3.1) we also have 

IJ 

6 ( u ) = 6 ( 0 ) +  ~ d ( v ) l I - B ( u - v ) l  
' , = l  

Since equations (31)  and (3.4) hold for u = 1 , 2 , 3  . . . . .  it follows that 
g(0,  y ) =  1 - B ( y ) .  Equation (3.3) follows since 

(o)= ~ 9(O,y) 
~.=0 

If we wnte  the premium income of I as (1 + O)E(X,),  then 

(3.5) ~ (0) = 1/( I + 0) 

as m the classtcal continuous time model. 
We can eastly obtain further ruin related results when the lmtml surplus is zero, 

starting with the joint  dlstnbution of the surplus prior to ruin and the deficit at ruin. 
We define a new function f(u,x,y) for x = 1 , 2 , 3  . . . .  and y = 0 ,  1,2, as 
fo l lows '  

f(u,x, y)=Pr[T<oz, Z(T)= -y and Z(T- I ) = x ]  

T h u s f ( u ,  x, y)  gives the probablhty that mm occurs from inmal surplus u, with a 
deficit  of  y at the time of  rum and a surplus of x one time umt pnor  to rum. When 
u = 0 ,  the function Is defined for x = 0 ,  1,2, . , and f(O,O,y) simply gwes the 
probabihty that ruin occurs at time 1 with a deficit of  y at ruin. Thus 
f(O,O,y)=b(y+ 1). 

By considering the possible aggregate claim amounts m the first time period we 
can write 

f(u,x,y)= ~ b(j)f(u+l-j ,x,y) for u = O , l , 2  . . . .  x - l , x + l ,  
j = O  

and 

u 

f(u,x,y)= ~ b(j)f(u+l-j,x,y)+b(x+y+ I) 
j=O 

Assuming that 

(3.6) ~ f(u,x, ~,) <oo 
u = 0  

when u = x  
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we have that 
zo ec U 

/ ( u , x , y ) =  ~ ~ b(j) f (u+l- j ,x ,y)+b(x+y+l)  
u=O u=O j = O  

Hence 

(3 7) 

~, f(u,x,y) 2 b(j)+b(x+y+ I) 
u =  I J=O 

f(O,x, y)=b(x + v+ l) 

As an immediate consequence of  this we have that 

~'-I  ~ v - I  

G(0, y ) =  ~ ~., b(x+j+l)= ~., [ I - B ( j ) I  
j = 0  ~=0 j = 0  

and 

Similarly 

g : (0 )=  ~ [ | - B ( j ) I  
j = O  

(38)  P r [ T < c e  and Z(t-I)-<x-Ilu=O]= ~ ~ b(j+y+l) 
J = 0  v = 0  

= ~ [ I - B ( j ) I = G ( 0 ,  v) 
3 = 0  

We have not discussed the condlnons under whmh (3.6) holds The most obvious 
sttuanon when (3.6) holds is when Lundberg's mequahty applies Formula (3 7) 
does however hold when the sum m (3 6) is mfimte 

The results presented above are m terms of  a general &strlbutton B(k) However, 
they are m fact the same as results given by GERBER (1988) and SHIU (1989). This 
follows since the distribution of  X, can be expressed as a compound binomml 
dtsmbuuon with binomial parameters 1 and l - b ( 0 )  and probabdlty function for 
indwldual clmms b ( j ) / [ I  - b ( 0 ) l  for j =  I, 2, 3 . . . .  

4 .  THE B I N O M I A I J G E O M E T R I C  MODEL 

Throughout this section we assume that the distribution of  the number of claims per 
unit time is binomial with parameters 1 and p, and the individual claun amount 
distribution ~s geometric with distribution function P(x) and probabdlty function 

p ( x ) = ( I  -Ix)Ix ' - I  for x = 1 , 2 , 3 ,  . 

Then 

B (k) = I - pat t for k = 0, I, 2 . . . .  
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Since we have assumed that E(X,)< I, the parameters p and ot must be such that 
p/( 1 - ot) < 1 

We can rewrite equation (3.1) as 

l/ 

~ p ( u ) = ~ ( 0 ) -  ~., [ l - ~ p ( k ) l [ l - B ( u - k ) I  
t = l  

and inserting for ~ (0) we have 

V,(u)= ~ ~p(k)[l-8(.-~)l + ~ [I-8(~:)1 
k = l  k = u  

The continuous ume compound Polsson analogue of this equation can be found m, 
for example, GERBER (1979). 

Now insert for B(k) to fred that 

i/ 

(41) ~ ( u ) =  ~ ~(k)pot"-* 
* = 1  

and 

+ Z Pot* 

u + l  oc 

(4.2) ~' (u + 1) = ~z~ ~/: (k) pot" + ' - ~ + ~ pot* 
k = l  * = u + l  

If we multiply (4.1) by or, subtract from (4.2) and rearrange we find that 

ot 
~ ( u +  1) - - -  ~ ( u ) = 0  

l - p  

The solution to this difference equation is 

~'(u)=c \1 _p) 

from which It follows that c = ~ (0). In fact, we can write ~ (u)=  ~ (0)exp { - R u } ,  
where R is the adjustment coefficient for this process. R ~s the umque positive 
number satisfying 

E[exp {R(X, -  I )}]= 1 

and it is an elementary exercise to show that for this model exp {R} =( I  -p)/o~ 
Thus we have a complete analogy with the form of the rum probabd~ty for the 
Polsson/exponentlal model which can be written in exactly the same way (See, for 
example, GERBER (1979)). We note that this solunon matches that g~ven by 
WU,LMOT (1992) for 6 (u), allowing for different defimtions of rum/survwal 

We now extend the analogy to the seventy of  ruin. We can use the function 
g(0,  y)  to write down an equanon for G(u, y) by considering the first occasion on 
which the surplus falls below (or returns to without previously having been below) 
its initial level 
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We have 

G (u, y )  = 

u + v - I  u - I  

g(O,k) + ~ g(O,~)G(.-k,y) 
k = u  t . = O  

u + ) - I u 

9(O,k) + ~ g ( o , .  - k) C ( k  v) 
~ = u  L= 1 

Now ,nsert g(O,k)= I-B(k)=pot ~ to give 

G (u, y)  = 

and 

u + ' ~ - I  u 

pot ~ + ~ pot"-t G(k, y) 
/ , = u  k = l  

u + y  u + l  

G(u+l ,y )= ~ p ~  + ~ p~ '+t- tG(k ,y)  
k = u + l  L = I  

Using the same techmque as before we find that 

OL 
G(u + I, y) - - -  G(u, y)=O 

I - p  

G(u,y)=G(O,y) 

and hence 

v - I  ) - )  I - o r  v 
G(O,y)= ~ g(O,k)= ~ p o ~ ' = p - -  for 

k = o  ~=0 1 - o r  

Finally 

and so we can write 

G(u,y)=(I -oe") P =P(y)~O(u) 
I - , ~  t,l - p  j 

y = 1 , 2 , 3 ,  

Thus the form of  G(u, y)  ~s ~dentlcal to that for the Poisson/exponentml model. 
(See, for example,  DICKSON (1992)). However,  unlike the Polsson/exponential 
model, the distribution of the defictt at the time of rum is not identmal to the 
individual claim amount distribution. The deficit is geomemcal ly  d ismbuted with 
parameter oe, but on 0, I, 2 . . . . .  since G(u, y)/~(u) gives the probablhty that the 
deficit  is less than or equal to y -  l, gwen that ruin occurs, and so 

Pr[ -Z(T)<y lT<oo]=l -o t  y for y = 1 , 2 , 3 , . .  

Let us now consider the sltuatmn when u = 0  further. We have already noted that 
the deficit at the nine of rum ~s geometrical ly distributed on 0, 1 , 2 , . . .  with 
parameter o~, and by (3 8) the d lsmbunon of the ,surplus at time T -  I t s  the same. 
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The conditional probabili ty function of  the deficit at T and of  the surplus at T -  1, 
conditzonlng on the event that ruin occurs, ~s 

g(0,  x ) = ( l -  c~)od, x = 0 ,  1.2, 

If we consider the conditional d~strlbutlon of the surplus one time umt before ruin 
and of  the deficit at ruin, conditioning on the event that ruin occurs, and again use a 
tilde to denote a condmonal  probabili ty,  then 

b ( x + v + l )  p ( l  - oe)o? +y g(0,  v) g(0,  ~,,) f (0~ ,  ,,) = " - 
p (0) p/( I - o~) 

so that, condmonally,  the surplus one time umt before ruin and the deficit at ruin 
are independent and identically distributed This situation also exists m the 
Polsson/exponentlal  model where the surplus prior to rum and deficit at rum are 
independent, identically distributed variables, and the conditional distribution of 
the claim causing ruin is Gamma(2)  

Finally, if we define the condmonal  probability function of  the claim causing ruin 
as h (0, z) for z = 1, 2, 3 . . . .  then 

: - I  z - I  

h(0, z )=  ~ / ( 0 , x , z - x - l ) =  ~ ( l - ~ ) 2 ~ : - ' = z ( I - o ~ ) ~ , ~  =-' 
~ = 0  ~=0  

The conditional distribution of the clmm causing ruin IS thus negative blnomml with 
parameters 2 and 1-o~, shifted one umt to the right 

5 .  C A L C U L A T I O N  OF RUIN PROBABILITIES 

GERBER (1988) states that the compound binomial model can be used to approxi- 
mate the continuous tmae compound Polsson model. In this section we mvestlgate 
this statelnent by considering ultimate ruin probabilities 

To calculate ruin probabilit ies for the compound binomial model, we will adapt 
the framework described by DICKSON and WATERS (1991, Sections I and 8) who 
use a dl,,crete time compound Po~sson model to approximate a classical continuous 
time compound Poisson model under whzch both the Po~sson parameter and mean 
mdivldual claim amount are I. The characteristics of this model are as follows 

(a) individual claim amounts are distributed on the non-negative integers with 
mean /3, w h e r e / 3 ( >  1) is an integer; 

(b) the Potsson parameter for the expected number of  clmms per unit time is 
I / l ( l  + 0)/31; 

(c) the premium income per unit time is 1. 

We will replace this discrete compound Polsson model by a compound binomial 
model. We simply change (b), replacing the Polsson dlsmbution by a binomial 
distribution with parameters 1 and I/[(1 + 0)/31. For reasons given by DICKSON and 
WATERS (1991) we can regard g,(/3u) as an approximation to ~, . (u) ,  the 
ultimate rum probabdlty for the continuous compound Polsson model. Note that the 
definition of  ~p(u) given in Section 2 corresponds to that used in this approxmla- 
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tlon. In effect all we are doing is approxunatlng a discrete compound Pmsson model 
(which approxmlates a continuous compound Poisson model) by a compound 
binomial model The approximation to the discrete compound Polsson model ~s 
reasonable for large values of /3, since the Polsson distribution with parameter 
I/[(I +0)/31 is then very close to the approximating bmomml distribution. For 
example,  l f f l =  100 and 0 = 0  I, then the probabdlty of  more than one clam1 per unit 
time under the compound Polsson model is 0.00004. Note that there is one small 
difference between this formulation of the compound binomial model and that used 
by previous authors In this formulation, mdivtdual claim amounts are distributed 
on the non-negatwe integers rather than the posl twe integers The reason for this ~s 
sunply that in order to approxtmate ruin probabdmes  in the classical continuous 
ume compound Po~sson model, we have to dlscretlze the continuous individual 
claim amount distribution in that model In our first two exarnples, we will use the 
dlscretlzatJon proposed by DE VYLDER and GOOVAERTS (1988), which dlscretlzes 
the distribution on the non-negatwe integers If we bad chosen a discretizatlon on 
the positive integers then our model would correspond to that used by previous 
authors 

We wdl calculate rum probabdmes  recurswely from the formulae 

(5.1) 7 J ( 1 ) = b ( 0 ) - '  [ q J ( O ) - I  +B(O) 

and for u = 2 ,  3, 4, .. 

(5.2) ~ ( u ) = b ( 0 )  - I  ~ p ( u - l ) - I + B ( u - I ) -  Z b ( j ) ~ p ( u - j )  
j =  

These formulae correspond to GERBER'S (1988) formulae (5) and (6) In each of the 
following examples the prem|um loading factor, 0, is 10% 

Example 1:  Let the individual clam1 amount d~stnbut|on in the continuous time 
model be exponential with mean I. Then it is well known (see, for example,  
GERBER (1979)) that 

1 
V), (u) = - -  exp ( - Rc u ) where R,. = 0/( I + O) 

1 + 0  

Table I shows exact and approximate values of  We(u) The approximate values 
are calculated from (3.5), (5 I) and (5 2). The legend for this table is as 
follows 

(1) denotes the exact value of  "q:, (u) ;  
(2) denotes the approximate value when f l = 5 0 ,  
(3) denotes the ratio of the value in (2) to that m (1); 
(4) denotes the approximate value when f l=  100, 
(5) denotes the ratio of the value m (4) to that m (1); 
(6) denotes the approximate value when /3=200;  
(7) denotes the ratio of  the value m (6) to that m (I) .  
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TABLE 1 

(SEE EXAMPLE I FOR DE'IAiLS) 

u=O 
u=2  
u = 4  
u=6  
14~8 
u= 10 
u=20 
u=40  
u = 80 

(I) (2) (3) (4) (5) (6) (7) 

0 9091 0 9091 I 0000 0 9091 I 0000 0 9091 1 0000 
0 7580 0 7567 0 9983 0 7573 0 9992 0 7576 0 9996 
0 6319 0 6299 0 9967 0 6309 0 9983 0 6314 0 9992 
0 5269 0 5243 0 9950 0 5256 0 9975 0 5262 0 9988 
0 4393 0 4364 0 9934 0 4378 0 9967 0 4386 0 9983 
0 3663 0 3632 0 9917 0 3647 0 9959 0 3655 0 9979 
0 1476 0 1451 09835 0 1463 09917 0 1470 09959 
0 0240 0 0232 0 9673 0 0236 0 9836 0 0238 0 9918 
0 0006 0 0006 0 9357 0 0006 0 9674 0 0006 0 9836 

We note the following points about Table 1' 

(a) When u > 0, the approximate values are less than the exact ones. This is to be 
expected since the compound binomial model excludes the posslbdlty of  
mult,ple claims per unit nine. 

(b) As the value o f f l  increases, the approximate values become closer to the exact 
ones. This is as expected for reasons gwen by DICKSON and WATERS (1991, 
Section 2) 

(c) The larger the value of  u, the poorer the approximation becomes. 
(d) Even with a large value of  fl, the approximate values do not always agree with 

the exact values to four decimal places 

Example 2: Let the individual claim amount d~strlbutton in the contmuous time 
model be Pareto with parameters 2 and 1. Table 2 shows exact and approximate 
values of ~ ,  (u) (The exact values have been calculated using DICKSON and 
WATERS' (1991) algorithm and are " e x a c t "  at least to three decimal places) The 
legend for Table 2 ts the same as for Table 1 The only additional comment that we 
would make about Table 2 is that, for the same magmtude of  rum probability, the 
approximate values are shghtly closer to the exact values than m Example 1 

TABLE 2 

(SEE EXAMPLE 2 fOR DETAILS) 

u=O 
u=2  
u=4  
14=6 

u= 10 
u = 20 
u = 4 0  

u=80  

(I) (2) (3) (4) (5) (6) (7) 

0 9091 0 9091 ! 0000 0 9091 [ 0000 0 9091 I 0000 
08102 08097 09994 08100 09997 08101 09998 
0 7498 0 7491 0 9991 0 7494 0 9996 0 7496 0 9998 
07021 07014 09990 07018 09995 07020 09997 
06620 06613 09989 06617 09994 06619 09997 
0 6271 0 6264 0 9988 0 6267 0 9994 0 6269 0 9997 
0 4981 0 4974 0 9985 0 4978 0 9992 0 4980 0 9996 
0 3479 0 3473 0 9982 0 3476 0 9991 0 3477 0 9995 
0 2040 0 2036 0 9981 0 2038 0 9990 0 2039 0 9995 
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In Section 4 we discussed the bmonual /geometnc model as the discrete analogue 
of the Poisson/exponent|al model. In Example 3 we illustrate how ruin probabilities 
for the binomial/geometric model can be used to approximate those for the 
Polsson/exponenUal model. We have included this example purely for interest as 
the approach does not generahse to other compound Polsson models. 

Example  3 :  We will use the same framework as in Examples 1 and 2, but will 
dtscret~ze the exponentml mdwldual clmm amount distribution as a geometric 
distribution with mean/3. This dlscretlzatlon is a reasonable one for large values of  
/3 since when/5 is large 

P ( x ) =  1 - ( 1  - / 3 - 1 ) ' = 1 - e x p {  -x//3} for x = 0 ,  1,2, 

As noted in Secuon 4, for the geometric individual claim amount distribution, 

( (1+0)/3-1)  
7;(/3u)= I+01 e x p ( - R / 3 u )  where R = l o g e ( . ( ] + 0 - ~ - / )  

It ~s easy to show that 

0 
lim [JR = -  
t~--,~ 1 + 0 

so that for large values of /3, ~ '(f lu)  should gwe a good approxlmauon to 
~pc(u). 

0 0955 

0.095 

0 0945 

0.094 

0 0935 

0 093 

0092S 

0.092 

O.091S 

0091 

00905 

o 1oo 200 3oo ,~o 5oo f~o 700 8oo 900 tooo 

FIGURE. I fiR a s  a function ot/5 when 0 ~s 10% 

Figure 1 shows the function fir (when 0 is 10%) and Table 3 shows exact and 
approximate values of ~Pc(u). The legend for Table 3 is as follows" 

(1) denotes the exact value of  ~0~(u); 
(2) denotes the approximate value when f l= 100; 
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(3) denotes the ratio of  the value m (2) to that in (1), 
(4) denotes the approximate value when f l= 1,000; 
(5) denotes the ratio of the value m (4) to that m (1), 
(6) denotes the approximate value when /3= 10,000, 
(7) denotes the ratio of  the value in (6) to that in ( I )  

TABLE 3 

(SEE EXAMPLE 3 fOR DETAIl.S) 

u=O 
11=2 
u=4  
u=6  
it=8 
u=10 
u=20 
It = 40 
u = 80 

(t)  (2) (3) (4) (5) (6) (7) 

09091 09091 I 0000 09091 I 0000 09091 I 0000 
0 7580 0 7566 0 9982 0 7578 0 9998 0 7579 I 0000 
0 6319 0 6297 0 9965 0 6317 0 9997 0 6319 I 0000 
0 5269 0 5241 0 9948 0 5266 0 9995 0 5269 0 9999 
0 4393 0 4362 0 9930 0 4390 0 9993 0 4393 0 9999 
0 3663 0 3631 0 9913 0 3659 0 9991 0 3662 0 9999 
0 1476 0 1450 09826 0 1473 09983 0 1475 09998 
0 0240 0 0231 0 9656 0 0239 0 9965 0 0239 0 9997 
0 0006 0 0006 0 9323 0 0006 0 9931 0 0006 0 9993 

Table 3 shows the same features as Tables I and 2 The great advantage of  using 
the geometric dlscretlzatJon ~s that approxmlate values for ~,  (u) can be calculated 
from a formula This allows us to use very large values for/3, and shows that even 
with a large value of /3  0.e 10,000) the approximate values do not all match the 
exact ones to four decimal places By contrast, if b(x) and B(x) m (5 1) and (5.2) 
are values from a COlnpound Polsson distribution, then a relanvely small value of/3 
produces the same degree of  accuracy. (See, for example, DICKSON and WAT- 
I:RS (1991, Table 5)). 

We conclude that ~t is possible to successfully approximate rum probabilities for 
the classical continuous time compound Polsson model by those for a compound 
binomial model The mare advantage m using the compound binomial model ~s that 
it is not necessary to perform recurslve calculations to find the probablhty functmn 
b (x) to use formulae (5.1) and (5.2). However, this advantage is outweighed by the 
fact that a large value of/3 is required when using the compound binomial model in 
order to obtain a good approxlmatmn to V), (u). 
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LIMITING DISTRIBUTION OF THE PRESENT VALUE 
OF A PORTFOLIO 

BY GARY PARKER 

Simon Fra~er Umvers'ttv 

ABSTRACT 

An approximation of the distribution of the present value of the benefits of a 
portfolio of temporary insurance contracts is suggested for the case where the size 
of the portfolio tends to infinity. The model used Is the one presented in PARKER 
(1922b) and involves random interest rates and future hfenmes Some justifications 
of the approximation are given. Illustrations for hmttmg portfolios of temporary 
insurance contracts are presented for an assumed Ornstem-Uhlenbeck process for 
the force of interest 

KEYWORDS 

Force of interest, Ornsteln-Uhlenbeck process, Portfolio of pohcles; Present value 
function; Limiting distribution 

I .  INTRODUCTION 

When considering random mterest rates in actuarial funcnons, a question of 
particular interest is the distribution of the plesent value of a portfolio of policies 
Studying such distributions could be very useful in areas such as pricing, valuation, 
solvency analysis and reinsurance. 

Some references which considered stochastic interest rates in actuarial functions 
are BOYLE (1976), W~LKIE (1976), WATERS (1978), PANJER and BELLHOUSE (1980), 
DEVOLDER ( ] 986), GIACOTTO (1986), DHAENE (1989), DUFRESNE (1988), BEEKMAN 
and FUELLING (1990), PARKI~R (1992b). 

Recently, DUFRESNE (1990) derived the distribution of a perpetuity for i.i d 
interest rates. FREES (1990) recurswely expressed by an integral equation the 
distribution of a block of n-year annumes for i i d interest rates. 

This paper, taken for the most part from the author's Ph.D thests (PARKER 
(1992a)), presents an approximation of the hmiting distribution, as the number of 
policies tend to infinity, of the average present value of the benefits for a specific 
type of portfolio of insurance contracts Although, theoretically, the approach may 
be used for any stochastic process for the interest rates, tt is more convenient for 
Gausslan processes The approximation is justified by two correlation coefficients 
which happen to be relanvely high mainly because of the defininon of the present 
value function. Some illustrations of the distribution function of the present value of 
portfolios using the Ornstem-Uhlenbeck process are presented Finally, the 

AST1N BULLETIN. Vol 24. No I. 1994 
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moments of  some approximate distributions are compared with the corresponding 
exact moments 

2. A PORTFOLIO 

Consider  a portfolio of  temporary insurance contracts, each with sum insured 1, 
issued to c lives insured aged x. Let Z (c )  be the random present value of the 
benefits of  the portfolio 

PARKER (1922b) used a definition of 2;(c) involving a summation over the c 
contracts of  the portfolio. That is 

c 

(2.1) Z ( c ) =  ~ Z , ,  
I = l  

where Z,, ~s the present value of  the benefit for the ith life insured of  the portfolio. 
This definmon ts convement for calculating the moments of  Z (c )  because it ms 
possible to simplify the expressmns for these moments under the assumption that 
the future lifetimes of  the c policyholders are mutually independent. 

Another definition which ms eqmvalent appears to be more appropnate  for 
studying the hmltmg distribution of  the random variable g ( c ) .  

Instead of summing over the c policies, one could consider summing the present 
value of the benefits in a given year over the n pohcy-years  of the contract 
Algebraically,  we have 

Iw- 1 

Z . , ( c ) =  2 C, e - ' O + l ) ,  
t=o  

(2.2) 

where 

I 
l + l  

(2.3) y (i + 1) = 6, ds, 
0 

de is the force of interest at time s and c,,  : = 0, 1, .. , n - 1 is the random variable 
denoting the number of  pohcms where the death benefit ~s actually paid at time 
t + 1. We let c,, be the number of lives insured surviving to the end of the term, n 
Note that the sum of  the c, 's  from t equal 0 to n is c, the total number of pohcies m 
the porffoho. Thus, 

(24)  ~ c, = c 
I=0  

When studying Z,(c), we will assume that the future lifetimes of the lives insured 
are mutually independent and independent of  the forces of interest {d~}~ >_ 0. In this 
case, the {c,}'/= i is multinominal We will also assume that the discounting of all 
the benefits for the policies in the portfolios is done with the same Gausslan forces 
of  interest. 

In the next sectmn, we consider hmmng portfohos, i.e portfohos where the 
number of contracts tends to infinity. 



L I M I T I N G  D I S T R I B U T I O N  O F  T H E  PRESENT V A L U E  O F  A P O R T F O L I O  49 

3. L I M I T I N G  D I S T R I B U T I O N  

Using (2.2), one could lntmtively derive that the average cost per pohcy (defined as 
Z ( c ) / c )  as the number of such policies tends to mfimty would simply be a 
weighted average of the present value functions from year I to year n. The weights 
being the expected propomon of contracts payable m each year, Le. ,~q~ The 
probabdlstlc version of  th~s mtUltton is presented in Theorem I 

T h e o r e m  1 : As c tends to infinity, the average cost per policy for a portfoho of 
n-year temporary insurance contracts tends m distributton to (see also proposi- 
tion 5 of FREES (1990)) 

t ; -  I 

t = 0  

P r o o f :  This result is true if 

n - I  

(3 2) Z ( c ) / c - ~ , , =  ~ (c,/~ - ,~q,) e -.'~'+ll 
t = 0  

tends in probabili ty to 0. 
We use the well-known result that if X tends m probabili ty to 0 and Y has fimte 

mean and variance, then X Y tends m probabdlty to 0 (see, for example,  CHUNG 
(1974, p 92)). 

Here, c, is bmomtal (c, ,,q,) so, ( c , / c -  ,,q,) tends m probab,l l ty to 0 for each t. 
And as e -~'l'+l~ Js log-normally d~stnbuted with fimte mean and varmnce, it 
follows that 

tends m probabdtty to 0 

n -  I 

~ (c,/c-,~qO e 
t=O 

- ' ¢ i : +  I) 

[]  

Now, one could theoretically obtain the density function of  ~,, by integrating the 
jomt  density functton of  the y ( t ) ' s  over  the appropriate domain. The expressmn 
would look hke the following 

Ve ~2 YL 

where Y=(y(I),y(2), . , y ( n ) )  and is multivariate normal 
But this approach is not possible from a practical point of view as it is almost 

impossible to evaluate (3 3) even for n as small as 5 In the next secuon, however, 
we derive a recursive equatton from whmh one can approximate the dtstnbut~on 
of ~.. 
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4. APPROXIMATION 

Since ~,, Is a summation over the policy-years, it is easy to break it down into the 
sum of ~,_ i and a term for the nth policy year. The recurslve equation for ~,z is then 
given by : 

n -  I n - 2  

~, '= 2 ,'q, e - " l ' + l ) =  2 ,q, e-" l '+ ' l+, , -J ,q ,  e - ' ( " )  
= 0  ~ = 0  

(4.1) ~,, = ~,~_ i + . _  i,q, e - 'u ' l  

Let z, be a possible realization of z, and vj be a possible realization of y(j) 
Let the function g,,(z.,  y,,). a somewhat unusual function based on the dlstrlbu- 

non of ¢,~ and the density function of y(n).  be defined as: 

(4.2) g,, (z,,, y,,) = P(~,, --< z,,) f,'u,I (y,,l~,, --< z,,), 

or equivalently, 

(4 3) g,,(z,,, y,,) = f ,  u,l(Y,,) P(~,, <- z,,ly (n) --.y,). 

From this last definition, it fol lows Immediately that the distribution function of 
~, is given by: 

F ~ . ( z , , ) = [ "  g , ( z , , . y , , ) d y e ,  (4.4) 
d -  ~c 

where the funcnon g, (z,,  Y,,) may be calculated with a high degree of accuracy 
from the following recurslve equation 

(45)  g , , ( z , , , , , , , ) ~ I i ~  f , , , , ) ( y , , l y ( n - l ) = y , , _ , )  x 

- -  Vn 7 x g , , - i ( z , , - , , - i Jq ,  e , ) , - i ) d y , , - i  

with the starting value '  

(46)  g j ( z , , y , ) =  ~b~ ~ / - i - ~  ) If z,-->q~ e - "  

0 otherwise 

We use the notation ¢ ( )  to denote the probability density function of a zero 
mean and un,t variance normal random variable. Note also that given that y ( n -  l) 
equal y,,_ ~, y(n)  is normally distributed with mean 

(47)  E [ y ( n ) t y ( n -  l ) = y , , _ t ]  

coy (y(n) ,  y(n  - 1)) 
=Ely(n)]  + { .v , , - i -Ely(n-1)1}  

Wly(n)l 
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and variance 

(4.8) V i y ( n ) l y ( n - l ) = y , , _  ~l = Vly(n) l  - 

( s e e ,  for example, MORRISON (1990, p .  9 2 ) )  

coy 2 ( y ( n ) , y ( n -  1)) 

V l y ( n -  1)] 

To derive (4.5), we start by noting that from ( 4 . 1 ) ,  we have that" 

(49)  P(~,, --< z,,ly(n) = y . )  = P(~._  l <- z , , - , ,_ i,q, e-Y"IY(n) =Y.)  

Now using (42),  (4.3) and (4.9), we have 

(4.10) g.(z,~.Y, ,)=P(~,,- i  <--z,,-.-i~q, e -y") x 

x f~( , )(Y, , l~, , - I--<Zn-, , - t tq ,  e - " ' )  

The conditional probability density function of y(n) In (4.10) may be written as: 
(MELSA and SAGE (1973, p. 98)) 

(4.11) f, . t ,)(y,~l~,,_l--<Z,,-, ,-itq, e - " )  

= I i ~ f w ' ) ( y ' l y ( n - I ) = Y " - " ~ " - ' < - - z " - " - " q '  e-~") x 

x L,(,,_ii ( y , , _ l l ~ . _ ] - ~ z , , - , , - i ~ q ,  

Equation (4.3) imphes that 

(412)  f,,i,,_l)(V,,_ll:£,,_t <--Z,,--,,_llq, e-Y") - 

e-"")  dy,,_ i . 

g , ,  _ j ( z , ,  - ,, _ l l q ,  e - '" .  y , ,  _ i )  

P ( ~ ' , _  ] - <  z , ,  - ,, _ J l q ,  e - " )  

If we now make the following approximation (see the next section for some 
justifications) 

(413)  f ,~, , )(y , , ly(n-l)=y, ,_~.~, ,_t--<z, , - , ,_~Lq,  e .... )_= 

--f~ t,,)(y,,ly ( n -  I) =y,,_ ,), 

then equation (411)  becomes 

(4 14) f , t , , l(y, , l~._l <-- Z,, - . -  t~q, e-"°)  ~ f , , ( ,~)(y , , ly(n-1)=y._  0 x 

9 . -  i (z,, - . -  IIq, e - ' ° .  Y,,- i) 
x dy,,_ I 

P(~,,-I <- Z,,-,,-l~q., e -~") 

Finally substmltlng this last expression (4.14) into (410),  we obtain (45).  
To obtain the starting value (4.6), we simply have to note that: 

-y(1) (415)  ~l =q,  e 
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and that 

(4 16) 

Then, since 
(4.17) 

we have that 

g , (z l ,Y,)  = P ( ~ t - < z t l y ( I ) = y , )  f~t,l(V,) 

=P(~ ' I - -<z l lv( l )=v , ) .  ~p(:v,-Ely(l)])V[3~(li] ~ 

~,=q, e - "  If y ( I ) = y , .  

(4 18) P(~l ~ Z i I v ( I ) : Y ' ] ) = I  l if zl-->q,e 
(o otherwise 

Finally, by combining (4 18) and (4 16). we obtain (4 6) This completes the 
derivation of (4 5) and (4.6) 

Before doing numerical evaluations of approximation (4.5). it is ,nportant to 
study In greater details and to justify the approximation (4 13) involved here This 
is done in the next section. 

5. JUSTIFICATIONS 

Looking at the steps leading to (4.5), we note that the result ~s not exact due only to 
approxlmatmn (4.13) made m order to obtain a recurslve equation revolving only 
known quanutles This approximation may be justified theoretically by looking at 
two particular correlation coefficients, one of which vahdates the approximation for 
large values of n and the other for small values of n 

5.1 Correlat ion between y (n) and y (n - 1) 

From the subject of multivariate analysis, we know that the approximation (4.13) 
will be acceptable if y(n) and y ( n -  I) are highly correlated (see, for example, 
MARINA, KENT and BmBY (1979, Section 6.5)) This is true since If they are highly 
correlated, knowing y(n-  I) would e×plaln much of y(n). Now if thls is the case, 
introducing any other variable, correlated or not with v(n), in the regression model 
to further explain y(n) cannot improve the situation much. 

Looking back at the definition ofy(n)  (see (2.3)) it is clear that y(n - l) and v(n) 
must be highly correlated. Their correlation coefficient will be given by: (Ross 
(1988, p. 280)) 

coy (y(n), y(n - 1)) 
(5.1) O(y(n), y ( n - 1 ) ) -  

{V[y(n)l V [ y ( n - I ) ] }  1:2 

Note that if the force of interest is modeled by a White Noise process, i.e. 

(5.2) 6, N(ZI. 2 
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where ~t is understood that its integral, y(t), is a Wiener process, it can be shown 
that, the expected value of y ( t )  Is 

(5 3) E [ y ( t ) l = A  t 

and ~ts autocovarmnce funcuon ~s 

(5 4) cov (y(s ) ,  y( t ) )  = o,2~, mm (s, t) 

If the force of  interest i,; modeled by the following Ornstem-Uhlenbeck 
process. 

(5.5) d~t = - o~ (6, - ~) dr + ~ d W , ,  

with initial value 6o, then y( t )  has an expected value of  

(5.6) E l y ( t ) l = 6  r + ( 6 o - 6 )  

a n d  its a t t t o c o v a t l a n c e  f u n c t i o n  is  

0 2 
(5  7 )  COV ( y ( ~ ) ,  y ( t ) )  = - -  m m  ( s ,  t )  + 

o~ 2 

O 2 
+ - - 1 - 2  + 2 e - ~  + 2 e - ~ - e - " l ' - ' ~ - e - " ° + ' )  l 

2 ~  3 

(see, PARKER (1922b, equations 38 and 39)) 
The correlation coefficients between y(n) and y(n - I) for different values of  n, 

when the force of  mtere,,t is modeled by a White Noise (see (5 2)) and when it ts 
modeled by an Ornstem-Uhlenbeck process (see (5.5)) with parameter o~ = .  I, 2 or 
5 are presented m Table I 

T A B L E  I 

CORRI:LATION COEI I-ICIEN I BETWEEN V (It) AND y (It -- I ) 
FORCE O1" IN1EREST AS WHIIL NOIM AND ORNSTEIN-UIILENBFCK PROCESSES 

. While Noise 
Orns tem-Uhlenbcck  

t~= I ~ =  2 ~ =  5 

2 7071 8773 8707 8516 
3 8165 9474 9423 9270 
4 8660 9701 9659 95~5 
5 8944 9804 9769 9664 
6 9129 9860 9829 9739 
7 9258 9894 9867 9788 
8 9354 9916 9891 9821 
9 9428 9931 9909 9846 

10 9487 9942 9922 9865 
20 9747 9980 9969 9940 
40 9874 9992 9987 9972 
60 9916 9995 9991 9981 
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Results for the White Noise process are presented here because this process 
involves ~.~ d. forces of  interest, therefore, leading to the lowest correlation 
coefficients Results for the Ornstein-Uhlenbeck process are presented because it ~s 
the process used for dlustrat~on purposes m the next section. 

Note that the correlation coefficient between y(n) and y(n - I) Is not influenced 
by the parameter o,o of  the White Noxse process. For the Omsteln-Uhlenbeck 
process, the parameter 60, 6 and cr have no incidence on the correlation 
coefficients 

Table 1 clearly shows that y(n) and y ( n - 1 )  are very highly correlated, 
especmlly for large values of  n. Therefore, approximation (4.13) made to obtain the 
recursive equation (4.5) should be acceptable 

Another correlation coefficient could also JUStify approximation (4 13), indepen- 
dently of  the one discussed here This is the subject of the next section. 

5.2. Correlation between e-Y~"J and ~. 

Again from the subject of multivariate analysis, we know that the approximation 
(4 13) would also be acceptable ff y(n - I) and ~,,_ ~ contained about the same 
useful reformation to explain ~,(n) (see, for exemple, MARDIA, KF:NT and BIBBY 
(1979. Section 65)) .  This may be investigated by studying the correlation 
coefficients between e - '  I,,-~) and ~,,_ 

If e - ' ° ' )  and ~,, are highly correlated, the approximation would be reasonable. 
The correlation coefficient between these two random varmbles is: (Ross (1988, 
p. 280)) 

cov (e-'C"~, ~,,) 
(5.8) ~o (e - ' ~"), ~,,) = - -  

{ V l e - ' l " l  Vl~,,ll 1/2" 

Using (3.1), we obtain 

(5.9) ~o (e-'{"J, ~,,) = 

I t -  I 

2 
I = l )  

{ Vie-~"11 
i=(1 j=O 

,~q, coy (e - ' ("), e - ,.i, + i)) 

n-I t 5 Y~ ,,q, jIq, coy (e - '~ '+J) ,e  -'~j÷l)) 

where coy (e - '1'), e -'11)) is given by 

(510) cov (e -~ ( ' l , e - ' l J ) )=Ele  -''~'~ e - ' l J q - E [ e - ' " ~ l  Ele-"~J)l 

Note that ff the force of  interest is Gauss~an, the expected values revolved m 
(5.10) are simply the expected values of  lognormal variables (see PARKER (1992b, 
Section 6)). 

The correlation coeff,clents between e - '  ~'J and ~,,, for different values of n, 
when the force of interest is modeled by a White Noise or an Omsteln-Uhlenbeck 
process with particular parameters are presented m the following table. The 
mortality rates used are the male ultimate rates of the CA 1980-82 mortahty table 
(CowARD (1988, pp. 227-231 )). 
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TABLE 2 

CORRI~LAIION COEJ I-ICIENF BETWEEN e -  ~ (n) AND ~,t 
FORCE OF INILRESr AS WHITE NOISE AND ORNSTEIN-UIILENBECK PROCE.SSES 

55 

White Nozse 
A = 06, cr~,= 01 

~ = 3 0  

Ornstem-Uhlenbeck ,'3 = 06, b~l = I ,  ot = I 

o =  01 a = 3 0  o'= 02 a = 3 0  o =  01 .~=50 

I I 0 0 0 0  I 0 0 0 0  I 0 0 0 0  I 0 0 0 0  
2 9447 9899 9899 9912 
3 9199 9824 9824 9849 
4 9064 9770 9770 9802 
5 8980 9728 9727 9765 
6 8925 9693 9692 9735 
7 8890 9665 9663 9708 
8 8868 9642 9638 9684 
9 8856 9622 9617 9662 

10 8851 9605 9599 9641 
20 8969 9535 9518 9455 
40 8999 9368 9321 8693 
60 8486 8730 8494 - -  

Note that o ( e  --~(~), ~ )  is 1 This imphes that approximation (4.13) ~s exact for 
n = 2. The correlation coefficients of Table 2 suggest that the approximation should 
be good, especially for small values of n. 

Combining the two conclusions drawn from the results presented m Table I 
and Table 2, we note that the approxmlat]on should be acceptable for all values 
o f  n 

N o w  t h a t  a p p r o x m a a t l o n  (4  5)  a p p e a r s  to  b e  j u s t i f i e d ,  w c  m a y  u s e  i t  t o  f i n d  t h e  

dlstnbuuon of  ~,,. Equations (4 4) and (4 5) may be computed by numerical 
integration or by some discret[zation method Although some methods are certamly 
more accurate than others, it is not our intention in this paper to discuss or compare 
the possible methods In the next section, we present some results obtained by an 
arb~trardy chosen dlscretlzatlon of (4.5) 

6. ILLUSTRATIONS 

Figure 1 Illustrates the cumulative distribution funcuon of ~',,, n = 5, 10, 15, 20 
and 25, the Iim|tlng average cost per policy for temporary insurance contracts ~ssued 
at age 30 and with the force of interest modeled by a Ornsteln-Uhlenbeck process 
with parameters ~ = 06, b 0 = . l ,  o~=.1 and o = . 0 1 .  The mortality rates are again 
the male ultimate tales of  the CA 1980-82. 

The range of possible values for ~5 is much shorter than the one for ~25. This is 
due to the fact that with a hmltmg portfoho, there is no fluctuation due to mortahty, 
and therefore, all the possible variations in the random varmble ~,, are caused by the 
force of  interest. When there are only five years of  fluctuating force of  interest 
revolved, ~t is clear that the results will be less spread than when there are 25 years 
of fluctuating force of  interest. Finally, it should be obvious why ~25 takes larger 
values than ~5- 
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hGURL I Cumulauvc d~,,trtbut,on funcuon ol ~,, 
Temporary insurance pohcJes issued al age 30, Orn~tem-Uhlenbcck 6 = 06 J o =  I ~ =  I o =  01 

5 years 
I 0 year,~ 
15 years  

- -  - -  20 years 
- -  25 years 

There is no doubt that the dlstrlbut~on of ~,, provides very useful mformauon m 
solvency problems. One may also be interested m using such reformation for 
pricing or valuation of a portfoho of  insurance pohcles. In this regard, the relevant 
mformauon is contained m the right tall of the d~stnbtmon of ~,,. 

Table 3 contains some numerical values of  the right tall of the distnbuuons of ~5 
and ~25 dlustrated in Figure 1 

From Table 3, we know, for example,  that a company charging a single prcnuum 
of  005602 to each hfe insured of a very huge portloho of 5-year temporary 
contracts wdl meet ~ts future habdmes wffh a probablhty of  about 995. 

T A B L E  3 

RIGHT TAll. OI "IIIL APPROXIMArl:  DISTRIBUTION OF ~ . ,  5 AND 25 YI ARq II MPORARY INSURANCE ISSUI:D A'] 

AGE 30, ORNSFEIN-UHLkNBECK f ) =  0 0  {~o= I ~ =  I O =  01 

5 5,ears temporary 25 years temporary 

Zs r ~  (zs) zz~5 F~2, (z.2s) 

~)5381  940609  036135 966095 
005436  972183 038092  982494  
005547  992830  040048 989498 
005602  995229  042004 994551 
005823  997927  049827 999505 
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7. VALIDATIONS 

A validation of the results described above has been done by companng the exact 
first three moments of ~,, with its estimated first three moments from the 
approxmmte distribution. 

A dlscrenzanon of the variable (~,, has been used to estunate the moments of  the 
approximate &strlbutlon. Algebramally, the ruth moment of  ~,, about the ongm has 
been approximated by the following equation. 

h 

,=o ~, 2 ) " 

where z,,[i], t = 1, 2 . . . . .  h is the ith ordered value of ~,, at which F~:,. was evaluated. 
For the illustrations presented above, h was chosen to be 25. To deal with the 
extremmes of the d,stnbunons the following values were arbitrarily defined as. 

(72)  z , , 1 0 , = z , , [ I , .  ( .z,,[2,-z,,[l ,).2 

(7.3) z"[h + l ] = z"[h] + l z ' [h]  - z " l h -  I ] 

(7.4) F~. (z,, [01) = 0 

(75)  F¢(z , , lh+ I I) = I 

The exact moments of  ~,, about the origin may be obtained by using the 
definition of  ¢,, given by (3 1) Its ruth moment about the origin is then given 
by 

11 (76)  E[~,'~'] = E ,~q~ e - ' l '  + I) . 
k \ , = o  

Now, with m equal I, the first moment is 

,I- [ 
(7.7) EI¢ , , I=  ~ El,,q, 

t=O 

e - ~ ( , + l ) ]  

With m equal 2, the second moment is 

(78)  Ell2[  =E  ,Iq, e - " ( '+ l l  ;iq, e -'~(~+ll 
t ~ k,d = 0 

1 - , -  I n~ l  1 (79) =EL =~0 , ,q,  ),6/, e - v ° ÷ l ) - v C ~ + l ,  
j = 0  

n-  I n-  I 
(7.10) = Y~ Y~ ,Iq, j tq, Ele-"('+I)-"(~+E)I. 

t=O j=O 
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Wtth m equal 3, the third moment is 

n -  I n -  I n -  I 

(7.11) E [ ~ ] =  ,~, ~ ,~ ,,q, j,q, ~q~ E[e - ' ° + l ) - ' l J + l ) - ' t ~ + l ) ]  
I = 0  j = 0  k = 0  

Note that the moments of  ~,, are exactly the hmitlng moments of  the average cost 
per pohcy studied m PARKER (1992b) 

Table 4 presents, for different terms of  temporary insurance contracts issued at 
age 30, the exact moments of  ~,,, E[~,'~'], and the difference between the exact and 
the estimated moments (gtven by (7.l)), Le. E[~ ; i ' ] -  E'[~;'], for m equal 1, 2 and 3, 
The force of  interest ~s modeled by an Ornsteln-Uhlenbeck process with parameters 
6 =  06, 60= .1 ,  o~= 1 and a = . 0 1 .  

T A B L E  4 

COMPARISON OF EXACT AND APPROXIMATF MOMENIS OF ~. ,  tt/-YIzAR TEMPORARY INSURANCE ISSUED 
AT AGE 30, ORNSTF.IN-UHLENBE(K 6 = 06 b 0 =  I a =  I O =  OI 

m =  I m = 2  m = 3  m =  I m = 2  m = 3  
( x I0) ( x 1130) ( x I000)  ( x I0) ( x 100) ( x I000)  

I 0 1 1 9 7  00014  00000  00000  00000  00000  
2 02284  00052  001301 00000  00000  00000  
3 03291 00108  00004  00000  00000  00000  
4 04246  00180  00008  - 00001 130000 00000  
5 05160  00266  013014 - 00003 00000  00000  

I 0 09517 00909  00087 - 00017 - 00004  - 0000  I 
15 14163 02023  00292  - 00031 - 00011 - 00003  
20 19731 03964  00811 - 00041 - 00024  - 00009  
25 26356  07167  02013  - 00054  - 00053  - 00030  

Note that, m order  to present  more  s~gmficanl digits, the first m o m e n t  has been mult~phed by 10, the 
second m o m e n t  m u h J p h e d  by 100 and the third m o m e n t  mul t lphed  by 1000 

From Table 4, we note that the exact and approximate first three moments of ~,, 
agree to at least four, five and stx decimal places respecttvely (for n <-- 25). Thts is 
excellent, especially if one considers that many approximations were involved 
before obtaining the esumated moments of  ~,,, Ell , ,] .  

Let tile relattve error for the ruth moment of  ~,, be: 

(7 12) IE[~i~']- E[~i '[I  

Then, for any term, tl, the relative error on the expected value of ~n IS about .2 % 
or less. For its second moment, it ts about .7 % or less. And for tts third montent, it 
is about 1.5 % or less 

The results for other parameters of  the Ornstem-Uhlenbeck process and for other 
ages at tssue, not dlustrated here, were all excellent The maximum relattve error 
observed, generally for the thtrd moment, being about 3%. Although for the 
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illustrations presented here, the error ts always negative, for other situations it may 
be positive or even alternate over different ranges of values of  the term, n. In all 
cases, however, the relattve error ~s small. 

From the justificattons made in Section 5 and from the validations presented 
here, it appears that the approxmmtton (4.13) suggested to obtain the resurswe 
equation (4 5) has to be highly acceptable. 

8 CONCLUSION 

The resultg of  this paper provzdes a way of  approximating the distribution of  
hmttlng portfohos that ts valid for any process for the force of interest as long as 
the conditional density function of  y(n) given y ( n -  I) IS known and expression 
(5.10) can be evaluated As indicated earher, choosing a Gausslan process slmphfy 
things considerably 

Although equation (4.5) might not be acceptable for any random variables, the 
very nature of  the problem under consideration here, i.e. the present value of  future 
benefits, has some particular propemes which imply that the approximation ~s good 
The worse possible case for Gausstan Interest rates is when they are independent, 
l e White NoJse process Even in this case, the correlation resulting between 
consecutive present value functions is fairly high. 

There is no doubt that knowmg the distribution of  the average cost per policy is 
useful for pricing, valuation, solvency and reinsurance The approximation sug- 
gested m this paper ~s certainly accurate enough for most smtatlons one may 
encounter, tt is more justifiable and less subjectwe than the testing of  a hmlted 
number of scenarios and it avoid,; the extremely lengthy simulations reqmred to 
obtain reasonable information about the taft of the distribution 
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A B S T R A C T  

The paper  introduces an alternative approach to the traditional experience 
rating theory m automobtle  insurance The approach ts based on a simple 
theory of  how high deductibles financed by loans matntam the risk differentia- 
tion m an automobile msurance arrangement  Thus the approach dtffers totally 
from the usual bonus-malus classes as well as from the credibility based 
experience rating ideas. The paper  is of  a theoretical nature and leads up to a 
mathematical  descrtptlon of  how the approach may be optlmahzed withm the 
framework of  a risk model. 

K E Y W O R D S  

Bonus-malus systems; optimal deducttbles financed by loans. 

1. B A C K G R O U N D  

From a practical pomt of  view tt ts well-known that the existing automobile 
bonus-malus systems possess several considerable &sadvantages which are 
difficult, or even impossible, to handle within the tradittonal theory of 
expertence rating. The a~m of  this paper ~s to introduce an alternative 
bonus-malus approach whtch, at least theorettcally, ehmmates  the most 
important  ones of  these disadvantages. 

2. CRITICISM OF EXISTING BONUS SYSTEMS 

To motivate the new bonus-malus (B-M) approach it Is appropriate  to stress 
the usual critictsm of the existing B-M systems. In particular, the exlstmg 
systems are, among other things, based on two general characteristics: 

(i) The clatm amounts  are omitted as a postertor tariff cnterton 
(11) At any time the pohcyholders may leave an insurance company without 

any further financml commitments  to the company.  

These characteristics lead to three of  the most constderable disadvantages '  

(2.1) Regarding an occurred claim, the future loss of  bonus will m many cases 
exceed the clatm amount.  

An earher version of  this work has been presented at the ASTIN Colloqumm, Stockholm 1991 

ASTIN BULLETIN, Vol 24. No I. 1994 
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(2.2) The systems create the possibility of  malus evasion, that ~s, the posslbdity 
of  the policyholders leaving the insurance company to avoid premium 
increase because of  occurred claims. 

(2.3) The systems stimulate a slide towards higher average discount rates in the 
insurance arrangements.  

Because only the number  of  claims (and of course the discount rate) in an 
insurance period determines the premium m the following period, it follows 
that (2.1) is an immediate consequence of (0 In many cases (2.1) gwes the 
policyholder a feehng of unfairness, especially if the loss of  bonus is much 
higher than the occurred claim amount.  A consequence of this is the well- 
known bonus hunger behavJour of  the pohcyholders. 

Disadvantage (2.2) is of  course a consequence of  (il). Malus evaders let the 
remaining policyholders pay the bill for their (the evaders') claim costs. This 
has, at least m Norway,  been a serious problem in the insurance Industry, 
mainly because of  an unsatisfactory exchange of bonus information between 
the insurance compames  

Because all insurance arrangements attached to existing B-M systems are 
exposed to bonus hunger as well as malus evasion, ~t follows that (2.3) is a 
secondary consequence of (2.1) and (2.2). A higher average rate of  discount Is 
contrary to risk differentiation, which is the objective of  all B-M systems. In an 
extreme situation the result m~ght be that the great majority of  the policyhold- 
ers are at, or close to, the maximum rate of  &scount 

A number  of  authors have focused on the &sadvantages mentioned above, m 
particular the problem of  bonus hunger - see e.g. NORBERG (1975), LEMAIRE 
(1985) (Chapter  18) and SUNOT (1989). The aim of  these authors has not been 
to solve or eliminate the disadvantages, but rather to take them into the 
modelling account m connection with the mathematical  optlmahzat~on of  the 
B-M systems. However,  to ehminate the disadvantages one probably has to 
leave the traditional f ramework of experience rating, and construct a bonus 
principle which ~s basically different. This ~s precisely the intention of  this 
paper, and in Section 3 we wdl first introduce the alternative B-M Idea, and 
thereafter place the ~dea into a mathematical  description and notation. The 
alternative approach may be called a new premium system, and in Section 4 it 
is shown how the system may be optimalized within the framework of a risk 
model. In Sectton 5 some practical deficiencies of  the system are discussed, and 
m Section 6 some concluding remarks are gwen. 

3. AN ALTERNATIVE APPROACH TO EXISTING BONUS SYSTEMS 

3.1. Preliminary aspects and assumptions 

The fundamental  principle of  the existing B-M systems simply expresses that 
the higher the claim frequency of a policyholder, the h~gher the m s u r a n ~  costs 
that on average are charged to the pohcyholder However, this p rmople  is also 
vahd in an insurance arrangement  eonststmg o f  a htgh max imum deductible 
which is common to all policyholders This follows from the simply fact that 
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good drivers will pay fewer deductibles than bad drivers. Thus we may imagine 
a premium system where the costs of  the incurred deductibles are defined as the 
malus (the loss of  bonus) after a claim occurred. Within this framework it 
seems natural to assume an individual risk premium above the maximum 
deductible which is reflected by a priori tariff criteria, but not by a posterlorl 
knowledge about  the policyholders. This system defines a malus system rather 
than a bonus system. However, we may interpret the claim free driving bonus 
as avoMance of deductibles' 

Two questions are now appropr ia te :  

(3.1) In what way do we determine the size of  the maximum deductible? 

To attain a suitable cost differentiation in the risk heterogeneous arrange- 
ment, the maximum deductible has to be relatively high, maybe as high as 
2000-3000 US dollars (USD). This leads to question number  2 

(3 2) How do we act when knowing that the average policyholder hardly 
manages (at least in Norway)  to cash pay deductibles of  more than about  
1000 USD ? 

Let us first look at the latter problem. The new system solves problem (3.2) 
by giving the policyholders a posslblhty of  financing the incurred deductibles 
by loans from the insurer. Moreover,  this leads to the advantage of  smoothing 
the " loss  of  bonus"  (the deductible) over a period of time, precisely the way 
that the total loss of  bonus is smoothed in the traditional systems. 

Before commenting on problem (3.1), we shall illustrate the abovesketched 
premium system with a simple example:  Let us assume that a policyholder has 
two occurred claims of  respectively 5000 USD and 500 USD in periods 
number 3 and 9 during an insurance period of 15 years We also assume for 
simplicity that the deductible loans are ordinary term loans, and that the 
period of repayments is 5 years. Assume the maximum deductible to be, for 
instance, 2000 USD, and the premium for large claims above this maximum 
deductible to be 300 USD during the whole insurance period. Finally, the 
borrowing rate is assumed to be 10% in arrears. These assumptions lead to a 
sequence of payments for the policyholder shown in Figure 1 We note that the 
effect of  the alternative system is not essentially different from the effect of  a 
tra&tlonal B-M system; the insurance costs increase in the period(s) following 
an occurred claim. We also note that the loss of  bonus is differentiated 
regarding the size of  the claim amounts.  Or to be more precise; the loss of  
bonus will never (except for the interest on the loan) exceed the claim amount ,  
and hence the bonus hunger effect is ehminated. In theory the new system will 
not be exposed to malus evasion either, because the loan is repayed even if the 
insurance is terminated - see Section 5 for a further discussion on this. Hence, 
at least theoretically the new system eliminates the disadvantages (2.1), (2.2) 
and (2.3) in Section 2. 

Return to problem (3.1). The solution of  this problem ought to be linked to 
a mathematical optlmahzatlon of  the system. In addition to problem (3.1), we 
have to decide a) the amortization form of the deductible loans, b) the length 
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of  the repayment period, and c) the rate of  interest The conditions a), b) and 
c) are in practice given by the money market.  Thus it may seem meaningless to 
find mathematical  " o p t i m a l "  lending conditions. However, these conditions 
will never be absolute, therefore ~t may be after all interesting to find optimal 
values at least for some of  the conditions. 

| 

_I 

FIGURE I The payments  fo r  the pohcyholder over a period of 15 years 

Now, stress item a), the amortization form of the loans In principle we 
ought to choose an amortization form which imitates the tradaional influence 
of  the premiums in the time periods following a claim. More precisely, an 
amortization form where the repayments are high during the first periods 
following a claim and then gradually fall. Moreover,  this satisfies the desire of  
the pohcyholders to repay most of  the claim costs shortly after the claim has 
occurred. Within annuity loans the repayments are exactly the same in the 
repayment period, while the repayments are not decreasing enough within 
ordinary term loans. Hence, these alternatives of  the amortization form are 
ignored. However,  there exists an alternative fulfilling all the mentioned 
properties, that is, the exponential amortizatton form, This form is also 
relatively handy in the mathematical  computat ions 

Before touching the mathematical  description of  the alternative system, one 
last assumption concermng the financing of  the deductibles has to be made. In 
a practical application of the new system ~t ~s of course the policyholders who 
decide how much to pay cash, and how much to borrow Hence, a deductible is 
partmlly financed by a cash payment  greater than or equal to zero, and 
partially by a sum borrowed from the insurer However, to simplify the 
mathematical  analysis we assume the entire deductible of  an occurred claim to 
be financed by a loan. This is an advantage because the costs are then 
smoothed over a period of  time. In addition, a full-financing by loans is 
computat lonally easier to analyse. 



BONUS MADE EASY 65 

3.2. Mathematical description 
Assume the following mathematical  description of  the alternative system : Let 
Y,; l =  1, 2 . . . .  be the values at time zero of  the claim amounts  of  a 
pohcyholder that occurred at the time points ~ ;  i = 1, 2 . . . . .  respectively. Let 
Z, be the value at time zero of  the amount  payed by the policyholder of  claim 
number z, and assume Z, on the ordinary excess-of-loss form 

(1) Z, = mln (Y,, b), 

where b is interpreted as the value at time zero of  the common maximum 
deductible of  all pohcyholders at time T,. 

Let n be the inflation discount intensity related to the values at time zero of  
the claim amounts  Hence it follows that the future nominal value of  Z, at time 
7], is Z, exp (nT,). Note besides that the deductible (b at time zero) is thought of  
as following the inflation intensity n. 

Let Z, exp (nT,) be fully financed by a loan from the insurer. The loan is 
charged a rate of  Interest 6 and continuously amortized by a stream of  payment  
{r,(s); s > 0}, where s = 0 refers to the time 7], of  the claim occurrence. 

The payment  stream of  loan number  i has to satisfy (see e.g. GERBER (1990), 
Chapter  l) 

(2) Z, exp (nT,) = v'r,(s) ds, 
0 

where v s = exp ( -  ds) = the interest &scount factor at time s. 
Let N(t) be the number  of  claims occurred in the time interval (0, t]. 

Then 
N(t) 

(3) r ( t )  = E r ,( t -T,)  
I = 1  

is the amortization rate of the pohcyholder at time t. 
Assume an exponentml form of  amortization, that ~s, 

(4) r,(s) = B, exp ( - p s ) .  
B, is here called " the  imtial amortization level", and may be interpreted as 
mterest + repayments m the first repayment  year. When the rate of  interest J ~s 
known, p expresses the amortization profile of the sums borrowed, that is, the 
obliquity of  the repayments,  or to which extent the repayments should be h~gh 
in the beginning and then gradually decreasing. 

From (2) and (4) we obtain 

Z, exp (nT,) = exp ( - 6 s )  B, exp ( - p s )  ds 
0 

B, 

6+p 
o r  

(5) B, = Z, exp (nT,) (J+p). 
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F o r m u l a  (5) gives the relat ionship between p and " t h e  initial amor t i za t ion  
level"  B, when the rate o f  interest 6 and the sum bor rowed  Z, exp (zcT,) are 
known.  In part icular ,  we see that  p = 0 (constant  amor t iza t ion)  implies 
B, = 6Z, exp (nT,), which means  solely repaying interest to infinity. Hencefor th ,  
we will assume p >_ 0. 

F r o m  (4) and (5) we have 

(6) r , (s)  = Z , (6 +p )  exp (~zT,) exp ( - p s ) .  

Therefore ,  f rom (3) we finally obta in  the expression 

N(t) 

(7) r( t )  = Z Z , (a +p )  exp ( n T , - p ( , -  T,)). 
t= l  

To obtain  an impression o f  the effect o f  p, it may  be suitable to take a closer 
look at the function (6). Under  assumpt ions  o f  6 = 10% and Z, exp (roT,) = 1, 
Figure  2 shows the s t ream o f  paymen t s  r,(s) for some specified values o f  p 
No te  that  the higher p is, the higher the payments  are dur ing the first 
r epaymen t  period(s). In the case o f  p = 0, we see that  only 10% interest o f  
Z, exp 0rT,) = I is cont inuous ly  payed 

O.S-~ 

2 • 6 | 10  12  14  

FIGURE 2 The stream of payments {r,(s), ~ ~ O} when p = {0, 0 1, 0 2, 0 3, 0 4} 
S 

4. A MATHEMATICAL OPTIMALIZATION DESIGN 

4.1. Model assumptions 

T o  carry  through an opt lmal iza t lon  of  the new system, a claim risk model  has 
to be built. In this pape r  we assume the widely accepted negative binomial  
model ,  see e.g LEMAIRE (1991): 

The  claim number  process {N( / ) ;  t >_ 0} of  a pohcyholder  is a homoge-  
neous Polsson process given the claim Intensity O. Let O follow a g a m m a  
distr ibut ion G a m m a  (ct, fl). Assume also the values at time zero Yi, Y2, • - 
o f  the claim a m o u n t s  to be independent  and identically distr ibuted (i.i.d.), 
and independent  o f  {N( t ) ;  t_> 0} and o f  O. 
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Under these assumptions we also easily establish the values at time zero of 
the sums borrowed, {Z, = mln (Y,, b); i = 1, 2 . . . .  }, to be i.i d. and independent 
of  {N(t) ,  t _> 0} and of O. 

4.2. Choice of  loss function 

Within the risk model m subsection 4.1 and the mathematical  description in 
subsection 3.2, we want to minimize an expected loss functton to find some 
optimal parameter  values of  the system 

The theoretical indlvadual risk intensity of  the policyholder at time t is easily 
evaluated as Q(t )=  exp (nt)OEY. Now, the point is to estimate Q(t) using a 
loss function which includes the amortization rate r(t). In a real application of  
the system we have already indicated the suitability of  a constant mdtvtdual 
premium for all risks above the maximum deductible. For  simphcity, we 
henceforth disregard this individual dlfferentmt~on, and instead we assume a 
constant collecttve premium. Hence, let p(t) be this premium of  large claims at 
time t : 

(8) p(t) = exp (rct)p = exp (nt) E O E ( Y - Z ) ,  

where Y and Z are the values at time t = 0 of  the random claim amount  and 
the random sum borrowed, respectively Now, write 

OEY = OEZ + 6 )E(Y -  Z) .  

Then one can interpret p(t) as an eshmator  of  exp (rot) O E ( Y - Z ) .  If  we 
now just let r(t) be an estimator of  exp (nt)OEZ and use the tradtttonal 
expected quadrattc loss function 

E[p (t) + r ( t ) -  Q (t)] 2, 

we will in the first place obtain a loss expression dependent on the time t, which 
is not a desirable situation. In the second place r(t) would not alone be a 
sufficiently good estimator of  exp (gt) OEZ. Owing to the fact that the loss of  
bonus (the sums borrowed) is payed in arrears, the amortization rate r(t) is too 
small during the first periods according to the true intensity exp (n t )OEZ.  

However, to solve these problems we may construct a loss function which 
integrates the total cash flow of the policyholder over a period of time The 
actual loss function ought to reflect the total financing of a) the large claim 
risks and of b) all deductibles occurred in the actual opt imahzat lon period. 

The following expected quadratic loss function takes care of  the mentioned 
objections in a reasonable way.  

ES S (9) E v ' (p( t )+r( t ) )  d t+vMS(M) - v 'Q(t)  dt , 
o o 
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where 
M = 

U t 

p0) = 

r ( t )  = 

Q ( t )  = 

S ( M )  = 

JON HOLTAN 

a restricted ume horizon. 

exp (-(n+co)t) = total discount factor at time t, with the mflation 
discount intensity n and a mathemaucal weight discount intensity co 
exp ( - c o t )  is hereby interpreted as a weight function; we see e.g. that 
co = 0 ~mplies a uniform weight function over the time period 
(0, M]. 

exp Oft) EOE(Y-Z)  
the large claim premium at time t 

E N(,) Z , ( J + p )  exp (nT,-p(t-  T,)) 
the amortization rate of  the policyholder at time t. 

exp (nt) OEY 
the theoretical risk intensity at time t 

E,~(~) ~ exp ( -re( t -M))  r,(t- T,) at 
the value at time M of  all future repayments caused by claims 
occurred in (0, M]. 

Summary : 

Loss function (9) may be interpreted as the expected quadratic deviation 
between a mathematical value at time zero of the actual cash flow of the 
policyholder and the corresponding mathematical value at time zero of  the 
theoretical risk intensity of  the policyholder over the time period (0, M]. Note 
that all raised loans during (0, M] have to be repayed, and hence one has to 
include v g S(M) in the loss function. 

4.3. Computation of the expected loss function 

To minimize (9) analytically or numerically with respect to e.g. the system 
parameters d, p and b, the function has to be of  algebraic nature To obtain an 
algebraic form of  (9) some statistical computations have to be made. 

Let 

N ( t )  

(!0) Z(t) = E Z, exp((zc+p)~). 

Then by (7) 

(11) r(t) = ( J + p )  exp (-pt)  Z(t), 

and by simple algebra we obtain 

(6+p)Tr+p 
(12) vMS(M) = - -  e x p ( - ( T r + c o + p )  M) Z(M). 
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Introduce the annuity 

M 

aM---l= I 
o 

and the expressmn 

M M 

~l't = I otr(1) dl=(~q-fl) I 
o o 

Then function (9) may be written as 

exp ( - c o t )  dt = o~-' (1 - e x p  ( -  o~M)), 

exp ( - (T r+c o+p)  t) Z ( t )  dt. 
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EZ 2 
E[Z(s )  Z(t)]  = E O - - - -  -k [exp ( 2 ( n + p ) s ) -  1]+ 

2 ( n + p )  

+ EO 2 (EZ)-----~-[exp ( ( n + p ) s ) - 1 ]  [exp ( ( n + p ) t ) - I ] .  
(~+p)2 

To obtain an algebraic form of the expected loss function (13), one has to 
complete seven isolated computations. Below, these computations are noted as 

(15) 

and for O _ < s < t  

(16) 

given O = 0, N* ~ Poisson (0t),  

Ui . . . .  , Ut~. are ia d. ~ Uniform [0, t], 

Zi . . . .  ZN. are I.I.d , 

and where N*, the U,'s and the Z,'s are stochastmally independent. Th~s result 
was in general &scovered by JUNG (1963); see also BOHLMANN (1970), 
pp. 57-60 By standard statistical calculations we then obtain 

EZ 
E Z ( t )  = EO [exp ( ( n + p ) t ) -  1], 

(~+p) 

(14) 

where 

(13) E T  2 + 2 E[ ~Uv M S (M)] + E [v M S (M)] 2 + 

+ 2 a ~  El(u, + ~M S(M)) (p-  OEY)] + 
+ ~ 2  [p2_ 2p (EO) (EY)  + EO 2 (Ey)2].  

By (13) we have to find the 1.- and 2.-order moments of the Z(t)-process, 
that Is EZ ( t )  and E[Z(s )  Z(t)].  However, the stochastic process Z ( t )  does not 
have independent wamng t~mes between steps, and hence the calculations 
become somewhat complex. We may however show that Z ( t )  has the same 
distribution as 

N* 

Z* = E Z, exp ((rc + p) U,), 
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~ . . . .  , q/7 (remember the integral definition of  79: 

(17) ~ul = E~ tt2 

(18) ~u z =  E [ ~ v M S ( M ) ]  

(19) qJ3 = E [ v M S ( M ) ]  2 

(20) I//4 = E ( O  ~tv) 

(21) ~ 5 = E [ O v M S ( M ) ]  

(22) ~6 = E ~  

(23) ~ 7 = E [ v M S ( M ) ] .  

In this paper we restrict ourselves to indxcate that (17)-(23) are easily 
calculated by use of standard statistical methods. The clue is here to use the 
expressions (15) and (16). Thus, for instance, we have 

Ip' I = E ~  2 = ( 6 + p ) 2 E  Z ( t ) e x p ( - ( r c + c o + p ) t ) d t  
0 

M M 

= ( t~+P)2  I ds I E[Z(s) Z( I ) ]exp( -Oz+co+P)(S+t) )d t .  
o s 

Finally, we estabhsh the expected loss function [; ; ]2 
(24) E v t ( p ( t ) + r ( t ) )  d t + v M S ( M )  - v ' Q ( t )  dt 

o o 

= ~ + 2 ~2 + ~3 + 2 8 ~ [ P N 6  - EYe,4 + P ~ 7 -  E Y e s ]  + 

+ ~2 [ p 2 _ 2 p E O E Y +  EO 2(EY)2].  

4.4. Comments on the loss function 

Under the model assumptions of subsection 4.1 we have 

EO = ot[fl, E612 = or(or+ l )[fl 2 . 

If the claim amount  distribution is assumed known, the function (24) 
depends on eight unknown parameters. Two of them, 0c and t ,  can e.g. be 
estimated by the maximum likelihood estimators described by LEMAIRE (1985), 
Chapter 12 Further, it seems natural to keep the inflation intensity n, the 
mathematical weight intensity co and the ume horizon M constant (they might 
also be considered as random variables). Thus the actual optimahzation 
(varying) parameters are the remaining sys tem parameters 6, p and b. 

In this connection, analytical optimal parameter solutions are in general 
difficult to find. However, numertcal solutions are easily computed by a 
computer system, for example the mathematical software system Mathematica. 
Note that the maximum deductible b enters into the function (24) via the 
moments E Z  and E Z  2 Thus, an approxxmatmg optimalization of b demands a 
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statisucal analysis of  the claim amounts  in a representative claim portfolio. 
Also the premium of large claims, p( t ) ,  has to be estimated in association with 
a real claim portfolio 

Note finally that the alternative p remmm system may be mathematically 
compared with traditional B-M systems wa the expected loss funcUon (9). Or 
to be more precise; within each of  the t radmonal  B-M systems one may 
construct an estimator to the estimand S~ v~Q (t) dr. By using these estimators 
in loss function (9), we are able to compare  the expected losses of  the 
traditional B-M systems with the expected loss of  the alternatwe system, and 
hence find the best mathematically fitted system 

4.5.  The  loss  funct ion for the special  case M = 

To give some more information on the structure of  the loss funcUon, one may 
exhibit the function for the special case when the time horizon M tends to 
infinity Assume in this case that co > 0, which is in accordance w~th economic 
theory. When M = ~ ,  we see from (12), (16) and (19) that ~3 tends to zero. By 
(18), (21) and (23) then also ~2, ~5 and ~7 tend to zero. In formula (24.) thus 
only ~ t ,  ~//4 and ~//6 remain different from zero. Straightforward calculation 
gives 

E O E Z  2 + __ EO 2 ( E Z )  2 , 
+ co + p o9 

I 
q14 = - -  

c o  

,( 
~u] = 2oo n 

6 + p  ) E O 2 E Z ,  
rc+co+p  

6 + p  

n + o J + p  

1 
~ 6  = m 

o 9  

E O E Z  

Inserting p = E O ( E Y - E Z )  the loss function may then be put into the 
following form 

x 2 A I (b) - 2 xA z (b) + A 3 (b), 

with 

6 + p  
( 2 5 )  x - 

1 
(26) At (b) = - -  

2co 

~ + o 9 + p  

F 2 l E O E Z  z + - -  E O 2 ( E Z )  2 
o 9  

E Z [ ( E O )  2 E Z +  Var OEY]  

[(EO) 2 ( E Z )  2 + Var O (EY)2]. 
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The influence of  the system parameters  6 and p is contained m x, and thus is 
separated from that of  the system parameter  b. 

For  fixed b the loss function attains its minimum for 

(29) x = x(b) = A2(b)/A I(b), 

and the minimum is 

(30) mm (b) = A 3 ( b ) -  A2(b2)/Ai (b). 

Denoting the claim amount  c.d.f by F, we have 

b / I  

(31) EZ = I [ 1 - F ( y ) ] d y  
d 0 

b 2 

(32) EZ 2 = f [ 1 - F ( v / y ) ]  dy. 
d 0 

Thus E Z  and EZ 2 are continuous functions of  b. I f  F is continuous, they are 
also differentlable. The same is then also true for mm (b). Thus, for special 
choices of  F it should not be difficult to minimize mm (b) with respect to b, and 
thereby obtain a global minimum. 

For  the moment  we content ourselves with the following remarks.  
By (25) optimal values of  6 and p for fixed b are related by 

(b) = [x (b) - 1 ] p (b) + (~z + o9) x (b). 

Thus the interest Intensity fi(b) is greater than, equal to or less than the 
market  interest intensity n+o9 according as x(b) is greater than, equal to or 
less than one. 

As b tends to infinity, E Z  and EZ 2 tend to E Y  and E Y  2 respectively. From 
(26)-(28) we see that 

1 E O E Y  2 EO 2(EY)2.  
A2(°°) = A 3 ( ~ )  = A l ( ~ )  - 2o9 

Thus by (29), x(oo) < 1. 
For  b tending to zero, A i (b) will be of  the order of  magnitude b 2. A2 (b) will 

be of  the order of  magmtude  b, because of the second term within the 
paranthesis. Thus by (29), x (0 + )  = oo. This means that there is (at least) one b 
with x(b) = I. From (26)-(32) it can be shown that for such a b we will have 
x ' (b)  < 0 and min'  (b) > 0, if F ( y )  > 0 for y > 0. This proves that there is 
exactly one value of  b with x(b) = 1 and that x(b) > 1 to the left of  this point 
and x ( b ) <  I to the right of  it. Furthermore,  min (b) has, at least locally, a 
minimum to the left of  the point. This indicates that the optimal fi-value is 
greater than z~+o9, or, in other words, the interest lntenslty for the loan should 
be greater than the market  interest intensity. 
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5. PRACTICAL SYSTEM DEFICIE~ICIES 

In general it is often difficult, or even impossible, to eliminate deficiencies of  an 
existing financial market  system without generating other system deficiencies 
The au tomobde  insurance B-M principle seems typically to be characterized by 
this two-sided effect, and hence it is not dimcult  to point out some general 
practical deficiencies of  the alternative B-M approach.  An obwous one is that a 
high common deductible necessarily involves a lower total premium income 
compared with traditional bonus systems, and thereby generates a lower 
insurance profit to the insurer. Another  deficiency is the credit risk of the 
policyholders, or, more precisely, it is not certain that the policyholders are 
able to repay their deductible loans. Hence, the insurer has to, in one way or 
another, make conditions linked to the individual solvence security m order to 
meet possible losses One way of  doing this is e g that the insurer demands the 
policyholders to save an amount  of  money in each insurance period to build up 
an individual risk reserve to cover (parts of) future incurred deductibles. A 
"c la im risk accoun t "  with the insurer should, in regard to reduce the credit 
risk and to maximize the rate of  interest on deposits, be closed for withdrawals 
during the insurance periods, except for financing incurred deductibles. Thus, 
the premium and claim costs of  the pohcyholders wdl also have a more 
uniform dispersion during the insurance periods. 

6. CONCLUDING REMARKS 

In theory the alternative B-M approach eliminates the most  important  
disadvantages of  the existing B-M systems. A policyholder will for instance 
within the existing systems, unhke the alternative approach,  often make a 
profit by asking a bank for a credit to cover an occurred claim cost, instead of 
reporting the claim to the insurer. This seems obvious, but can also under some 
specified conditions be exphcltly shown by comparing the effective rate of  
interest on a banking credit with the "effective rate of  interest"  on the loss 
of  insurance bonus. By constructing a B-M approach which eliminates 
bonus hunger, one also avoids mathematical  risk modelling which includes 
assumptions about  bonus hunger, as e.g. NORBERG (1975), LEMAIRE (1985) 
(Chapter  18) and SUNDT (1989) have built into their models. 

On the other hand the alternative B-M approach contains, as pointed out in 
Section 5, some practical deficiencies hke credit risk and lower premium 
income. The point is however that these deficiencies are just relevant for the 
(existing) insurers, and not for the policyholders. In other words; the alternative 
approach is less favourable to the existing insurers than to their customers. 
Thus, it seems conceivable that the traditional insurance industry at once will 
be rather sceptical about  introducing the alternative B-M approach to the 
insurance market. It seems, however, more probable that the possible initiators 
in this connection will be the (future) financial inst i tut ions--or  cooperat ions 
between insti tutions--which consist of  a superior banking service and a minor 
(automobile) insurance service. In the first place these institutions are generally 
interested m introducing customer-friendly products to increase their market  
share and market  profit  in the insurance market.  In the second place, and 
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under these circumstances, they probably interpret the problem of lower 
premium Income as of secondary importance, whde they obviously have the 
best qualifications to handle the problem of credit risk. Finally, and in the third 
place, these institutions already have the general administrative device which 
the alternative B-M approach demands, or stated in its extreme form, an 
optimal combination of actuarial and banking knowledge and culture. 
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H I G H  DEDUCTIBLES  INSTEAD OF BONUS-MALUS.  
CAN IT WORK? 

BY JE AN L E M A I R E  AND H O N G M I N  ZI  
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A B S T R A C T  

HOLTAN (1994) suggests to replace tradmonal bonus-malus systems by a high 
deductible financed by a short-term loan. Practical consequences of  this 
proposal are investtgated here. Simulation is used to evaluate the efficmncy of 
the Taiwanese Bonus-malus system and the variabdity of premiums of an 
average policyholder. Holtan's high deductible system is analysed under a 
compound Poisson assumptmn, wtth truncated exponentml claims. It is shown 
that the introductmn of  a high deductible would increase the variability of 
payments and the efficiency of the rating system for most policyholders 

K E Y W O R D S  

Motor  insurance rating; bonus-malus systems; deductibles. 

1. INTRODUCTION 

Traditional mertt-ratmg or bonus-malus systems (BMS) suffer from two major 
drawbacks 

0) The severe penalties needed to compensate no-claim &scounts cannot be 
enforced, for commercial reasons. A continuous increase of the average 
discount follows, until the system reaches stationarity. This forces msurers 
to raise premiums annually After a few years, most policies cluster in the 
high-discount classes, and there is no significant premmm dtfferentmtmn 
between good and bad drivers. 

(ii) Penalties after an accident at fault are independent of  damages. This 
creates a bonus-hunger phenomenon, that induces pohcyholders to bear 
small clazms themselves, m order to avoid future premmm increases. In 
some cases, It is of  the pohcyholder 's interest to pay substantial amounts 
to their victims. This creates a feehng of  unfairness, and encourages 
hit-and-run behavlour 

' The authors  would hke to thank Messrs Ted Chung and Chen-Yeh Lal, who kmdly prov,ded 
deta,led mformatlon about  the Ta,wanese merit-rating system and loss d ,s tnbut lons  

ASTIN BULLETIN, Vol 24, No I, 1994 
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HOLTAN (1994) suggests  an lngemous  a l t e rna twe  to BMS ra t ing ,  a high- 
deduc t ib le  system (HDS) .  In this system, the p remium would  only provide  
coverage  for  the par t  o f  the losses in excess o f  a high deduct ib le  D. 
Po l i cyho lders  who canno t  a f ford  to pay  this a m o u n t  could  b o r r o w  It f rom the 
c o m p a n y ,  and  r e imburse  this loan  over  a small  n u m b e r  o f  years.  

The  implementa taon  o f  a H D S  could  e l iminate  the two main  d r a w b a c k s  o f  
B M S :  the p r e m m m  income would  not  decrease  over  tame, and ,  since the 
pena l ty  af ter  a c laim never exceeds the claim a m o u n t  (except  for interest  on the 
loan),  the hunger  for bonus  effect would  be e l iminated .  

In this paper ,  we use samulat ion and a s imple c o m p o u n d  Polsson model  to 
c o m p a r e  H o l t a n ' s  p roposa l  to the B M S  in force in Ta iwan ,  a system which is 
ra ther  " t o u g h "  to po l i cyho lders  (see LEMAIRE and ZI, 1994). I t  as shown that  
high deduc t ib les  improve  the efficiency o f  the ra t ing  system, bu t  increase the 
vanaba l i ty  o f  the paymen t s ,  as measured  by the coefficient  o f  var ia t ion .  The 
Ta lwanese  BMS is ana lysed  in Sect ion 2. The  H D S  is s tudied m Sect ion 3. 
Pract ica l  cons ide ra t ions  are  to be found in Sect ion 4. Sect ion 5 summar izes  
f indings  and  suggest  fur ther  research.  

2. A N A L Y S I S  OF  THE T A I W A N E S E  BMS 

O u r  b e n c h m a r k  po l i cyho lde r  is a Ta lwanese  driver ,  whose annual  number  o f  
c la ims as Poasson d i s t r ibu ted ,  with a p a r a m e t e r  2 = 0.10. At  tame 0, he enters  
the B M S  descr ibed  m Tab le  1, m class 4. 

T A B L E  1 

TAIWANESE BONUS-MALUS SYSTEM 

Class after 
Premium Class Level 0 1 2 3 4 5 + 

clmms 

9 150 3 5 6 7 8 9 
8 140 3 5 6 7 8 9 
7 130 3 5 6 7 8 9 
6 120 3 5 6 7 8 9 
5 110 3 5 6 7 8 9 
4 100 3 5 6 7 8 9 
3 80 2 5 6 7 8 9 
2 65 I 5 6 7 8 9 
1 50 1 5 6 7 8 9 

Effects  o f  inf la t ion  are  r emoved  by assuming  tha t  p r emmms ,  losses, deduc-  
t ibles . . . . .  escala te  accord ing  to the same index 

The  evo lu t ion  o f  the po l i cyho lde r  a m o n g  the classes has been s imula ted  for 
30 years,  the t ime it takes  for system to reach a s t a t iona ry  state F igure  1 shows 
that  the expected p r emium level cons tan t ly  decreases  over  time, reaching a level 
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PREMIUM MEAN AND STANDARD DEVIATION 
Talwanese Mer i t -  Rating 
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of 57.75 at time 30 2. The standard deviation of payments increases during the 
first 3 years, the time it takes for the best policyholders to reach class 1. Then It 
stabihzes around 17.89. As figures are expressed in premium levels in this 
section, and in dollars in Secuon 3, a dimension-less parameter has to be used 
for comparison purposes: the coefficient of  variation (standard deviation 
divided by mean). For  the benchmark Talwanese driver, the coefficient of  
variation increases for 3 years, then stabilizes around 0.31 (see Fig. 2). Figure 3 
shows the coefficient of variation as a function of 2, when the system ~s stationary. 

Simulatton was also used to compute the efficiency, the elasticity of the 
stationary premium with respect to the claim frequency. If P (2 )  denotes the 
stationary premium for a policyholder with a claim frequency )., the efficiency 
curve ~0(2) is defined as the relative increase of the premium, divided by the rela- 
tive increase of the claim frequency (see LOIMARANTA, 1972, and LEMMRE, 1985). 

dP(;~ ) 

P(,~ ) 
~(,~ ) - 

d2 

2 The observed average premium level m Talwan is higher than that, due to the constant flow of 
new policyholders entering the system in a high class However, since lhls note analyses two rating 
systems from a pohcyholder's point of view, new entries m the BMS are not considered 
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PREMIUM COEFFICIENT OF VARIATION 
Talwanese M e r n - R a t m g  and High Deductible 
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Ideally, the efficiency should be close to 1. In practice, the efficiency of  most  
BMS m force around the world Is much lower (LEMAIRE, 1988). For  the 
TaJwanese BMS, the efficiency is very low for the most common values of  2 
(2 < 0.10); it peaks at 0.3 for claim frequencies in the [0.65 - 0.80] range (see 
Fig. 4). For 2 = 0.10, ~p(0.10) = 0.1155. 

EFFICIENCY 
TaJwanese Memt -Ra t ing  and HDS 
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3. ANALYSIS OF THE H I G H - D E D U C T I B L E  SYSTEM 

Major assumptions for the HDS analysis are.  

* Deductible: D = $ 3,000 
* Policyholders always borrow the entire loss amount  L (up to $ 3,000) from 

their Insurer. Loans are reimbursed over a 5-year period, with decreasing 
amortization. A sum-of-the-digits principal repayment schedule is adopted:  
after a claim, 5/15 of  the principal ~s repaid with the next annual premium, 
4/15 the year after, .. .  All accidents occur in the middle of  the year. The 
loan's interest rate is 3 %, a low value since we assumed an inflation-free 
enwronment.  This leads to the following payment  schedule, for an acctdent 
that occurred at time t -  '/2 and a loan L = min (D, claim cost). 
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Time Payment 

t 3483 L 
t + I 2867 L 
t + 2  2120 L 
t + 3  1393 L 
t + 4  0687 L 

Total 1 0550 L 

* The annual gross premium, without a deduchble, is $ 500. With 15 % taxes, a 
15% commission, and 10% operating expenses, the net premium is $300. 

* Claim amounts are exponentially distributed, with parameter/1 = 1/3 (using 
a $1,000 currency unit). 

As a consequence of these assumptions, the introduction of a $3,000 
deductible reduces the net premium to a bastc premtum 

i v  ~ -~D ( x - D )  ~e-U*dx = e 
D # 

For the benchmark pohcyholder, the net prenuum is reduced from $ 300 to 
$110.36 = 0.1104. 

Aggregate claims up to D form a compound Polsson process S, with a 
truncated exponential claim amount X. The first two moments of  X are 

I ° I E ( X )  = x l le - '~  dx + D #e-U'  dx 
o D 

1 - / z e -  ux 
- 1.8964 

E(X2) = I x21te-'Ux dx + D2 Pe-UX dx 
o D 

2 2D 
- - - - ( l - e  -u°) - - -  e - l ' °  = 4.7563 

,u 2 

For a compound Pmsson process (see for example BOWERS et al., 1986, 
chapter ! i), 

E ( S )  = 2 E ( X )  = ( 0 . 1 0 )  ( 1 . 8 9 6 4 )  = 0 1896 

Var (S) = ,,l E (X 2) = (0.10) (4.7563) = 0.4756 

Disregarding all expenses, the expected payment for the first pohcy year 
consists only of  the basic premium 0.1104. Expected payments (premium + 
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loan repayments) for the second year amount  to 

Basic premium + [(expected claim number) - (expected claim cost) • 
(0.3483 loan payment)] 

2 1 - e -~°  
= - -  e - U ° + 2 - -  (0.3483) = 0.1764 

~u /z 

The variance of payments for the second year is 

Var (S) - (0.3483) 2 = 0.0577. 

Expected payments  for the third year are 

Basic premium + [(expected clatm number) • (expected claim cost) • 
(0 3483 of second-year loan + 0.2867 of  first-year loan)] = 0 2308. 

The variance is Var (S)" (0.34832 +0.28672) = 0.0988. 
The system reaches stationarity after five years. Expected payments  for the 

sixth year are 

Basic p remmm + [(expected claim number) - (expected claim cost) - 
(0.3483 of 5th-year loan + 0.2867 of  4th-year loan + 0.2120 of  3rd-year 
loan + 0.1393 of  2nd-year loan + 0.0687 of  lst-year loan)] = 0.31043. 

Average stationary payments exceed the net premium of  0 3, since policy- 
holders are constantly paying back loans. Expected payments,  variances, and 
coefficients of  variation are presented in Table 2. Figure 2 shows that, for a 
pohcyholder with 2 = 0.10, the variability of  payments is at all times much 
higher under the HDS than under the Talwanese BMS. Figure 3 shows that, 
for all usual values of  2, the coefficient of  variation ~s higher under the 
HDS. 

TABLE 2 

HDS EXPECTED PAYMENTS, VARIANCE, AND COEFFICIENT OF VARIATION 

Time Year Expected Varmnce Coef of varlatton 
Payments 

0 I 01104 0 0 
I 2 0 1764 00577 I 3616 
2 3 0 2308 0.0968 1 3481 
3 4 02710 0 1182 I 2686 
4 5 0 2974 0 1274 I 2002 
5, 6, 7, 6 and after 0 3104 0 1296 1 1599 

For  the basic Compound  Poisson process with exponential claims the 

coefficient of  variation of  losses is x/r2/2 = 4.4721, for 2 = 0.1. The high- 
deductible system would reduce the coefficient of  variation of  policyholders'  
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payments to 1.1599. Coefficients of  variation in excess of 1 would probably be 
considered as too high by regulators and consumers. A reduction of  payments 
variability can be achieved by 

(i) spreading the loan reimbursements over more than five years, and/or  
(n) adopting a loan reimbursement schedule with level payments. 

For  instance, a five-year loan with equal payments of .2152 L would increase 
stationary expected payments to .3144, but reduce their variance to .1101. The 
coefficient of  variation decreases to 1 0552, a 9.02 % reduction. If the loan is 
spread out to 10 years, with equal payments of  .1155 L, expected payments 
increase to 3331, their variance decreases to 0635, and the coefficient of 
variation drops to a more acceptable .7564. 

Stationary payments for a policyholder with claim frequency 2 amount to 

,l 
P ( 2 ) = 0 1 1 0 4  + - - ( l - e  -I'D) (1.055) 

/z 

= 0.1104+0.3165(I -e-10~)  

if the basic premium3 is set by the company at 0 1104 Consequently the 
efficiency is 

3.1652e -I° ;  
~0 (,~) = 

0.1104+0 3165(1 -e-10~)  

Figure 4 shows that the efficiency of  the HDS is higher than the efficiency of  
the Taiwanese BMS for the most common values of 2 (under 0.22). For 
2 = 0.10, ~(0.10) = 0.3751. For  the larger 2, the BMS is more efficient. Since 
most policyholders have a low 2, the computation of an average efficiency ~0 
using any realistic structure function u(2) 

~p = f 9(2)  u (2 )d2  
d A 

would provide a better efficiency for the HDS. u(2) is the density function of 
in the insurer's portfolio. 

4. PRACTICAL CONSIDERATIONS 

The implementation of a HDS instead of  a BMS would lead to several 
practical problems : 

1. Surcharges and discounts for other classification variables would need to be 
revised For  instance, in many countries, inexperienced drivers have to pay 

3 In a defimtlon of the emclency from an msurer's point of view, the basra premmm of 0 1104 
would be replaced by (2/fl)e -a° .  From a pohcyholder's point of view, however, the basic premmm is 
exogeneous, and not a function of his own 
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a hefty surcharge In addition, they also pay an imphcit penalty, as they 
bave to access the BMS at a level which is higher than the average 
stationary level. As this surcharge would disappear, explicit penalties for 
inexperience need to be reinforced. 

2. The admlmstratlon of  a BMS is extremely inexpensive, and routinely 
handled by company computers. A HDS would lead to much higher 
expenses, since the insurer has to examine the credit worthiness of the 
policyholder before each annual period. 

3. A bad (or unlucky) policyholder could face considerable debt and possibly 
personal bankruptcy. This Is the kind of situation insurance IS meant to 
avoid. 

4. As a partial remedy for possible insolvencies, Holtan suggests to open an 
account for each policyholder. Each year, a specified amount  would be set 
aside, to budd up an indiwdual risk reserve to cover future deductibles. 
Creating such accounts would eliminate the solvency problem for most 
experienced policyholders. However, it would do httle to help young 
drivers, who not only form the group with the highest accident rate, but 
also the group with the worse credit rating. At most, policyholders could be 
induced to save the gross premium reduction created by the introduction of  
the deductible. In our benchmark situation, a $ 3,000 deductible reduces the 
gross premmm by $190. So $190 could be saved annually in the account. If 
the savings account accrue 3% (real) interest, it will take 13 years to save 
the amount  of  just one deductible. 

5. With a HDS, many policyholders would in practice be prevented from 
switching to a new company after a claim, since the former insurer would 
demand a full reimbursement of  the loan. This goes against current 
regulatory trends and creates an adverse selection process: claim-free 
policyholders would be free to leave a company, while pohcles with claims 
could not be eliminated from the portfolio and sent to the residual 
market 

6. Taxes, commissions, and operating expenses have been disregarded in the 
preceding analysis. For  simplicity, assume the operating expenses of the 
HDS are $ 50, like in a BMS. It seems impossible to include these expenses 
in the loan reimbursement schedule. Commissions and taxes are not paid on 
deductibles. A policyholder, who has incurred a $3,000 loss, will never 
accept to repay $ 5,000, in order to provide $ 750 to his broker, $ 750 to his 
government, and $ 500 to compensate the company for operating expenses. 
Since the broker, the government, and the insurer will not accept a decrease 
of their revenue, all of  these expenses will need to be included in the basic 
premium, that covers losses above $3,000. So the gross premium of a 
benchmark pohcyholder would be $310 ($110 net premmm + $200 
expenses, tax and commission). 64.5% of  the gross premium would be 
needed to cover expenses. While in practice such a high figure may be 
reached for some low-premium or high-deductible policies, it is certainly 
excessive for compulsory auto third party coverage 
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The inclusion of  all expenses into the basic premium has another Important 
consequence'  a decrease of  the efficiency and the payments coefficient of  
variation of the HDS. In a traditional BMS, expenses are proportional to 
the premium level, and bad drivers pay more commission, tax, and 
operating expenses. In a HDS, all policyholders contribute equally towards 
expenses. This reduces relative premium differentiation, and has a depress- 
mg effect on the efficiency curve and on the coefficient of variation of 
payments (see Fig. 5 and 6) 
In the preceding analysis, the deductible has been set rather arbitrarily at 
$ 3,000, following a suggestion by Holtan to set the deductible around the 
mean claim cost If the HDS is ever implemented, the value of  the 
deductible will probably be decided by practical considerations, and not as 
the result of  sophisticated modelling Holtan has presented a model, based 
on the mlmmlsatlon of a quadratic expected uulity function, that would 
provide an " o p u m a l "  deductible, after lengthy calculations. A simpler 
optimisatlon criterion coud be based on the efficiency. For instance, one 
could select the deductlble in such a way as to maxlmise ~0(0.10). The first 
derlvatwe (with respect to D) of ¢p(0 10) is easily calculated, and a 
numerical procedure leads to an optimal deductible of  $ 2,941, very close to 
the value arbitrarily selected. Figure 7 compares the efficiency curve for 
various deductibles. It shows that ¢p(0.10) is not an increasing function of 
D A very large D improves the efficiency for small 2's, but reduces ~p(0.10). 
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5. CONCLUSIONS 

Compared to a traditional bonus-malus system, a high deductible system 

1. reaches a steady state much faster; 
2. increases premium income during early years; 
3. has a higher efficiency for the most common values of  the claim frequency; 

and 
4. has a higher varmbility of  payments for all policyholders. 

Of course the first three points are m favour of the HDS, while point 4 is a 
very important drawback, that will probably prevent the apphcatlon of a HDS 
in practice. Further research might be needed to improve Holtan's proposal 
For  instance, one should investigate the ~mpact of  less severe forms of  clatm 
sharing than a straight deductible, such as proportional co-payments under D, 
or annual vs. per claim deductibles. 

Finally, it should be pointed that a HDS would be a good application of the 
"bancassurance"  concept, since both insurance (above the deductible) and 
banking (the loan under the deductible) expertise would be needed to manage 
the system. The banking segment of  the Industry would be reduced to develop 
savings vehicles that would guarantee the repayment of  the loans. 
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NOTE ON THE PAPERS BY J. HOLTAN AND 
BY J. LEMAIRE & H. Zl 

According to the editorial rules of treating discussion situations in the ASTIN 
Bulletin the paper by J. LEMMRE & H. ZI being somewhat a discussion on Holtan 's  
paper was sent to the author of the original paper, who was given the opportunity to 
make an additional comment,  The editors then received the following note by JON 
HOLTAN. 

In this note I want to give some general comments on the papers by LEMA[RE & 
ZI (1994) and HOLTAN (1994) 

Interpret henceforth a bonus-malus (BM) principle as consisting of  two basic 
components : 

(a) The BM design. 
(b) The BM tariff parameters 

Traditional actuarial literature has basically been preoccupied with component 
(b) Or more precisely, the tariff parameters of an muial accepted BM design have 
usually been mathematically opt~rnahzed within different criteria of succes like e g. 
high efficiency and financial balance. In my oplmon, however, this strategy seems 
to be too narrow if the aim is to construct a BM pnnclple  which is totally 
optmlallzed in favoul of  both the insurer and the insured In our strive for 
maximizing BM advantages and mmNnlzing BM disadvantages,  actuarial BM 
research should instead simultaneously focus on both components (a) and (b). 
The construction of  the High-Deductible System (HDS) m HOLTAN (1994) IS 
an example of  this strategy However, as pointed out in LEMAIRE & Zl (1994) (see 
Section I and 4) and HOLTAN (1994) (see Secuon 3, 5 and 6), a HDS compared 
with existing BM systems both eliminates and generates important disadvantages 
which are hnked to component (a) Based on some mathelnatlcal model assump- 
uons, LEMA]RE & ZI moreover concludes (see Section 3 and 5) that this two-sided 
conclusion ~s m principle also vahd within some mathematical cr, tena of  success 
linked to component (b) These complex,  and perhaps confusing, conclusions make 
it difficult for us to decide whether to prefer the existing BM systems or the HDS 
However, the solution to this problem of decision seems to be naturally dependent 
on some strategic questions hke:  What kind of  BM advantages and what kind of 
BM disadvantages will be the most mlportant to focus on in the future automobile 
insurance market'~ In what way wdl new financial market structures and new 
electronic technology moderate the stated criticism of  HDS, and hereby make room 
for creative insurance poducts hke HDS9 The answers to these quesuons are of 
course by now not obvious, and hence a continuous prospective assessment of the 
questions will probably be the most suitable way to proceed within the evaluating 
of HDS. In addition, and as mentioned m Sect,on 5 in LEMAIRE & ZI (1994), the 
design of HDS may also be mlproved by further research For instance, a traditional 
BM system may be combined with a HDS such that all policyholders within the 
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traditional system who attain a specific high rate of bonus discount are offered a 
separated (comprehenswe Insurance) HDS on a permanent basis. In the first place 
this modified HDS obviously moderates a great deal of the stated criticism of the 
pure HDS, while it in the second place gives the offered customers a customer- 
friendly choice between two different product alternatives. 

In the immediate future the automobile insurance industry seems to meet market 
demands which are even more customer-orientated than today. Under the circum- 
stances, and as mmmated above, it seems to be a must for actuarial research within 
BM pnnclples to be more orientated towards both the components (a) and (b) Or. 
m other words, more orientated towards an optimal combmatzon of insurance 
market BM criteria and traditional actuarial BM methods. 
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D I S T R I B U T I O N  IN T H E  I N D I V I D U A L  LIFE M O D E L  

BY KARL-HEINZ W A L D M A N N  

lnstitut fffr Wirtschaftstheorle und Operatlon~" Research, 
Untversititt Karlsruhe 

ABSTRACT 

An iteration scheme is derwed for calculating the aggregate claims dlsmbut ion 
in the individual life model. The (exact) procedure is an efficient reformulation 
of  De Pnl 's  (1986) algorithm, considerably reducing both the number of  
arithmetic operations to be carried out and the number of  data to be kept at 
each step of ~teration. Scaling functions are used to stabihze the algorithm in 
case of  a portfolio with a large number  of  polloes Some numerical results are 
displayed to demonstrate  the efficiency of  the method. 

K E Y W O R D S  

Individual hfe model ,  aggregate claims distribution, De Phi algorithm. 

I. 1NTROI~UCT~ON 

Consider a portfolio of  m independent hfe insurance polioes Suppose each 
pohcy to have an amount  at risk i ~ l =  {1 . . . .  a} and a mortahty rate qj with 
j E J  = {1, . . ,  b}. Let m,j denote the number of all pohcles with amount  at risk 
and mor tahty  rate qj. 

In the individual risk model the total amount  of  claims, S, is the sum 
S =  X t +  ... +.X'm of  the m individual claims X~ . . . . .  X,,, produced by the 
pohcies. The distribution of  S, f ( s )  = P(S  = s), referred to as the aggregate 
claims distribution, can be obtained by successively convoluting the m two- 
point distributions of  the mdw~dual claims. Since the numerical calculauon of 
an m-fold convolution is usually very t~me-consummg, numerous approxima-  
tions can be found m the literature. See, e .g ,  BEARD, PENT1KAINEN and 
PESONEN (1984) for more details. The method derived m DE PRIL (1986) ~S a 
remarkable progress m computing the distribution of  S exactly. Compared  with 
Panjer 's  (1981) recurslon formula, however, which can be thought of  as the 
counterpart  within the collectwe risk model, the computing time remains large 
(cf KUON, REICH and REIMERS (1987), DE PRIL (1988), REIMERS (1988)) 

In the present paper  we shall reformulate the ~teratmn scheme underlying the 
method of DE PRIL (1986). A (much) more efficient orgamzaUon of  the data 
will considerably reduce both the number of  an thmehc  operations to be carried 
out and the number  of  data to be kept at each step of lnteration. Further,  we 
shall stabilize the algorithm by introducing a statable scahng function. Thxs 
scaling function will enable us to apply the algorithm to a portfolio wIth an 
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essentially larger number  of  policies. Finally, some numerical results will be 
dnsplayed to demonstrate  the efficiency of the method 

2. T H E  A G G R E G A T E  C L A I M S  D I S T R I B U T I O N  

F o r j ~ J ,  we setpj  = l - q j ,  zj = qj/pj, mj = Z,~lm,j, and c = Zt~lZj~sim v. 
Further,  we use Ix] to denote the greatest integer less than or equal to x. 

It has been shown in DE PRIL (1986) that the aggregate claims dnstnbutlon 
can be computed recurswely via 

b 

(1) f(O) = I--I (pj).t, 
j = l  

and for s =  I, 

(2) 

where 

(3) 

. . ~  C 

I m m ( a , s )  [s#] 

f ( s ) =  Z Z g(t,k)f(s-kt) 
S t = l  k = l  

b 

g(i'k)=(--l)k+lt 2 mYzJ k 
.1~1 

Theorem 1: Equation (2) can be written as 

l mm (a, ~) b 

(4) f ( s ) = -  2 Z imvr(s'z,J) 
S t=l  J--I 

where, for all i~I,j~J, l<s 
(5) r(s, i,)) = zj{J (s- t ) -r(s- i ,  l,j)} 

and r(s, i,j) = 0 otherwise. 

Proof:  Let 
lq,] 

r(s, i,j) = Z 
k ~ l  

Then, utdlzing 

( _  l)k +l z~f(s-- kt) 

r(s, i,j) = zj { f  ( s - i ) -  
ls#] 
2 (--1)Ck-I)+tz~ - ' f ( s - i - ( k - 1 ) t ) }  

k = 2  

[(~-,)#1 
=zj { f ( s - t ) -  k~,2 (--l)k+l zJ k f (s - i -k i )  } 

= z j{ f (s-O-r(s- t ,  l,j)} 

the assertion immediately follows from (2) [] 
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Equations (4) and (5) can be thought of as an efficient reformulation of 
equation (2). The superiority results from 

(a) a lower number of arithmetic operations to be carried out at each step of 
iteration 

(b) arrays of smaller size to keep the data needed for further iterations 

To specify (a), we first study equation (2). Fix (s, t, k). Then, having already 
computed g(~, k - 1 ) ,  .q(i, k) can be obtained as the result of 

b 

{1(- I )  k} ~ ( - z j ) { m , z : - ' }  
j = I  

which can be managed by b + I multiphcatlons and b addltlons. Two addJt)onal 
multiplicahons and one subtraction are necessary to compute g(t, k ) f ( s - k i ) .  
Summing over k there is a need of (b+3) [s/t] multlphcahons and (b+ I) [s/i] 
addmons/subtractlons. 

On the other hand, by applying equations (4) and (5), for fixed (s, i,j), one 
multiplication and two subtractions are necessary to compute r (s, i, j).  Further, 
one addlhonal multlphcahon is needed to obtain (t mv} r(s, t,j) Summing over 
3, there is a need of 2b multiplications and 2b additions/subtractions. 

Now let (,,(s) (resp. (a(s)) denote the number of multlphcatlons (resp. 
additions/subtractions) to be saved by applying equations (4) and (5) m place 
of equation (2) at stage s of iteration. Then it easdy follows that 

mm (a, s) 

~m(S) = ~ { (b+3)[s / i ] -2b}~{ (b+3) log(a+l ) } s -2ab  

mm (a, s) 

~a(s) = ~ { ( b + l ) [ s / i ] - 2 b } ~ { ( b + l ) l o g ( a + l ) } s - 2 a b  
i=1 

where use has been made of log (a + 1) < Eo,-i l/t < 1 + log (a) (cf. e.g., Ross 
(1983)). 

Now let us speofy (b). To apply iteration scheme (2), an array with ac (resp. 
c+  I) elements is needed to keep g(t, k) (resp f ( s - k i ) )  for further iterations. 
On the other hand, utdizlng equations (4) and (5), an efficient Implementation 
of r(s, i,j) ( resp . f ( s - i ) )  needs an array with a(a+ I)b/2 (resp. a +  1) elements 
only 

To illustrate the basic idea underlying the implementatlon of r(s, i,j), 
observe (see Figure 1) that the r(s, i,j) within the upper triangle (sohd hne) 
have to be kept at stage s, while at stage s+  I the r(s, t,j) of the lower triangle 
(dashed hne) have to be retained. 

To manage these data in an efficient way, we rearrange the elements of the 
upper trmngle m an array with a(a+ I)/2 rows and b columns, and, switching 
to the lower triangle, we replace the entries of (S-l ,  l , j )  (not needed any 
longer) by the ones of (s, t,J) (to be kept for further use) and let the other 
entries unchanged. 
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• ) (s-2,2J) (s-3,3j)  ..- (s-a, aO) 

. . . . . . . . . . . . . . .  7 
I 

' 

I 

" 4  

FIGURE I Actuahzatmn of the data 

Formally, we introduce 

v, = t ( i - l ) / 2 + l  

w, = O, t e l  

and actualize w, at each step s(s > 1) of  iteration accordmg to 

w = { ~ , + 1 ,  if w , < t - I  

otherwise 

Then w, coincides with s modulo t and ( v ,+w, , j )  is the position in the array, 
in which the entry of  (s, i , j)  c a n  be found. 

3. STABILIZATION OF THE ALGORITHM WITH RESPECT 

TO U NDERFLOW/OVERFLOW 

Applying the algorithm to a portfolio with a large number of  contracts, the 
initial value f ( 0 )  ts close to zero. This fact may cause an underflow followed by 
an abort  or irregular running of the procedure. 

To discuss this aspect in more detail, let 09 and £2 denote the smallest and 
greatest numbers that can be represented on the computer  to carry out the 
algorithm. Suppose f ( 0 )  < co. Then the algorithm stops with an underflow. On 
the other hand, by formally setting f (0)  equal to zero, the sequence f ( s )  of 
iterates degenerates to a sequence that has all ItS elements equal to zero, whtch 
is not consistent with the property of  being a probabdlty mass function. 

There are a variety of  ways to overcome this dtfficulty. Three methods of 
different effictency and/or apphcabxhty are to be stated as methods 1 to 3. 
There f * ( s ) ,  0 < s  < c, ts used to denote the sequence of  transformed 
iterates 
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Method 1: Suppose 

f *  (s) = i f ( s ) ,  0 _< s < c 

for some constant y with co < i f ( 0 )  < Q, Then the transformed iterates f * ( s )  
can be obtained by formally starting (4) (resp. (2)) with i f (0 )  in place of  
f (0 ) .  [] 

The use of  a constant scaling function is the simplest way to stabihze the 
algorithm. A more refined method is to combine a constant scaling function 
with an exponential scaling function, which has been suggested by PANJER and 
WILLMOT (1986) within the collective risk theory. 

Method 2: Suppose 

f *  (s) = y e - ~ ' + P ) f ( s ) ,  0 _< s < c 

where ~, fl, ~, are constants with 0 ~ ~ _< 0.5, y > O, and 

(6) fl = 2 my log (pj) 
t = l  J = |  

To compute f *  (s), iteration scheme (4) has to be reformulated as 

f *  (0) = ye 0 -~)~ 

I mln (a, s) h 

= -  X X im, 
S t = l  j = l  

where, for all i ~ l ,  j e J  

t ( i , j )  = z je  -~' 

r* (s, t , j )  = tO, j )  { f *  (s - l )  - r* ( s -  i, l, j)}, 

and r*(s ,  i , j )  --- 0 otherwise. 

1 < s < _ c  

t<_s 

[] 

Method 2 starts with a larger initial value as well as method 1 and addmonally 
reduces the increase of the Iterates. For  large s, however, things may change 
and the transformation may lead to an ealier abort on account of  an 
underflow. Our third method is one way to overcome this principal difficulty. 
It again starts with a larger initial value, reduces the increase of the iterates 
for s < E ( S ) ,  and, additionally, reduces the decrease of  the iterates for 
s > E ( S ) .  

Method 3: Suppose 

f *  (s) = ye~(S-~): f ( s ) ,  O ~ s ~ c  
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where 

(X = - -  j ~ / ] J  2 

b 

= E(S)= ~ mj% 
./=1 

and fl as in (6) To compute f *  (s), the modified iteration scheme reads 

f *  (0) = y 
I mm (a .s )  b 

f * ( s )  = -  Z Z tmvr*(s , i , j ) ,  l <_s<_c 
S t = l  j = l  

where, for all iel,  j e J  

{ zje ~'(2(s-t')-'), l _< s < 2 a -  1 
t(s,t,J) = t ( s - t , t , J )  e2a?,  2 a < s < c  

r*(s,i , j)  = t ( s , i , j ) { f * ( s - i ) - r * ( s - i , i , j ) } ,  t<s<_c 

and r*(s, t , j )= 0 otherwise. [] 

It ~s not surprising that the last scaling function is superior to the other ones, 
since it ~s stimulated by the central hmtt theorem and thus best utilizes the 
asymptotic  behavior of  S as m --, ~ .  Some numerical results to be given in the 
next section will illustrate the efficiency. We finally remark that t(s, i j )  and 
r*(s, i,j) can be implemented in the same way as r(s, l,j). 

4. NUMERICAL RESULTS AND DISCUSSION 

We consider as a starting point the portfoho dtscussed m GERBER (1979), 
p. 53. 

ql mq 

0 03 2 3 I 2 - -  
0 0 4  - -  1 2 2 1 
0 05 - -  2 4 2 2 
0 06  - -  2 2 2 1 

Since the portfoho consists of  31 pohc~es only, there Is no need for a 
reformulation or stabilization of  the algorithm We therefore expand the 
portfoho by considering krn~ pohcles in place of  m. (for all i e l  and jeJ) .  

Let k = 5000 (corresponding to 155 000 policies) to xllustrate the numerical 
progress resulting from the application of  equations (4) and (5) in place of  
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equation (2). Then, being interested m computing the aggregate claims 
distribution up to the smallest c* with P(S  > c*) _< 10 -4, there is a saving of  
more than 4 .4 .109 multiplications and a saving of  more than 3.1.109 
additons/subtractions. Moreover, the arrays to be kept at each step of iteration 
can be reduced by 140 851 elements 

The maximal k ~mplymg a stable algorithm has been deterrmned on the basis 
of extended numbers ( ie  co= 1.9 .10 -4951, I 2 =  1 . 1 .  104932). There stable 
means that the algorithm does not stop with an underflow or overflow and that 
both I E' (S) - E" (S)I/E" (S) _< 10-5 and IVar' (S) ~ - Var" (S) '/'[/Var" (S) ~ <_ 
10 -5 hold, where E' (S), Vat' (S) are determined with help of  the probability 
mass function of  S and E"(S) ,  Var"(S)  result from the moments of  the 
individual claims and the properties of  expectation and variance. The maximal 
k and the associated number of  policies to be obtained in this way for 
y = 104500 are displayed m Table 1. 

TABLE 1 

STABILITY OF THE ALGORITHMS UNDER CONSIDERATION (~ = 1045°°) 

Method maximal k number of policies 

Equations (4) and (5) 7 900 244 900 
Method I 15 100 468 100 
Method 2 (ct = 0 31) 22 100 685 100 
Method 3 80 100 2483 100 

Stability of  our numerical results thus means stability with respect to the first 
two moments. For a more theoretml treatment of  the numerical stabihty of  
recurswe formulae the reader is referred to PANJER and WANG (1993). 
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A B S T R A C T  

Mortgage insurance mdemmfies a mortage lender against loss on default by the 
borrower. The sequence of events leading to a claim under this type of 
insurance is relatwely complex, depending not only on the credlt worthiness of  
the borrower but also on a number  of  external economic factors. 

Prormnent among  these external factors are the loan to valuation ratio of  the 
insured loan, the disposable income of  the borrower, and movements  in 
property values A broad theoretical model of  the functional dependencies of  
claim frequency and average claim size on these variables is estabhshed in 
Sections 6 and 7. Section 8 fits these models, extended by other " i n t e rna l "  
varmbles such as the geographic location of  the mortgaged property, to a real 
data set. 

Section 9 compares  the fitted model with the data, and finds an acceptable fit 
despite extreme fluctuations m the claims experience recorded in the data 
set. 

K E Y W O R D S  

Mortgage insurance, housing price index; loan to valuation ratio; regres- 
sion. 

l I N T R O D U C T I O N  

Mortgage insurance indemnifies a mortgage lender against loss on default by 
the borrower The typical sequence of  events leading to the revocatIon of  the 
indemmty is as follows. 

The amount  of  the mortgage is repayable by a sequence of instalments, 
perhaps monthly, over a period of  some years, up to perhaps 25 or m a few 
cases more. If a borrower fails to meet one or more of  these instalments, 
arrears collection procedures wdl be instigated. If  it appears that the borrower 
is experiencing financial difficulties which threaten his capacity to pay the 
scheduled instalments, the lender's initial response will usually be to at tempt  
rehabilitation of  the borrower,  possibly by some form of  rescheduling of  the 
debt repayment.  

In many cases this will render the borrower 's  difficulties temporary. In other 
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less fortunate cases it will become clear that the borrower is quite unable to 
repay the debt. The lender will then force sale of the mortgaged property, and 
retain that part of  the sale proceeds required to discharge the remaming debt. 
In the majority of  sales, the proceeds will be sufficient for this purpose, but If 
they are not the mortgage insurance indemmty is invoked to reimburse the 
lender for the shortfall. 

It is an elementary observation that inflation of  property values reduces the 
call on mortgage insurance; the proceeds of  property sales cover a greater 
proport ion of the corresponding debts. It is also clear from the above 
description that a loan needs to go through several stages (healthy ---~ in arrear 

property under management ~ sale of  property) before a mortgage 
insurance claim arises, and each of these stages involves some delay. As wdl be 
discussed in Section 3, each of  them also depends on its own specific economic 
factors. 

For  these reasons, the underlying process generating mortgage insurance 
claims is complex and dependent on several variables which are exogenous to 
the insurance portfolio. Consequently, mortgage insurance run-off arrays, 
whether in terms of  numbers or amounts of  claims, exhibit very different 
characteristics from those of other lines of  business. A striking example of this 
~s given in Section 2. 

These different characteristics necessitate rather different modelling tech- 
niques. The purpose of  the present paper is to illustrate these techniques by 
means of  a case study. Since this study is specific to a particular portfoho, tt 
cannot be claimed that the modelling techniques illustrated are generally 
applicable. It is hoped, however, that they are fairly generally indicative of  the 
type of modelling which needs to be attempted. 

2. NUMERICAL EXAMPLE; PRELIMINARY DISCUSSION 

The following data are given as an indication of  the difficulties hkely to arise if 
a mortgage insurance portfolio is subjected to conventional run-off analysis. 
More detail of the data on which this paper is based appears m Appendices E and G. 

Year of Number of  claims, per 10,000 loan advances, emerging m development year (a) 
loan 

advance 0 I 2 3 4 5 6 7 8 9 10 

1980 30 18 6 0 
1981 116 42 31 5 0 
1982 54 27 45 36 13 13 
1983 25 20 20 23 9 0 3 
t984 0 13 24 55 35 5 0 
1985 1 21 134 68 15 6 
1986 0 17 30 4 2 
1987 3 I 0 2 
1988 0 0 5 
1989 0 0 
1990 0 

0 0 
0 0 
4 

(a) Development year is defined as year of emergence of claim minus year of loan advance 
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Let the term relative claims frequency denote the number of claims per 
10,000 loan advances. If C,~ denotes the relative claim frequency in develop- 
ment year j  of year of advance t, and A,j denotes the age-to-age factor: 

J + l  ] 

k=0 /k=0 

then the following table of age-to-age factors is obtained. 

Year of Age-to-Age ~ctor  m development year j = 
loan 

advancer 1 2 3 4 5 

1984 2 86 2 50 1.38 104 1 00 
1985 7 12 I 44 I 07 I 03 
1986 2 71 I 08 I 05 
1987 1.00 I 50 

The great instability in these ago-to-age factors is evident in the sense of 
variability within a development year. The basic reason for the instability is 
clear from the first table. It is the apparent correlation between relative claim 
frequency and year of emergence of claim, i.e. with the number of the diagonal 
in the table. Such a data structure suggests application of the separation 
method (TAYLOR, 1977, 1986), with the model structure: 

(2.2) E[Cv] = G2,+j. 

The separation method yields the following parameter estimates. 

0 0 00 
I 0 06 
2 0 20 
3 0 22 
4 0 14 
5 0 II 
6 0 03 
7 0 03 
8 0 02 
9 0 00 

10 0 20 

1984 366 
1985 167 
1986 195 
1987 350 
1988 196 
1989 48 
1990 29 

This produces the following comparison between observed and fitted relative 
claim frequencies. 
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Year of 
loan 

advance 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

Observed and fitted (shown m bold type) relattve clatm frequency m development year 

2 3 4 5 I 6 7 8 9 10 Total 

3 0 5 2 1 8  1816 6 0 9 0 3 0 0 6 6 1 6 0 9 5  94 
116 79 42 24 31 21 5 1 1  0 5 0 1 0 0  140 

54 72 27 36145 28 36 38113 6 13 I 4 0 193 181 
25 21 20 33 2 0 , 2  23 9 21 0 1 3 I ,0,  , , 9  

1 13 9 24 38 55 76135 28 5 51 0 i 131 159 
I 21 II 134 69 68 42 15 7 6 3 245 133 
I 17 20 30 38 4 10 2 4 53 73 
! I II 0 9 2 6 I i 6 28 
1 0 3 5 6 5 9 
0 0 2 I 0 2 
0 0 0 

The table indicates that the separation method achieves a reasonable fit No 
formal goodness-of-fit statistics are examined, because this model ~s later 
discarded. The difficulty is that, despite the reasonableness of  the fit, the 
sequence of  escalation index numbers 2k is peculiar by normal standards Until 
some explanation of  this pecullartty is found, it is impossible to produce any 
reliable projection of  the sequence into future years. 

One of  the major  objectives of  subsequent sections of  this paper will 
therefore be to obtain such an explanation. The discussion of thts aspect of  the 
modelling problem is taken up in Section 3. 

3 THE PROCESS OF CLAIM OCCURRENCE 

3.1. Major financial factors 

As pointed out m Section I, a loan must traverse several stages of  financial 
deterioration before producing a mortgage insurance claim. These stages are 
subject to different financial influences Of  these separate influences, two are of  
particular prominence" 

(a) the onset of  financial difficulties for the borrower,  and 
(b) m the event of  forced sale, the extent to which the sale proceeds repay the 

outstanding loan. 

These two factors are discussed in the following two sub-sections. 

3.2. Onset of  borrower's financial difficulties 

Despite its importance in a borrower 's  budget, the mortgage payment Instal- 
ment will nevertheless be to some extent a residual item in that budget. It will 
rank after tax and consumer expenditure on necessities (food, clothmg, etc ). In 
addition, most past loans have been of  a type whereby the amount  of  
instalment varies with variations in current day interest rates. 
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It appears, therefore, that a reasonable measure of  the degree of  financial 
pressure on mortgage borrowers would be provided by an estimate of  the 
average restdual income after allowance for tax, consumer expenditure and 
mortgage instalment. This residual income, called here the home affordability 
index (HAl),  was constructed tn the following form:  

Home affordabthty index = average weekly gross household income 

minus 

tax 

minus 

consumer expendxture 

minus 

mortgage mstalment, 

expressed as a percentage of  gross mcome 

A baseline d lsmbut ion of gross household income over these categories of  
expenditure was derived from a 1988/89 household expenditure survey (HES) 
conducted by the Australian Bureau of  Statistics. The items of  expenditure for 
this base year were adjusted to other years in various ways, indicated by the 
following table. 

Item of income or expenditure Adjustment from year to year according to 

Gross household income 
Tax 
Consumer expenditure 

Mortgage instalments 

Average weekly earnmgs 
Average weekly earnmgs (a) 
Consumer price mdex 

Average weekly earnings (b) 
Mortgage interest rates (b) 

(a) Prehmmary invest~gatmn indicated little varmtmn m the effectwe average tax rate over the 
period concerned 

(b) The average amount of a new loan was assumed to change m proportion w~th average weekly 
earnings These loans were assumed repayable over penods of 20 years, and the average 
mortgage instalment calculated on the basis of the most common interest rate charged m the 
year concerned m respect of the loan portfoho under analysis 

The component  time series used in the construction of the HAl  (at year end) 
are set out as Appendtx F. 

The resulting HAl (at mid-year) is as set out in the following table. 
The rather Irregular progression of  thts index is seen in Appendix F to derive 

from quite reasonable component  mdexes Each of these components  may be 
projected over future years, producing a rattonally based projection of  HAl.  
This situation may be contrasted with that which arises on application of 
"b lack  b o x "  esttmates of  past claims escalatton, as in Section 2, and in which 
no guidance as to future escalation is available 
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Year Home affordabthty index 

1979 100 0 
1980 1048 
1981 I11 9 
1982 101 7 
1983 1041 
1984 128 9 
1985 128 3 
1986 10I 7 
1987 87 4 
1988 90 6 
1989 81 5 
1990 81 2 

3.3. Recovery of  outstanding loan on forced sale 

The HAI of Section 3.2 provides an indication of the likelihood that an 
individual borrower will experience financial difficulty in a particular year. 
However, such difficulty, while a necessary condition, is not sufficient for the 
emergence of a mortgage insurance claim. It ts qmte possible the borrower's 
difficulties are such as to force sale of the property, but that property values 
will be sufficient for the entirety of the outstanding loan amount to be 
recovered by the lender. 

Whether or not this is the case will depend mainly on movements in property 
values between the date of advance of the loan and the date of the forced sale. 
In Sydney these movements may be estimated by reference to the Housing Price 
Index (HPI) computed and pubhshed by Resldex Pty Limited. The following 
table was derived from that index with slight modification. 

Year ended Housing price index 
30 June (Sydney) at mid-year 

(30/6/79 = 100) 

1980 115 3 
1981 145 1 
1982 158 6 
1983 158 4 
1984 168 2 
1985 177 2 
1986 182 4 
1987 191 5 
1988 245 8 
1989 363 5 
1990 430 7 
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Evidently, the greater the increase in value of properties generally, the less 
the chance that forced sale of  a particular property wdl lead to a loss to the 
mortgage lender. 

3.4. Lags in claims process 

Whde movements m the HAI (Section 3.2) and HPI (Section 3.3) have been 
identified as major variables in the frequency of  mortgage insurance claims, it 
is to be expected that there will be a lag between cause and effect m each 
case. 

Information from the company operating the mortgage insurance portfoho 
&scussed in this paper was that, broadly: 

(a) the average period between mortgage instalments falhng in arrears and the 
property being taken under management 0f  indeed this latter occurred) 
was about 6 months; and 

(b) the average period between taking a property under management and 
effecting its sale was also about 6 months. 

On the basis of  this information, it might be reasonable to expect lags of. 

(a) 12 months between movements in the HAl  and the consequent movement 
in claim frequency, and 

(b) 6 months between a movement m the HPI and its consequent movement 
in claim frequency. 

Thus, It has been assumed m subsequent modelhng that a claim frequency 
experienced during year t is dependent upon:  

(a) the value of the home affordabdlty index at the middle of  year t - l ;  
and 

(b) the value of  the HPI at the end of  year t -  I. 

Examinatton of  alternatives suggested that this choice of  lags provided about 
the best fit of  model to data. Further detad on the mcorporahon of  the HAl  
and HPI in the model is given in Sechon 6.2. 

4. DATA 

4.1. Variables affecting claims experience 

Section 3 identified the HAI and HPI as likely to be major explanatory 
variables of claim frequency Other variables in this category include: 

(a) the proportion of  the original property value advanced by way of  
mortgage, i.e. the loan to valuation ratio (LVR); 

(b) the geographic area of the mortgaged property (described m more detad m 
Section 4.2) ; 

(c) the a~.r,:cd term of  the mortgage loan; 



104 GREG TAYLOR 

(d) the type of property mortgaged (e.g. new house, old unit, land only, 
etc.); 

(e) the financial type of  the loan (e.g. reducible loan with variable interest, 
interest only instalments with fixed interest rate, e tc )  

In addition, it is likely that claims experience will vary with development year, 
even in the absence of  movements m the HAl and HPI This would reflect a 
process of  natural selection operating on each year's mortgage advances, 
whereby the poorest risks succumb to financial pressures relatively early, and 
the remainder survive the mortgage term. 

It is clear that the major variable affecting claim size will be the size of the 
original loan. In addition, the explanatory variables (a) to (e) of claim 
frequency potentially affect claim size also 

4.2. Form of data 

As the tables of  Section 2 indicate, claims experience relates to the period 1984 
to 1990 In fact, the 1984 experience covers only 7 months of  that year. 

Data supplied in respect of  these claims consisted of a claim by claim 
tabulation, recording in each case the relevant variables identified in Sec- 
hon 4.1 : 

(a) year of  advance; 
(b) amount  of  loan; 
(c) value of  property; 
(d) geographic area of  property; 
(e) term of  loan; 
(if) type of  property; 
(g) financial type of loan; 
(h) year of emergence of  claim. 

The tabulated geographic area was the postal code of the property. These 
codes were grouped into 14 broad urban and rural regions within the states of 
New South Wales and Australian Capital Territory, as follows: 

Metropohtan regions 1 to 5; Canberra(6) ;  Newcastle(7);  Wollon- 
gong(8) ,  Central Coast (9); North Coast (I0), South Coast (11); Blue 
Mountains (12), Southern Highlands (13), Other (14). 

The exposure base for the study consisted of all loans advanced over the 
years 1980 to 1990 incluswe These were recorded, loan by loan, according to 
the variables (a) to (g) listed above as potentially affecting claim frequency. 

As the data described above constitute a unit record file, ~t ~s not practical to 
present the full detail here. It is not even practical to tabulate cells of  data since 
there are 1499 exposure cells. However, Appen&x G gives a tabulation of 
exposures and claims according to year of advance and development year It is 
to be stressed that, while such a tabulation is Interesting, it omits a great deal 
of  the raw data. 
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5.  E X P L O R A T O R Y  D A T A  A N A L Y S I S  

i 
U 

5.1. Claim frequency 

Section 4.1 identified a number of  characteristics of  individual loans (such as 
LVR, term of  loan, etc.) which might have a bearing on the hkehhood of those 
loans leading to claims These characterisncs will be referred to here as risk 
variables. 

Imtlally, data concerning clazm numbers were analysed according to the risk 
variables listed in Section 4.1. This provided initial guidance concerning the 
types of loans which were subject to high or low risk of default. 

The results of  this analysis are summarized m the following sequence of bar 
charts. 

Accordinqto Development year 
~a Chtl'm f~quen~..._~r lO00 aflvances 

Accordin~ to LVR 
Ctama frequency ~ [ 000  advances 

Range of LVR 

U 

Dm,,elopmcnt ycar 

.! 
Accordinq to Term of loan 

__  C laa~n_fre'l.~uency_per lO00 .advance . s  _ - -  

Term of loan (months) 

Accordinq to Area 
Claim frcquency_l~'~r 10(30 advances = . . . . . . . . .  

Area 

i o 

Accordinq to Financial type 
Clmrn f~,.qu~ncy_l~er 1000 advances 

Fm~ncnaJ  type 

Accordinq to Dwellinq type 
_ Claim f~luen¢~' per I000 advanc~g 

o s ~  

EZ2 
Dwelhng type 
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These charts raise the following possibilities: 

(a) claim frequency peaks m the second, third and fourth years after the year 
of advance; 

(b) claim frequency increases dramatically with increasing loan to valuation 
ratio (LVR); 

(c) claim frequency increases significantly with increasing term of loan; 
(d) certain geographic areas experience conspicuously higher or lower claim 

frequencies than average; 
(e) defaults appear to be confined totally to reducible loans carrying a 

variable interest rate; 
(f) claim frequency appears highest in relation to land, higher in relation to 

new properties than old, and lowest m relation to improvement loans 

As stated, these are raised as possibilities only, rather than conclusions. 
Without further analysis, it would be impossible to determine whether all of  
these variables affect the default risk directly, or some of them are merely 
correlated with the genuinely operative risk variables. 

For example, it might be the case that term of loan has no bearing on default 
risk, but appears to be relevant because LVR does have such a bearing and 
long terms are associated with high LVRs. 

The question of possible correlation between risk variables is remarked upon 
further m Section 8.1. 

5.2. Claim size 

Initially, data concerning claim sizes were analysed according to the risk 
vanbles hsted m Section 4.1. This provided initial guidance concermng the 

O 

O7 

06 

05 

04 

03 

02 

01 

0 

Claxm size to loan amount ratio 

3 4 5 66 7 

Development year 
9 10 
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types of loans which led to larger or smaller losses when default occurred. The 
detailed results of this analysis are set out in Appendix D. The results indicate 
httle variation m claim size with any of the risk variables except development 
year. The variation of claim size with development year is graphed in the 
preceding chart. 

The chart suggests that the greater the time elapsed between advance of  loan 
and default, the greater the claim size to loan amount ratio, i.e. the greater the 
loss on default expressed as a proportion of  the original advance. This result is 
confirmed by formal regression analysis, as described in Section 8.2. 

Since growth in property value generally increases with development year, 
this chart is consistent with the predicted form (7.2) of  model. 

6. FORM OF CLAIM FREQUENCY MODEL 

6.1. General 

In the following the basic units of  tabulation of claims data will be referred to 
as cells. A cell will consist of  an ~tem of data associated with a particular 
combination of year of  advance, development year, and any sub-set of  the risk 
variables identified in Section 4.1. 

It is reasonable that the total effect of  risk variables on claim frequency 
should be multiplicative, i.e 

(6.1) expected relative claim frequency = function (development year, HAl,  
HPI) 

X 

function (risk variables, e.g. LVR, 
geographic area, etc.). 

The form of the first of  the two functions on the right will be discussed m 
Section 6.2 As far as the second function is concerned, a reasonable first 
approximation would consist of the product of  a factor in respect of  each of 
the risk variables present. Equation (6.1) then becomes: 

(6.2) expected relatwe claim frequency = 

Interactions between the factors making 
necessary. 

function (development year, HAl,  
HPI) 

X 

factor dependent on LVR 

x 

factor dependent on geographic area 
× 

etc. 

up this product could be added if 
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Expected relative clmm frequency (per loan advanced) is adjusted by a factor 
of 7/12 in all cells whose experience relates to 1984 This allows for the fact that 
the data include only 7 months'  claims (Sectmn 4 2). 

Some of the risk variables ~dentlfied m Section 4.1, e.g. financml type of 
loan, are categorical by nature. Others, e.g. LVR, are continuous by nature It 
was convement for exploratory analysis of  the data to convert all variables (l e. 
risk variables, not HAl  and HPI) to categorical form Details appear In 
Section 5.1. The categorical form of  data was retained in the final modelhng, 
described in Section 8.1 

6.2. Dependence on development year and economic variables 

Preliminary analysis (Section 5.1) indicated that relative claim frequency, 
expressed as a function of  development year, was generally consistent with the 
shape of  a Hoerl curve. Appendix B provides a theoretical underpinning of this 
observation. Consequently, the model adopted for relative claim frequency in 
the absence of any other effects took the form : 

(6.3) const × ( j +  ½)2 exp ( - c j ) ,  

where j represents development year. 
The modification of  (6.3) by HAl and HPI raises some questions Consider 

HAI first. 
As noted m Section 3.2, the HAI may be regarded as a measure of  the 

average borrower's residual income after payment of mortgage instalment. An 
md~vldual borrower will experience dffficulnes m payment of mortgage instal- 
ment ff th~s residual income turns negative. The frequency w~th which this 
occurs in the event of  movements of  HAI will depend on the d~stnbutmn of  
indwidual residual incomes, rather than just the average of this dlsmbut~on 
represented by HAI. There is virtually no informatmn avadablc in respect of 
th~s distrlbutmn 

There is, however, some evidence that indlwdual gross incomes are subJect to 
a Paretian distribution (MANDELBROT, 1960). 

If a similar assumption Is made about residual incomes after payment of 
mortgage instalment 0.e HAI), then Appendix A demonstrates that, to first 
approximatmn, logged claim frequency will contain a term hnear m R (l +j)/R (l), 
where l denotes year of  advance, j development year, and R(t) the HAI 
experienced m year t Allowance for the one year lag m the effect of HAl, as 
discussed in Section 3 4, modifies this term to R ( i + j - l ) / R ( t )  (1 m the case 
j =  0). 

Because of the approxlmaUons leading to this result in Appendix A, an 
alternative linear term involving 

log [ R ( l + j - -  I ) /R0)]  for j > 1 ; 

o r  

(6.4) 0, for j = 0, 
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was tried. This latter form produced a slightly better fitting regression than the 
unlogged ratio, and has been adopted henceforth. In fact, both alternatives 
produced quite similar results 

Appendix B, particularly (B.10), demonstrates that, under seemingly reason- 
able assumptions about the accumulation of  the amount  of  mortgage debt on 
default, and about property values on resale, claim frequency should also 
contain the following factor revolving LVR and HPI :  

L~[H(i+j) /HO)]  -v, v const. > 0, 

where L denotes LVR and H(t )  the HPI experienced m year t. In order to 
accommodate the lag m the effect of HPI d~scussed m Section 3 4, this last 
expression should be modified to the following. 

o r  

(6.5) 

LV[H(i+j  - V2)/H(t)]-", j ~ 1; 

L ~, j =  0, 

where H ( t -  V2) Is interpreted a the HP! experienced at the end of  year t -  1. 
Note that (6.5) indicates that claim frequency should include the same power 

of both LVR and HPI. However, this result was derived in Appendix B on the 
assumption that LVR affected the proportion of principal outstanding at 
default, but not the risk of  default itself. In practice, it ~s hkely that LVR is 
correlated with the ablhty of the borrower to meet financial commitments, m 
which case it intrinsically affects the nsk of default For  this reason, (6.5) 
should be generalized to the following: 

o r  

(6.6) 

L~[H( i+j  - V2)/H(t)] -v, j ~ 1; 

L ~, j = O. 

Combination of (6.2) to (6.4) and (6.6) yields the following model: 

(6.7) expected relative claim frequency m development year j of year advance t 

= const. × ( j +  V2) ~ exp ( - c j )  

× Z ~ [ R ( l + j  - l ) / R ( t ) ]  - p  [ H ( t + j - V 2 ) / H ( i ) ]  -v 

× factor dependent on geographic area 

× etc. f o r j  2 1, 

and with the two square bracketed terms removed m the case j = 0. 
Let ~u(t,j) denote the expected relatwe claim frequency (6.7), and E(l)  the 

number of loans advanced m year t. Let NO, j )  denote the number of  claims 
emerging m development yea r . / o f  year of  advance t Then the claim frequency 
model adopted was: 

(6.8) N ( t , J )  ~ Polsson [E(t) kt ( t , j ) ]  
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It should be noted that the precise form of dependency of relative claim 
frequency on LVR and HPI in (6.7) relies upon distributional assumptions 
made in Appen&x B. If these assumptions were varied, the form of (6.7) would 
change. Consequently, an alternatwe to (6.7) is considered in Section 8.1, in 
which the terms involving LVR and HAl are replaced by: 

exp (2L) exp [-  v H ( i + j -  V2)/H(t)]. 

This alternative model turns out to be inferior to (6.7). 

7. FORM OF AVERAGE CLAIM SIZE MODEL 

Appendix C shows that, on the same seemingly reasonable assumptions as in 
Appen&x B (referred to m relation to the development of (6.5)), the average 
clalm size m respect of  loans advanced in year i should progress over 
development years according to the following parametric form: 

(7.1) E[Q(i,j)] = const. × H(i+j)/H(i),  

where 

Q(t,j) = the claim ratio (i.e. ratio of  claim size to original loan size) experi- 
enced m development year j of  year of  advance i; 

H(t) = HPI experienced during year t. 

One may note the interesting effect whereby average claim size increases with 
development year even though outstanding principal is decreasing. Clearly this 
result derives from the assumptions made m Appendices B and C. Different 
assumptions would lead to a different parametric form in (7.1). However, an 
examination of  the development of  Appendix C indicates that the property of  
Increasing E[Q(I,j)] with H(i+j) derives only from an assumption that the 
variable y has a decreasing failure rate, where y = ~/,8 and 

c~ = a random variable representing the factor by which outstanding principal 
has been enlarged after default by arrears of principal and interest and any 
other costs, 

,8 = a random variable representing the factor by which the property value has 
been reduced by the forced nature of the sale and the associated 
expenses. 

While there is no particular ewdence concerning the failure rate of y, it is 
interesting to note that the seemingly reasonable assumption of  a Pareto 
distribution leads to the result (7.1) which is found in Section 8.2 to accord 
with experience, at least to the extent that the claim ratio trends upward with 
increasing property factor. However, because the Pareto assumption may be a 
little too specific, it is reasonable to widen the model (7.1) to the following: 

(7.2) Q(z,j) = a+b H(t+j)/H(i)+error term, 

where approximately 



MODELLING MORTGAGE INSURANCE CLAIMS EXPERIENCE 1 1 l 

(7.3) error term N N(0, a2). 

The appropriateness of this error term is discussed further in Section 8.2. 

8. FITTING THE MODEL 

8.1. Claim frequency 

By (6.7) and (6.8), 

(8.1) log E[N(t,j)] = log E ( i ) + c o n s t . + ~  log ( j +  V2)--CJ 
+ 2 log L-p  log [R(t+j- l)/R(i)] 
- v log  [ H ( l + j -  V2)/H(t)] 
+ t e rm d e p e n d e n t  on  g e o g r a p h i c  a r e a  

+ e t c . , j _ >  1, 

w i th  the  two  s q u a r e  b r a c k e t e d  t e rms  on  the  r igh t  o m i t t e d  fo r  the  case  j = 0. 
Th i s  l inear  f o r m ,  sub jec t  to the  e r r o r  s t r u c t u r e  (6.8), was  f i t t ed  to the  d a t a  
us ing  G L I M  ( G e n e r a l i s e d  L i n e a r  I n t e r a c t i v e  M o d e l l i n g )  ( R o y a l  S ta t i s t ica l  

Society, 1987). Various combinations of the potential explanatory variables 
listed in Section 4.1 were tried, and the main results are reported in the next 
table but one. 

Geographtc area 

Original coding (a) First aggregation Second aggregation 

4 Area 1 
3 Area 3 
5 Area 4 
6 Area 5 

AREA I 

2 Area 2 AREA 2 

AREA 3 7 ) 
10-12 Area 6 

14 Area 7 

13 Area 9 

8 Area 8 AREA 4 

(a) As set out m Section 4 2 
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The results of  the trtal regressions are displayed m the followmg table. 

Variable 
Coeffictent m variable at left (a) m Regressmn No 

1 2 3 4 5 6 7 

Regress~onconstant -9505  -1218  -1050  -9848  -1290  
Development year -1093  - I 143 - 1218 -1097  - 1096 
Log (development year+ V2) 4 908 5 066 4 558 4 906 4 903 
LVR (d) I100 1 144 0994 I100 1099 
Log (LVR) 
Log (home affordahdtty factor) (b) 
Property growth factor(c) -3039  - 3070 - 2036 -3017  - 3015 
Log (property growth factor) 

Indicator variables (0 
AREA 2 0 52 0 52 
AREA 3 0 87 0 87 
AREA4 - 5 2 4  - 524 
Area 2 0 60 
Area 3 0 16" 
Area 4 - 0  35* 
Area 5 - 0  26* 
Area 6 1 05 
Area 7 I 15 
Area 8 - 5  33* 
Area 9 0 81 

60 ~ Term < 120 months 3 74* 
120 ~ Term < 180 months 2 95* 
180 ~ Term < 240 months 2 00" 
240 ~ Term 2 74" 3 06* 

Dwelhng 
Improvements & increases I 33* 
All other than tmprovements, 
mcreases & land only 0 6,:1" 
Dwelhng type mlssmg 7 05* 

-5776  -5943  
- I  119 -08536 

5 076 4 505 

893 8413 
- 2  158 

-4636  -5658  

053 05131 
0 87 0 8772 

- 5 25 - 7 254* 

Devmnce (e) 854 549 632 611 610 593 527 

(a) Dependent variable in regression log (claim frequency), as m (8 1) 
An asterisk attached to a coefficient m the table mdLcates that this coefficient dtffers from zero 
by less than 2 standard errors 

(b) The home affordabdlty factor ~s the rauo of values of HAl appearing m (8 1) 
(c) The property growth factor is the ratio of values of HPI appearing m (8 I) 
(d) The variable referred to here is m fact 

10x L V R - 3  5 

The variable log (LVR) uses the genuine LVR, though grouped m ranges of 10 percentage 
points width Each such range ~s represented by its mid-value 

(e) Deviance ~s a measure of goodness of fit, related to the log hkehhood ratio of the model A 
lower devtance Jmphes a better fit 

(If) The variables Area k and AREA m have already been described as 0-1 indicator variables The 
variables hsted subsequently m the table are also of the 0-1 indicator type, taking the value 1 ff 
the loan ~s subject to the risk varmble displayed, 0 otherwise 
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By (6.8) and (8.1), the model is multwariate Poisson with multlplicative 
structure of  the mean. GLIM fits this by maximum likelihood. Note that the 
logarithmic form of  (8.1) is no more than a convenience of  expression. It could 
equally have been written in Its unlogged (multlplicative) form. In particular, 
(8.1) does not imply that the observations N(i,)) (many of which are zero) are 
to logged 

For the Interpretation of  this table, special reference should be made to 
geographic area of the mortgaged property. On the strength of  the chart of  
Section 5.1, a number of areas, seemingly similar in claim frequency and/or  
physically contiguous, were aggregated. The areas at this initial level of  
aggregation were denoted by "Area  k" .  These were 0-1 variables, taking the 
value 1 if the property lay in the relevant area, 0 otherwise. 

Regression 1 in the table indicated that further aggregation was possible. The 
new variables resulting from this aggregation were denoted by " A R E A  m "  
and were 0-1 variables, each of  which consisted of  the sum of  the relevant 
variables Area k. The key to the two aggregations Is as shown In the previous 
table but one 

It may be noted that the trial regressions Included alternative versions of  
(8.1) in which the terms dependent on LVR and HPI were replaced by their 
respectwe unlogged forms, as discussed at the end of  Section 6.2. These 
alternatives were, however, inferior to (8.1) m terms of fit. 

Regression 7 provided the best fit of  model to data, and was adopted as the 
final model. This final model, expressed in non-symbolic form, was as 
follows : 

(8 2) 

CLAIM F R E Q U E N C Y  = 
(per 1000 advances) 
IN DEVELOPM E NT  YEAR t 

2 624 ( t+  '/2) 4 so5 exp ( - 0  8536 t) 

× 

(LVR) ~4z3 

[(HOME A F F O R D A B I L I T Y  FACTOR)  2158 
× 

(PROPERTY G R O W T H  FACTOR)  5658] 

x 

I If AREA 1 

1 670 If AREA 2 

2 404 If AREA 3 
0 0007 ff AREA 4 

where 
H O M E  AFFORDABIL1TY FACTOR and PROPERTY G R O W T H  FAC- 

TOR are the ratios revolving H and R respectwely m (8.1). 
The formula in the box indicates that clatm frequency. 

(a) moves sharply upward with increasing LVR, 
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(b) moves sharply downward as property values or disposable incomes after 
mortgage instalments increase; 

(c) vanes sigmficantly by geographxc area, exhibiting a particularly low value 
in the Wollongong district. 

Because of correlations of  the type discussed at the end of Section 5.1, not all 
o f  the risk variables exhibited a significant effect on claim frequency. 

8.2. Average claim size 

The form of  the model was suggested m Section 7 as the following. 

(7.2) Q( i , j )  = a + b  H ( i + j ) / H ( t ) + e r r o r  term, 

where approximately 

(7.3) error term --, N(0, a2). 

This model appears unnatural to the extent that the normal error term would 
permit claim sizes to be negatwe. This would be avoided by the inclusion of  an 
error term which was by nature positive. An example would be a Iognormal 
error term, as would be incorporated m an alternative model of the form" 

log Q( t , j )  = log a + b  log [H( i+j ) /H( i ) ]+error  term, (8.3) 

where 

(8.4) 

Equivalently, 

(8.5) 

where 

(8.6) 

error term ~ N(O, 0"2). 

Q (i, j )  = a [H( i+j ) /H( i ) ]  h x error term, 

error term = lognormal (0, a2). 

Note that both forms (7.2) and (8.5) accommodate the theoretical form 
(7.1) 

Ordinary regression produced the following two alternative models. 

Parameter Un loggedmode l  (a) Logged model (b) 

a 0 1622 0 1555 
b 0 0494 0 3083 

a 2 0 0257 0 8676 

(a) Thin is the model described by (7 2) and (7 3) Of  the 425 observed claim ratios, 2 large values 
have been excluded as outhers 

(b) Th~s is the model descnbed by (8 3) and (8 4) 
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In fact, neither of  the two models consIdered in the preceding table produced 
an ideal fit to the data. Their respective residuals are tabulated in the following 
table. 

Values of  standar&zed 
residuals 

Relatwe frequency of standardized residual m 

Unlogged model Logged model 

% % 

less than - 3 0 I 
-3  to -2  0 3 
-2  to - 1 12 8 
- I to  0 47  32 

0 to I 24  44  
I to  2 10 12 
2 to 3 5 0 

more than 3 1 0 

Total 100 100 

These two tabulations of  standardized residuals are very much reflections of  
each other about  the origin. While the unlogged model is somewhat  skewed to 
the right, the logged model 1s about  equally skewed to the left, This suggests 
that the correct model lies somewhere between normal and log normal. Such a 
model might be of  the form (7.2), but with the error term strictly positive and 
skewed to the right but less so than log normal. 

Note that the fitted values of  claim ratios, according to the two alternative 
models, are : 

(8.7) 
E Q ( i , j )  = a + b H ( t + j ) / H ( t )  for unlogged model;  

(8.8) = a [ H ( i + j ) / H ( i ) ]  b exp ( V2 a 2) for logged model.  

In the event, (8.8) produced a rather heavy upward bias, about  18% in total, 
in fitted values of  claim amount  relative to observed amounts.  The form of  this 
comparison was exactly as reported in Section 9.2, but with the unlogged 
model used there replaced by the logged. 

This result appears to indicate that the exponential scahng factor In  (8.8) IS 
not robust against the non-normali ty in the error term of  (8.4), as was 
demonstrated in the above table of  standarlzed residuals. 

On the other hand, Section 9.2 indicates that the unlogged model provides 
an adequate fit, and accordingly It was adopted. 

9 MODEL VERIFICATION 

9.1. Claim frequency 

The model adopted in Section 8.1 has been used to compute standardized 
residuals according to several variables. The resulting residual plots appear  
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below. Note that each residual relates to the aggregation of  all expertence at 
the value of  the independent variable displayed. For  example, the first residual 
m the first plot may be obtained from the second table of the present 
sub-section as : 

(8 - 6)/.v/6 = 0.8 

A plot of  the residuals of all cells (taken over all explanatory variables) 
would not be helpful since the great majority of cells contain very small 
expectations. 

i R F E S I D U A L  PLOT 

i ~  I M 4  i ~  i f l l  

Yrc~" o~ ~van¢© 

R.ESIDUAL PLOT 

I i i 

l ~vc lo~acn t  

RESIDUAL PLOT 

ii i 

to v~ual~n t a h o  

R.~ZDUAL  PLOT 

m I 
m 

m 

I 

I I I I I I 

U 17 M n I1~ I I  

Y c a t  o ~  t ~ f a u h  

These plots appear generally satisfactory in terms of  magnitude, with the 
exception of  year of  default 1984. This one anomaly, in the relatively distant 
past, involves relatwely few claims (see first table below) and is insufficient to 
invalidate the model. 

The plot against year of advance contains a downward trend. If included in 
the model, year of  advance appears as a highly significant explanatory 
variable; other things equal, claim frequency dechnes by 29 % as between each 
year of advance and the next. Naturally, the effects of the other explanatory 
variables, particularly those which are time dependent, change. 

While this model provides a superior fit to the data, the abstract nature of 
the year of  advance effect ss problematic It msght be interpreted as a factor 
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representing improvement in underwriting. However, in this case, the total 
improvement over the decade of underwriting would be almost 97%,  which 
might strata credulity. 

It seems more likely that year of  advance is acting as a proxy for some other 
untdenttfied explanatory variable(s). When this variable is omitted from the 
model, ItS effect is largely captured by the other explanatory variables. 

Moreover, an examination of  the fitted numbers of claims (using the model 
which omits year of  advance effect) against the data suggests that the apparent 
trend in the residuals may not be particularly meaningful (see second table 
below) 

The followmg table displays the actual and model numbers of  claims 
underlying the above plot of  standardized residuals by experience year. 

Period 
Number of claims emerging 

Actual Model 

1984 (7months)  28 13 
1985 32 24 
1986 53 54 
1987 168 174 
1988 103 115 
1989 21 22 
1990 20 24 

Total 425 425 

The table illustrates the close agreement between actual and model numbers 
of  claims for all experience years except 1984, despite the extreme fluctuations 
m numbers of  claims. 

More detaded information is given by the followmg table which tabulates 
experience and model simultaneously by year of advance and development 
year, and from which the above table may be derived. 

Year of 
loan 

advance 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

Observed and titled (shown m bold lype) number of claims in development year 

0 1 2 3 4 5 ! 6 7 8 9 10 Total 

3 1.83 1.5 I 1.2 0 1.2 0 0.3 0 0.0 0.0 8 6 
13 4.5 8 4.86 4.4 I 4.9 0 1.4 0 0.1 0 0.0 28 20 

7 4.9 6 7.6 10 8.78 11.41 3 3.5 3 0.3 I 0.1 38 37 
I 

5 1.6 7 5.3 7 8.8 8 14.73 5.2[0 0.5 1 0.2 31 36 
0 0.1 7 4.3 13 15.5 30 37.7 19 16.83 1.8 0 0.8 72 77 
I 0.3 16 16.2 104 86.6 53 56.7 12 7.6.5 3.8 191 171 
0 0.2 14 17.1 24 24.6 3 4.8 2 3.1 43 50 
3 0.3 1 6.2 0 2.7 2 2.5 6 12 
0 0.4 0 2.7 8 5.6 8 9 
0 0.2 0 7.1 0 7 
0 0.3 0 0 
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The following table presents these results in the same format  as in Section 2, 
enabhng comparison of  the present set of  results with those from the 
separation method 

Year of 
loan 

advance 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

Observed and fitted (shown m bold type) relative claim frequency in development year 

0 I 2 3 4 5 6 7 8 9 10 Total 

30 18 18 9 6 7 0 7 0 2 0 0 6 0 60 43 
116 41 42 25 31 23 5 26 0 7 0 I 0 0 195 122 

54 38 27 34 45 39 36 51 13 16 13 1 4 0 193 179 
25 8 20 16 20 26 23 43 9 15 0 I 3 1 101 109 

0 0 13 8 24 28 55 69 35 31 5 3 0 I 131 140 
I 0 21 21 134 I I I  68 73 15 10 6 5 245 220 
0 0 17 21 30 30 4 6 2 4 53 62 l 
3 0 I 6 0 3 2 3 6 12 
0 0 0 2 5 3 I 5 5 
0 0 0 6  ] 0 6 
0 0  0 0 

9.2. Average claim ratio 

For each claim m the experience, a fitted value of its claim ratio was calculated 
according to (8 7) using the values of  a and b tabulated m Section 8.2. Each of 
these claim ratios was multiplied by the assocmted amount  of  its loan, to 
produce a fitted claim size. 

Observed and fitted claim sizes were then summarized m 2-way tabulations 
by year of  advance and development year. These tabulations are displayed m 
Appendix E, and reduced to their corresponding I-way tabulations below. 

Year of 
advance 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

Amount of claims 

Ratio 

Observed Fitted Observed 

fitted 

$ 000 $ 000 % 

51 70 73 
294 312 94 
398 374 106 
354 323 110 
632 642 98 

1931 2063 94 
425 472 90 

46 69 67 
259 222 117 

0 0 
0 0 

Development 
year 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Amount of claims 

Observed Fitted 

Ratio 

Observed 

fitted 

$ 000 $ 000 % 

32 46 70 
425 471 90 

1750 1844 95 
1051 1133 93 
674 642 105 
321 301 107 
47 38 124 
31 35 88 
56 28 199 
0 0 
I 7 14 

Total , 4388 4545 97 4388 4545 97 
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It should be particularly noted that the fitted amounts  of  claims, according 
to the above description are conditional upon the observed numbers of  claims. 
This ~s a proper approach to examination of  the fit o f  the average claim size 
model. Agreement between model and data appears satisfactory. 

It is useful to carry out some check that the common dependence of  the 
claim frequency and claim size models on the HPI does not lead to unwanted 
correlation between the two. That  this does not in fact occur is indicated by the 
following scatter plot of  the observed fitted ratios of  average claim size against 
a similar ratio for number  of  claims. 

Each point represents a particular combination of  year of  advance and 
development year. To give a simple indication of  the significance of  the plotted 
points, they are dxvided into " large  cells" and "smal l  cells". The former are 
those cells containing a fitted number of  claims in excess of  5; otherwise the 
cell is " s m a l l "  
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9.3. Loan sizes associated with claims 

While Section 9.2 models the claim size which will arise from a particular loan 
size if a claim occurs, it provides no indication of which loan sizes are likely to 
lead to claims 

There is no particular reason to believe that the sizes of  loans associated with 
claims will be representative of  the entire portfolio of  loans advanced. Indeed, 



120 GREG TAYLOR 

the table below indicates that,  on average, it is the larger loans that lead to 

claims. 
Care is needed here, however,  as the model of claim frequency in Section 9 1 

condi t ions  on LVR and  other risk factors, for which average loan sizes may 
differ from the portfol io average, and  so wi thout  further analysis it is not  clear 
to what  extent the incluston of  these factors in the model will effectively select 
average loan sizes above the por t foho average. This quest ion is also examined 
in the fol lowing table. 

As a percentage of portfoho average loan size 

Year of advance average loan size associated average loan size weighted 
with past claims (a) by model numbers of 

future claims (b) 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 

% 
135 (8) 
144 (28) 
119 (38) 
116 (31) 
85 (72) 
95 (191) 

144 (43) 
97 (6) 

241 (8) 

% 
96 

102 
101 
102 
102 
102 
103 
100 
98 

Average 109 (c) (425) 102 (d) 

(a) The numbers of claims on which the ratios are based are shown m parenthesis For each year of 
advance, the average size of loans assooated with recorded claims has been calculated and 
related to the portfolio average (for that year of advance) 

(b) For each combination of year of advance and risk varmblcs, the average loan advanced and 
model claim frequency (according to the model of Section 8 I) are calculated The average loan 
advanced, weighted by model claim frequency, is then calculated for each year of advance 

(c) Average of the entries m the column, weighted by numbers of claims shown in parenthesm 
(d) Unwe~ghted average of the entries In the column 

The table suggests that the average loan size associated with claims of  a 
par t icular  cell for a par t icular  year of  advance is abou t  7 % higher than the 
overall average loan size for the cell. 

Thus ,  a forecast of  future claim a m o u n t  for a part icular  cell of  development  
year j of  year of  advance z would be computed  as '  

1.07 x average loan size m year of advance l 

× N(z , j )  Q(i,j), 

where N(t,j), Q(l,j) are estimates of  NO, J) and  Q(t,j) from Sections 9.1 
and  9.2. 

An  al ternat ive approach  to the above would be to include loan size as an 
explana tory  variable in the claim frequency model of  Section 8 1. This might be 
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awkward in practice, however, because It would increase very considerably the 
number of  data cells entering into the regressions of  Sectmn 8.1. 

10. CONCLUSION 

Section 8 fits models to the clmm frequency and claim ratio in the mortgage 
insurance portfolio examined. Section 9 verifies that these models provide a 
reasonable fit to the data. 

The models therefore can be, and indeed have been, used to estimate the 
habihty for claims st~ll to emerge in respect of  past years of  loan advance. In 
order to carry out this estimation, one needs to project future values of  the 
HAI  and HPI.  This in turn requires projection of incomes, tax rates, mortgage 
interest rates and growth m property values Projections such as these are, 
problems of  substance in their own right, but are beyond the scope of  the 
present paper 
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A P P E N D I X  A 

D E P E N D E N C E  OF CLAIM F R E Q U E N C Y  
O N  H O M E  AFFORDABILITY INDEX 

Let X denote the random variable representing the proport ion of  an ind;vid- 
ual's income required for tax, consumption and mortgage instalment. Assume 
this variable to be Pareto distributed, i.e. wIth p.d.f . '  

(A.I)  f ( x )  = kx  -~- I ,  k const. 

The borrower will experience financial difficulties if X >_ I, which occurs 
with probability : 

(A.2) P[X > I] = kx-~/ccl,=, 

Now, suppose that X shifts by a factor of  c to X'  = cX. Then the probabili ty 
(A.2) shifts to 

(A.3) P[X" > 1] = P [ X >  l/c] = kx-~/otl~=llc 

Comparison of  (A.2) and (A.3) shows that the probability (A.2) has shifted 
by a factor of  c ~. Now note that the scale shift of  X to cX must shift the mean 
of X by a factor of  c: 

(A.4) E[X'] = cE[X] 

Let 

Y =  l - X ,  
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and note that 

(A.S) E[Y] v H A I .  

Then the factor by which H A I  changes when X changes to X'  is: 

(A.6) R = {1 - E[X']}/{! - E[X]} 

= ( I --  ckt)/( 1 --  u ) ,  

where 

= E[X] .  

Inversion of  (A.6) yields: 

(A 7) c = [1 - R ( I  - ~ ' ) ] / U -  

Thus, the shift in HAI  by a factor of  R causes the frequency with which 
borrowers experience difficulties to shift by a factor of: 

(A.8) c a = {[I - R(1 -~u)]//2} ~ . 

Now, it is convenient to analyse log (claim frequency), which will depend on 
log (frequency of  borrower 's  dlfficultms), and (A.8) shows that this latter will 
depend on an additive term of" 

log c a = cx log {[1 - R(I  -,u)]//a} 

- 0oR (I - ,u)  + const., 

for small values of  ( I - ~ ) R .  
Thus, to first approximation,  the model of  expected log (claim frequency) 

should include a linear term in R, the ratio by which HA1 has changed since 
advance of  the roan(s) in questmn. 

A P P E N D I X  B 

D E P E N D E N C E  OF CLAIM F R E Q U E N C Y  
O N  H O U S I N G  P R I C E  INDEX, LVR AND D E V E L O P M E N T  Y E A R  

Consider a loan taken at time t = 0 L e t  V ( t )  be the value of  the associated 
property at time t, and P( t )  the amount  of  p rmopa l  then outstanding. Then 

(B.1) 

(U.2) 

where 

V(t)  = V(O)[H(t)/H(O)], 

P( t )  = P ( O ) f ( t ) ,  

H ( t )  = HPI at time t ,  

f ( t )  = proport ion of principal stdl to be repaid at time t 

By (B,I) and (B.2), 

( B . 3 )  P ( t ) / v ( ~ )  = L f ( t )  H(O) /H(O,  
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where 

(B.4) L = P(O)/V(O) = loan to valuation ratio.  

Suppose that the borrower has encountered financtal difficulties at some time 
s < t. At tame t sale of  the property ~s forced. At that point, the debt m respect 
of  the loan will be P(t)ct(/), where 

~t(t) = a random variable representing the factor by which outstanding princi- 
pal has been enlarged by arrears of  principal and interest and any other 
cos t s .  

Similarly, the net proceeds of  the sale of  the property will be V(t)fl(t), 
where 

fl(t) = a random variable representing the factor by which the property value 
has been reduced by the forced nature of  the sale and the assocmted 
expenses 

Then the ratxo of  outstanding debt to sale proceeds ~s. 

(B.5) X(t)  = y(t)  P(t)/V(t), 

where 

(B .6)  y ( t )  = ~(I) / f l ( t )  

By (B.3) and (B.5), 

(B.7) X(t) = L [H(t)/H(O)]-' f ( t )  y(t). 

A claim will occur if X(t)> 1, l e if 

(B.8) y(t)  > [H(t)/H(O)] [Lf(t)]-' .  

Now suppose that y( t)  is Pareto distributed with d f. 

(B.9) F(y) = 1 - ( y / a ) - " ,  y > a ,  

assumed independent of  t. Then, by (B 8), the probabdity of  occurrence of  a 
claim is : 

(B 10) e[x( t )  > I] = {af(t) L[H(t)/H(O)]-~} ". 

Thus, expected claim frequency varies as a power of  L[H(t)/H(O)]-i. Note 
also that claim frequency for pohcles of a particular term n vanes over 
development years t by a factor of  

(B.l 1) [ f ( t ) ] "  ct [a~-:-;1] v, 

which has the shape dlustrated by the solid line m the following diagram 
However, note the above assumption that the distribution of the factor y( t )  

IS independent of  t. While perhaps largely true, it will break down as t ~ 0 as the 
screening procedures of  the lender force claim frequency toward zero. Hence, 
the curve (B.11) of  frequency over development year wdl be mo&fied for small 
t in the manner in&cated by the broken hne m the dmgram. 
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When allowance is made for the variety of original terms n, the dependence 
of  claim frequency on development year is seen to be represented by a weighted 
average of  curves of  the type illustrated in the diagram. 

APPENDIX C 

DEPENDENCE OF AVERAGE CLAIM SIZE 
ON HOUSING PRICE INDEX 

As noted .just prior to (B.8), the financial difficulties of  a borrower will lead to 
a claim if X(t), as defined there, exceeds 1. In fact, by the same argument as 
led to that result, the amount  of  the claim will be 

(C 1) A( t )  = a ( t )  P(t)- f l ( t )  V(t) 
= b'(t) v ( , )  [ x ( t ) -  I]. 

Note that fl(t) and y(t)  (and hence X(t)) will not be independent, even if 
0~(t) and fl(t) are.. For  general random variables Y and Z, let/ iv and .Uz denote 
their means, Vy and Vz their coefficients of  variation, and Pvz their correlation. 
It is straightforward to demonstrate that: 

(C.2) E[ YZ] = IZrlZz(1 + przvrVz). 

By (C.I) and (C.2), 

(C 3) E[A (r)] = V(t) E[X(t ) -  I]+ /t#(l + p#xVpVx), 

where E[Y]+ denotes E[YIY> 0]. 
Now, by (B.5) 

(C.4) E[X(t ) -  1]+ = E [ y ( t ) -  V(t)/e(t)]+ P(t)/V(t). 
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By the Pareto assumption (B.9), 

( C . 5 )  E [ y ( t ) -  V(t)/P(t)]+ = [V(t) /P(t)]  v / ( v -  1) ,  

whence (C.3) and (C.4) yield: 

(C.6) E[A (t)] = V(t) up(I +ppxvljvx) v/(v- I) 
V(O) H(t)/n(o) [by (B 1)] 

if ~p, v~, Vx and Pax are the assumed independent of t. 
Thus, the expected average claim size is directly proportional to property 

values, all other things equal. This has the interesting effect of causing average 
claim size in respect of a group of identical policies usually to increase with 
development year even though outstanding principal is decreasing. 

APPENDIX D 

EXPLORATORY ANALYSIS OF CLAIM SIZE 

DI. Variation of claim ratio with loan to valuation ratio 

Loan to 
valuallon 

ratio 

up to 50% 
50 to 60 % 
60 to 70 % 
70 to 80 % 
80 to 90 % 
over 90 % 

Number 
of claims 

I 
1 
8 

36 
189 
191 

Claim to loan rauo 

Sample 
Sample standard 
mean deviation 

558% 
569% 
23 3% 13 7% 
239% 192% 
22 9% 18 4% 
23.5% 15 6% 

95% confidence hmlts (a) 

Lower Upper 

11 8% 348% 
174% 304% 
20 3 % 25 6% 
21 3% 25 7% 

(a) These are the symetnc t-distribution confidence hmlts Where the sample s~ze is less than 2, the 
confidence hm~ts do not exist 

D2. Variation of claim ratio with term 

Claim to loan raUo 95% confidence hmns (a) 

Term 

months 

60 to 119 
120 to 179 
180 to 239 
240 & more 

Number 
of claims 

3 
16 
55 

352 

Sample 
Sample standard 
mean deviation 

364% 14 1% 
34 8% 29 8% 
28 4% 20 2% 
220% 156% 

Lower Upper 

1 3 %  71 4 %  
18 9% 50 7% 
22 9% 33 9% 
20 4% 23 7% 

(a) See Appendix DI 
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D3. V a r i a t i o n  o f  c la im ra t io  with a r ea  

Area 

MI, M4 
M2 
M3 
M5 
Canberra 
Coastal 
Newcastle 
Wollongong 
Other 

Number 
of claims 

29 
63 
77 
5 
4 

100 
32 
0 

116 

Cla,m to loan rauo 

Sample Sample 
standard 

mean devmtlon 

16.5% 11.7% 
21 2% 150% 
165% 126% 
258% 148% 
23 I% 130% 
246% 182% 
31 7% 172% 

27.5% 19 4% 

95% confidence hmlts (a) 

Lower Upper 

12.0% 20 9% 
17 5% 25 0% 
137% 194% 
75% 441% 
24% 438% 

21 0% 28 2% 
25 6% 37 9% 

239% 31 1% 

(a) See Appendix DI 

D4. Commentary 

All pairs of  confidence llmtts In Appendices D1 to D3 straddle the overall 
mean of  23.4% except in four cases. All four of  these cases relate to area of  
residence, and are found in Appendix D3. 

A P P E N D I X  E 

C O M P A R I S O N  O F  O B S E R V E D  A N D  F I T T E D  C L A I M  A M O U N T S  

T h e  f o l l o w i n g  a re  t he  a m o u n t s  o f  c l a im  obse rved  in r e spec t  o f  each  c o m b i n a -  

t ion  o f  yea r  o f  a d v a n c e  a n d  d e v e l o p m e n t  year .  

Year of 
advance 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

Amount of claims observed m development year 

0 I 2 3 4 5 6 7 8 9 10 

$ $ $ $ $ $ 
28522 13349 

115151 69711 105156 
71488 29799 102851 81026 

60085 71469 61801 85959 64416 
0 45337 68811 325411 180820 11766 

9591 161743 1060021 474840 179612 44976 
0 150351 219581 28174 26638 

22882 7054 0 15810 
0 0, 258976 
0 0! 
0 I , 

$ $ $ $ $ 
7873 0 0 0 1009 
3724 0 0 0 

35484 20827 56169 
0 10110 
0 
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T h e  f o l l o w i n g  a r e  t h e  a m o u n t s  o f  c l a i m s  f i t t e d  t o  e a c h  c o m b i n a t i o n  o f  y e a r  

o f  a d v a n c e  a n d  d e v e l o p m e n t  y e a r  b y  t h e  p r o c e d u r e  d e s c r i b e d  m S e c t i o n  9 .2 .  

Year of  
advance 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

Amount of claims fitted m development year 

0 1 2 3 4 5 6 7 8 9 10 

$ $ $ $ $ 
9332 0 0 0 7380 
9687 0 0 0 

19012 27658 28253 
0 7572 
0 

$ $ $ $ $ 

27287 25853 
125940 91833 84727 

56280 43406 129344 70032 
51324 96763 63585 74571 29094 

0 68421 121228 258339 167683 26301 
14819 185929 1089849 576994 130423 64647 

0 151670 258058 41149 20740 
30697 13995 0 23866 

0 0 221693 
0 0 
0 

Each cell m this table ,s o f  the form: 

actual  number  o f  c la ims 

x 

fitted average  c la im size. 

Hence comparison o f  the table with the previous one examines only 
variaUon of  experience from model amounts  o f  claim. 

An alternauve version o f  the preceding table consists o f  cells o f  the form" 

fitted n u m b e r  o f  c la ims 

x 

fitted average  claim size. 

This  table  ~s as follows. 

Year of 
advance 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

Amount  of  claims fitted m development year 

2 3 4 i 5 6 7 8 9 10 

$ $ $ $ $ $ $ $ $ $ 
16472 13202 11077 0 0 0 52 

44040 55444 61935 47805 0 0 0 
39396 55278 111986 99883 22086 2637 2910 

15962 73512 80326 136558 50459 0 1408 
0 41551 144634 324560 148532 15693 0 

4668 188718 907194 617384 82395 49662 
0 185146 264079 66099 31805 

3131 86881 0 29785 
0 0 153966 
0 0 
0 

For cells m which where are no clamls observed, the procedure of  Secuon 9 2 does not produce a 
fitted average claim s~ze These cells, indicated in bold, have been assigned a fitted amount  of  claims 
equal to zero 
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APPENDIX F 

HOME AFFORDABILITY INDEX 

Economic indicators Household expenditure 

Year Residual income 
Aver- Gross Con- Mort- 

(as at Con- Mort- ] per- 
31 De- age house- Tax sumer gage As 

eember) weekly sumer gage price ] interest hold (b) expen- instal- centage 
ear- index rates (a) income dlture ment Amount of 

nmgs (b) (b) (b) gross 
income 

p a $ per S per $per  $ per S per 
week week week week week 

1978 224 35 82 4 11 50% 562 74 118 28 326 21 6440 53 85 9 569% 
1979 246 00 911 I1 50% 617 05 129 70 360 65 70 61 56 08 9 089% 
1980 278 25 1000 12 00% 697 94 14670 395 89 82 26 73 10 10473% 
1981 315 90 1102 14 50% 792 38 166 55 436 27 107 18 82 39 10397% 
1982 346 70 123 4 15 50% 86964 182 79 488 52 123 78 74 54 8 572% 
1983 375 90 130 9 14 00% 942 88 198 19 518 22 124 22 102.26 10 846% 
1984 405 40 1360 13 50% 1016 88 21374 538 41 130 41 134 33 13 210% 
1985 428 20 147 5 15 00% 1074 07 225 76 583 93 149 07 115 30 10 735% 
1986 450 85 161 4 15 50% 1130 88 237 70 638 96 16096 93 25 8 246% 
1987 477 70 1737 14 50% 1198 23 251 86 687 66 162 07 9664 8066% 
1988 521 65 1877 14 25% 1308 47 275 03 743 08 174 68 115 68 8841% 
1989 56075 203 0 17 25°/° 1406 55 29564 803 65 217 77 89 48 6 362% 
1990 600 68 213 0 15 50% 1506 69 316 69 843 24 214 46 132 30 8 781% 

(a) The most common interest rates applying to loans in the mortgage insurance portfoho under 
analysis 

(b) These four columns were derived m a consistent manner from the HES, as described in 
Section 3 2 
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A P P E N D I X  G 

DATA 

The data described m Section 4.2 are summarized in the following table. This 
should be considered m conjunction with the quahficatton set out m the final 
paragraph of Section 4.2. 

Number 
Year of 

ofloans 
advance 

advanced 

Number of claims (a) recorded m development year 

0 1 2 3 4 5 6 7 8 9 10 

1 1980 1700 3 3 1 0 
1981 1917 13 8 6 1 0 
1982 2231 7 6 10 8 3 3 
1983 3426 5 7 7 8 3 0 I 
1984 5496 0 7 13 30 19 3 0 
1985 7787 1 16 104 53 12 5 
1986 8077 0 14 24 3 2 
1987 9910 3 I 0 2 
1988 17646 0 0 8 
1989 11878 0 0 
1990 13614 0 

0 0 
0 0 
1 

(a) Development year is defined as year of emergence of claim minus year of loan advance Claims 
emerging ,n 1984 represent the experience of only 7 months 





PREMIUM RATING BY GEOGRAPHIC AREA 
USING SPATIAL MODELS 

BY M. BOSKOV AND R.J. VERRALL 

Department of Actuartal Science and Stattsttcs 
The Cl O, Untversity 

ABSTRACT 

This paper gives a method for prelmum rating by postcode area The method is 
based on spatial models in a Bayesian framework and uses the Gibbs sampler for 
esmnation.  A summary of the theory of Bayesmn spatml methods is given and the 
data which was analysed by TAYLOR (1989) is reanalysed An indication is given of  
the wide range of  models within this class which would be suitable for insurance 
data. The aim of  the paper Is to introduce the models and to show how they can be 
utihsed m an insurance setting. 

KEYWORDS 

Gibbs sampler;  Postcodes; Premium rating; Spatial statistics 

] .  I N T R O D U C T I O N  

The problem of  accessing risk as a function of geographical area occurs in a number 
of  fields, including insurance rating and epldemiology.  The aim of the statistical 
analysis of  the data ~s to assess the underlying variation in risk by area, usually 
postcode area. Two approaches can be taken. Either the raw data can be smoothed 
in order to remove as much random vanauon as possible, or the data can be used to 
allocate each postcode area to a rating category, allowing for the inherent random 
variation The example m this paper uses the first approach, although the methods 
can also be used for the second approach. The authors believe that the second 
approach may be more satisfactory if the data are m a statable form. 

The only previous paper, of which the authors are aware, which uses mathema- 
tical and statistical techmques for premium rating by postcode area is TAYLOR 
(1989). That paper used two-dimensional splines on a plane linked to the map of  the 
region by a transformation chosen to match the features of the specific region. The 
present paper uses an entirely different approach, although some of the preproces- 
sing aspects of  the analysis wil be the same as those used by TAYLOR (1989). The 
example in Section 4 of  this paper uses the data from TAYLOR (1989) As will 
become clear, there are disadvantages m using the data m the form avadable from 
that paper. The example is valid m that it applies a suitable model to the particular 
data set given However,  the present authors believe that a slightly different model 
based on data for claim numbers and clann amounts separately could provide more 
reformative results. 

ASTIN BULLETIN Vol 24 No I. 1994 
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The methods described here are based on statistical methods for spatml data 
These methods have been developed for image restoration, often using data from 
satellites. However,  the techntques can also be used for risk assessment m an 
insurance setting The alms of the analysis and some of  the assumptions underlying 
the models differ from those m other apphcations, but the stanst~cal and mathema- 
tical techmques are simdar. The basis of  the method is the use of a spatial 
probabdlst~c model in a Bayeslan context. The Gibbs sampler ~s used to denve  the 
posterior distribution from which inferences about the spatml structure of  the data 
can be made These references can be used to assess the nsk due to the geographic 
area. The basic philosophy is that there ~s an underlying " t r u e "  risk pattern over 
the whole region, and the data are a version of this pattern contaminated by random 

noise. The aim of  the model is to reconstruct the " t r u e "  picture as far as possible. 
The analogy with image restoration is clear 

The literature on spatial methods is large, and we mention just a few references 
whtch are pamculary relevant to the work in this paper. The book by CRESSlE 
(1991) provides a useful overview and summary of the field. BESAO et al (1991) 
gives a summary of the Bayesian models and describe applications in archeology 
and epidemiology.  The use of  the Gibbs sampler was the subject of  a discussion 
meeting at the Royal Statistical Society recently The papers and discussion are 
contained m part 1 of  the Journal of  the Royal Stat~sucal Society, 1993 We would 
menuon pamculary  GILKS et al. (1993) and SMITH and ROBERTS (1993). 

The paper is set out as follows. Section 2 contains a specification of the spanal 
model. Section 3 describes the Gibbs sampler and smmlauon techmques which are 
used to estimate the posterior densities. Section 4 contains an example using the 
data from TAYLOR (1989) and the final section has the conclusions. 

2. A BAYESIAN MODEL FOR SPATIAL DATA 

The basis for any model for spatial data Is that areas which are close together are 
more likely to be s tmdar (m some sense) than areas which are far apart. In the 
context of  image restoration, this would mean that adjacent areas would be likely to 
be the same, or similar, co]our. In an insurance context, it means that we expect 
adjacent areas to be similar from the point of  view of the underlying risk. 

It Is important to remember that we are interested in the true, underlying risk, and 
the data ~s just a sample providing an estimate of  this risk In addition, we are 
considering only the risk due to geographical area. We wdl assume that the other 
factors have already been analysed, using (for example) a generalised linear 
model. 

We assume that the geographical areas are numbered from 1 to n. Usually, the 
areas wdl correspond to postcode areas. Define x, to be the true risk m area t and :.r.. 
to be the vector of  risks over the whole region {x,. t = 1 . . . . .  n}. The joint  prior 
distribution of  x is not specified expho t ly  Instead, it is more useful to define the 
conditional densmes 

(2 I) p,(x, lxt , x 2 . . . . .  x,_ i ,x,+ 1 . . . . .  x~) 

l =  l , . . . , n .  



P R E M I U M  RATING BY G E O G R A P H I C  AREA USING S P A T I A L  M O D E L S  ] 33 

This conditional density is the density of  the risk at one location, given the risk at 
all the other locations. In reality, this will not depend on the risk at most of  the 
other locations. This means that we can replace (2 1) by the conditional density of  
x,, given the risk values m the neighbourhood of area t. 

(2 2) p, (x, 16,) 

6, is defined as areas in the nelghbourhood of the / th  area For example, if we had 
an evenly spaced latt,ce, the prior distribution might be defined so that 6, consisted 
of adjacent points One possibility is illustrated in the following diagram 

0 0 0 0 0 

0 0 

0 • --+ 

0 0 

• 0 0 

J. 

• X$ ~ -  • 0 

T 
• 0 0 

0 0 0 0 0 

In the insurance setting, 6, can be interpreted as postcode areas which are 
adjacent to, or close, to, the ~th area. 

Suppose that the data observed are denoted by y with components 
{ y , ' l =  1 . . . . .  n}. We use a snnplified notation here, giving only the random 
variable y,, and not the other (possibly non-random) information which may be m 
the data. The full hkelihood may be found from 

n 

(23)  /(.ELY_) = I-I f( .v,  lx,) 
t = l  

This assumes, as is reasonable, that the data are conditionally independent, given 
Y_ The posterior density of x, given Z, can be found using Bayes theorem" 

(24)  p (x l  Z) oc f ( z lL)p(y -~  

The usual Bayesian estmlate of  Y_ is the value of  Y_ which maximises the posterior 
density, the maximum a posteriort estimate. Of course, the most diffficult part of  
this maximisation Is to actually determine the posterior density p(~l ~Z) Although 
we have the con&tlonal prior distributions given by (2 2), it is not straightforward 
to find the unconditional prior distribution and the posterior distribution. Instead, 
we exploit the conditional densities to obtain reahsatlons from the posterior density. 
After obtam|ng a sufficient number of reahsations, we may use the emplncal 
density generated to find maximum a posteriort estimates. In other words, the 
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estunatlon ~s based on a Monte Carlo method. The mechamcs of  this, which are 
based on a variant of the Metropolis algor,thm called the G~bbs sampler (GEMAN 
and GEMAN (1984)) are given m Secuon 3. 

x, has been defined as the true risk m area i, and we now make the compounds of 
x, more explicit. The risk level is assumed to be the sum of  three components .  

(2.5) x, = t, + u, + v, 

t, Is based on known factors. It is measured through covanates  using, for example,  a 
generalised linear model We shall assume that this component of the risk has 
already been removed from the data. In effect, we assume that the data have already 
been " s t andard~sed"  to remove all varmtlon which can be explained by the usual 
covanates,  other than geographic location In the rest of this paper, t, ~s therefore 
dropped from the specificauon of the model. 

u, represents a component  w~th significant spatml structure. 

v, represents unexplained variation 

It is the component u, that is of interest m an analysis of the spatial structure of 
the data 

We must now formulate the condmonal  prior distribution of  x, 16,, (2.2), m terms 
of  u, and v,. Henceforth t, as ~gnored since ~t has already been removed from the 
data. It Is reasonable to assume that tt, and v, are independent Also, since there are 
no reasons to use any other distribution, we shall use a normal prior distribution for 
{v, : t  = 1 . . . .  n} 

I (2.6) p(v , )  ~ 2 - " Z e x p  - ~-~ 

We have assumed that the risk at the ~th region depends only on regions which 
are m the nelghbourhood of the tth region It is also assumed that the prior 
conditional density of the spatial component,  u,, can be factorized into components 
representing the dependencies on each of  the nelghbounng regions and hence can be 
written as 

(2.7) p , ( u ~ , t t l , t t  2 , , t i , _ , , t t , + ,  . . . . .  u,,) o: exp ( -  jcEb, q b ( u ' - u J )  3 

for some function q~. Note that the summation in (2 7) is only over j in 6, 
The function q~ must reflect the fact that the spatial dependence will reduce as the 

&stance between the regions increases It must therefore favour similar values for 
regions which are adjacent, and can be any even function. It could be preceded by a 
factor to allow for thc precise proximity of  the regions i and j .  In this case, (2 7) is 
replaced by 

3 ( 2 8 )  p,(u, lul,u2 . . . . .  u , _ l , u , + l  . . . .  u , , ) ~ e x p [ -  ~ w v q 3 ( u , - % )  
I k. j c  b~ 
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Possible choices for q~ include 

Z 2 Izl 
O ( z ) -  and q~ (z) = - -  • 

2 x  

In this paper, we use the first of these possiblhtles. Thus, 

-/ (29)  p,(u, lut ,u2, ,U ,_ l ,U,+  I . . . . .  u,,)ccexp - - -  ( u , -  
2 x  je ,~, 

The two scale parameters x and 2, which determine the varmnces of u and v must 
also be given a prior distribution. A suitable choice for this prior distribution, which 
is close to the usual umnformative d~stnbunon but which avoids technical 
dlfflculnes xs 

(2.10) pr,or (x, 2) ~ exp - 
2~  22 

where e ~s a small posmve constant, say 0 01. For a mole detmled discussion of this 
choice, see BESAG et al (1991) 

The conditional prior dlstribunon for x,I d,, (2 2), can now be replaced by the 
prior distributions of u, u, x and 2 The posterior density of the parameters can be 
found as m (2 4), using Bayes theorem: 

(2 II) 
t l  

P ( u , v ' x ' 2 1 Z ) ~  H f ( y ,  lx,) x - ' ' ' n x  
I= l  

( '  / / ' /  x exp - - -  2 ( l l ,  - -  lid) 2 2 - 1/2 exp -- v, z prior (x, 2) 
2 x  j~ 0, - ~  

where n, is the cardlnahty of 6,.  
Note that the joint prior dlstnbutlon of Lt has been obtained from the conditional 

prior densmes, (2.9), using the denvauon given in Section 2 of BESAG (1974) 
Various forms for [(y, lx,) are appropriate for insurance data. In the example m 
gecuon 4, we use a normal distribution For data on clmm nulnbers a Polsson 
&stnbuUon would be appropriate In the case of Poisson data, Jt is usual to assume 
that the mean of this distribution is c,e", where c, is the expected number of claims 
in region t ignoring the spatial effect. Then 

(2 12) J (y, lx,) = 
exp ( - c,e") (c,e")" 

A normal dlsmbutlon for f (y , l . t , )  is also useful in practice. The mean and 
variance of this dls tnbuuon will depend on the application, and an example of this 
case is given in Secuon 4. 



136 M BOSKOV AND R J VERRALL 

3. THE G I B B S  SAMPLER 

Having defined the Bayesian model, the remamg problem is to obtain maxlmumn a 
posteriori estimates for the parameters The complexity, high dlmenslonahty and 
multimodahty of  the problem rules out any normal optimization routines. However, 
it is possible to set up a Markov chain whose stationary d~stnbutton is consistent 
with the posterior distribution. One approach which produces such a Markov chain 
is called the Gibbs sampler. The pnnciple of  the Gibbs sampler ts as follows 

At each step in the chain the current value of  each parameter is replaced by a new 
one which is chosen randomly from its distribution given all the other parameter 
values and the observed data Thus, in the terminology of Section 2, a value for x, is 
sampled at random from the density 

(3 1) p,(x, lc),,Z) 

The values of the risk parameters in all regions other than ~, including in 6,, are 
assumed fixed at their current values in this step. This step revolves samphng from 
each of  the distributions subsumed into x, : i.e. for u,, u,, x and 2. Initial values of 
the parameters must be supphed. 

Typically, the chain must be allowed to run for 1,000 steps before it will have 
converged to its stationary distribution, which can be used to find the maximum a 
postertort estimates for the parameters. Once convergence has been obtained, a 
sample of  every 10th step over the next 10,000 steps usually provides a reasonable 
estimate of  the stationary distribution. This can be treated as a an empirical 
distribution from which the required estimates can be obtained in the usual way. 

Note that the conditional posterior d~stnbutions which are required by the Gibbs 
sampler can be obtained in a straightforward manner. For example, 

(3.2) p(u, lu_, ,  v, x, 2, Z) ~ f ( y ,  Ix,) p(u, l u - , ,  x) 

where u_ ,  denotes all values in u except u,. 
For example, when the data have Polsson distributions and the posterior density 

is gwen by (2.11) and (2.12), then the marginal posterior of u, is given by 

/ n / 
(3.3) p(u, lu_,,u_,x,  2, z ) ~ e x  p - c , e " ' ÷ ' + u , y ,  - - - ( u , - g , )  2 

2 x  

where if, is the mean value of  u, over 6, Detads of  the marginal distributions of the 
other parameters in the case of  Poisson data can be found in BESAG et al. 
(1991) 

Once the marginal densxtles have been found and initial values of  all the 
parameters supplied, the Gibbs sampler can be used to generate values of the 
parameters from the required posterior dlstnbutlon. In effect, the procedure exploits 
the simpler conditional dlstnbutxons to simulate the posterior distribution. 

In some cases the random sampling does not present any problems. For example, 
when the data are normally distributed, the posterior d~stnbut~ons are also normal 
and the samphng procedure described above is fairly straightforward In other cases, 
the posterior distribut~ons are more complicated and samples cannot be obtained by 
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a direct method. Instead, a method such as adaptive rejection sampling must be 
used. It is very important that the sampling procedure and the computational 
approach are highly efficient m order to produce results reasonably fast. A 
particularly efficient from of rejection sampling is described by GILKS and WILD 
(1992). This form of  samphng has to be used, for example,  in the case of  Polsson 
data. We now summanse  the sampling process as described m greater detad in 
GmKs and WInD (1992). 

Suppose a sample is required from the dls tnbuuon whose density function is 
f ( x ) .  For example,  this density might take the form given in (3.3). The density, 
f(x), need only be known up to a constant of integration. I.e. instead of  knowing 
f(x), we may only know g(x )  where 

(3.4) g (x )  = cf(x) 
and c is an unknown constant. 

It is necessary to define an envelope funcnon g,,(x) such that g , ( x )  > g (x )  for 
all x, and a squeezing function gt(x) such that gt(x) <- g(x) for all x. The procedure 
to obtain a sample from f(x) is then as follows 

Take a sample x* from g,,(x) and a sample u: from U(O, 1). Now use the 
squeezing funcnon to test the value 

g/(x *) 
ff u: _< - -  then accept x* ; ff not then test 

g.(x*) 

g(x*) 
if w --< - -  then accept x* ;  otherwise reject x* 

g,, (x*) 

FIGURE I 

After each rejection of a sample value, the envelope and squeezing funcnons are 
redefined so as to reduce the probabili ty of further rejection If the log density, 
h ( a ) =  log (g (x ) )  is considered, it can be seen that for the density (3.3), and for 
many others, h " ( x ) < 0 ,  Vx.  It is therefore possible to define an envelope 
hu(x)=log(g.(x)) where h.(x) is a plecewise linear function such that each 
line segment is a tangent to h(x) .  Similarly,  a piecewlse linear function 
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ht(.~) = log (gt(x)) can be defined by chords meeting h(x)  at the same points as 
h,, (x). 

After each rejection of a value of  x*, this value is added to the set of points at 
which ht(x ) and /1.(O meet h (x)  GILKS and WILD (1992) show that this provides 
an efficient method of  generating samples for the Gibbs sampler 

4. EXAMPLE 

In order to illustrate the methods and to give an indication of  the nature of  the 
results, the data from TAYLOR (1989) are reanalysed in this section We would 
emphasise that this is really an illustration and does not represent a definitive rating 
conclusion. In particular, we would prefer to analyse claim numbers and claim 
amounts separate ly '  see Section 5 for a more detailed discussion However, this 
example does enable the results to be compared with the method used by Taylor, 
which imposed a much greater degree of smoothness onto the results 

The data relates to Household Contents Insurance m and around Sydney, 
Australia This region is divided into approximately 200 postcode areas The data 
have already been processed to remove the effects of  all factors which can be 
modelled using generahsed linear modelhng techniques. All factors corresponding 
to t, in (2.5) have been controlled out in order to make the data suitable for 
investigating the spatial effects Taylor  also included a " r o u g h  fit of  the 
'geographic  area ef fec t '  " in order to improve the fit of  the other factors but this 
effect was, of course, not controlled out The final data used in this example 
consists of adjusted loss ratios. 

The adjusted loss ratios are assumed to be normally distr ibuted: 

where e, is the earned exposure m postcode area t, 

and c~ is a constant, chosen as indicated below. 

As noted in TALON (1989), this normal approximation may be poor where e, is 
small. However,  in the model considered here, areas with low values of e, will have 
a limited effect on the overall results. The constant ~ controls the amount of 
smoothing applied, as can be seen from the following maps. The maps show the 
values of  the adjusted loss ratios divided into six bandes as follows" 

A Less than 0.5 
B 0.5 to 0 7 
C 0.7 to 0 9 
D 0.9 to 1 1 
E l 1 to 1.3 
F Greater than 1.3 

Map 1 shows the adjusted loss ratios of  the raw data before the fitting of  the 
spatial model. Maps 2 to 5 show those of  the fits for various values of  o~. A value of  
100 appears to be produce a similar level of smoothing to that achieved by Taylor  
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and the overall pattern ~s very smnlar with areas of low risk m the south-east and 
north-east corners and a band of hlgb risk just south of the river. 

A referee has pointed out that a value of o~ of around 100 can be justified as 
follows 

c~ = variance of loss ratio for a single risk 

If it is assumed that losses occur according to a Polsson process with rate 0 and 
that the first and second moments of the distribution of the size of mdwldual losses 
are y~ and ¢t2, then 

O, u2 

(0/~,) 2 

o r  

( I + r) 2 

0 

where r = coefficient of variance of claim size. 
From the data the observed value of 0 is approximately 0 1, so that ~ =  100 

corresponds to a value of r of 3 which seems reasonable. However, the choice of 
value for o~ should be a pragmatic one based on the level of smoothing which is 
thought to be appropriate 
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5 CONCLUSIONS 

This paper has described how spatml statistical models can be used to analyse the 
geographic area effect m insurance data. The methods are applicable to all data in 
which there is a geographic area effect. The authors believe that the potential for 
these methods m insurance applications is great, and that they represent the best 
way of  premium rating by postcode area. 

The example has been approached from the point of  wew of smoothing the data 
over the postcode areas, using a continuous scale for the rating results These 
smoothed results have then been divided into bands for rating purposes An 
alternative approach would be to use a discrete scale for the results, corresponding 
to the reqmred number of rating classes The spatial model would then be required 
to allocate each postcode area to one of the rating classes The use of  thts type of  
model ~s at present under investigation. 

Unlike the method used m TAYLOR (1989) this method could easily be extended 
to an entire country rather than just one metropohtan area 

It would be preferable to analyse the data for claim numbers and claim amounts 
separately This approach ~s already used to model claims experience with respect to 
other factors c.f RENSHAW (1993) Such a separation is particularly tmportant in 
cases where clmm seventy has a long tailed d~stnbutlon (e g. hability) where one 
large claim could dominate the loss ratto of a small area It may also prove to be the 
case that a simpler model using only a few of the factors ~s appropriate for claim 
severity while a more complicated model including spatial data can be used for the 
frequency. This involves more complex computations since the data would no 
longer be normally distributed. Again, this ~s under investigation and wtll be the 
subject of a subsequent paper. 
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SHORT CONTRIBUTIONS 

M A R T I N G A L E S  AND TAIL PROBABILITIES 

BY HANS U. GERBER 

At the twenty-eighth Actuarial Research Conference of the Somety of Actuar- 
ies, WILLMOT and LIN (1993) presented a paper whose central result IS a bound 
on the tail probabihty of a random sum. In the subsequent discussion, 
Professor Bfihlmann raised tbe question, if this bound could be derived by 
martingale methods. The purpose of this note is to show how it can be 
done 

We consider a random variable of  the form 

S = X)  + . + XN .  

Here the random variables N, Xt,  X2, ... are independent, and the Xk'S are 
assumed to be positive and identically distributed; their common distribution 
function is denoted by F ( x ) .  

Let 

P k = P r ( N = k ) ,  k = 0 , 1  . . . .  

We assume the existence of  a number ~b, 0 < ~b < 1, with 

(I) Pr (N > kIN _> k) _< ~b for k =  1 , 2 , . .  

and a positive number r with 

S 
¢¢o 

(2) ~b" e rx  d F ( x )  _< l 

0 

(If F ( x )  Is sufficiently regular, we might choose the value of  r for which 
equality holds). Then the result of Wdlmot and Lin is that 

1 - P o  Pr (S  _> x )  _< - - - - "  e -ra 

for a n y x > 0 .  
For  the following proof  we introduce 

and 

S ,  = X~+ . . .  + X k  

i ts ,  if N >_ k 
Yk = if N < k .  

ASTIN BULLETIN,  Vol 24, No I, 1994 
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We note the recursive relat,onsh~p 

Yk= Zk" Yk-1, 

with 

HANS U GERBER 

k =  1,2, 

= I erxk if N > k 
Zk ( 0 if N < k .  

According to (1) and (2), the conditional expectation of  Zk+~ (given N >_ k) 
ts less than or equal to 1, which shows that the sequence YI, Y2,. • is a 
supermartlngale 

If we stop it at time 

T = min {k " Sk > x or N < k} 

it follows that, given N > I and Xt,  

Y, >_ E[YTIN >_ l, Xl] 

o r  

e rx~ > E[e rsT l ls~,llN > 1, Xi] >_ e r' Pr (S_> xlN_> l, XO.  

Then we get 

Pr (S > x) = ( l - p o ) ' E [ P r  (S >_ x[N >_ l, XI)] 

<_ (I - Po)' E [e rx'' e -  r"] 

1 - P 0  
- -  e - r ~  ' 

which completes the proof. 
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F A C U L T Y  P O S I T I O N  IN A C T U A R I A L  S C I E N C E  

The School of Actuarml Science invites applications for two tenure-track professo- 
ral appointments starting August 1994 The School is reponslble for teaching and 
research in actuarial science and the two new professors wdl join the seven faculty 
members currently m function. 

The duties of a professor include teaching to undergraduate and graduate students, 
conducting active research m actuarial science, coun~ehng students, supervising 
graduate students, and participating to the academic responsibdmes of the 
School. 

For the first available position, the qualifications requested of a candidate are 

Hold (or be near completion of) a Ph D. preferably m actuarial science or 
related area, be well engaged in actuarial research, be a member of  (or a 
candidate for membership m) a recognized association of actuar|es. 

For the second vacant post, is also admissible 

A Fellow of any recognized assocmt~on of  Actuaries or the eqmvalent who can 
prove research production in actuarml science and capacity for supervising 
graduate students. 

Applications must be sent m writing to the following address with a recent 
curriculum vitae enclosed. 

Mr Andr6 Pr6mont, director 
School of  Actuarial Science 
Alexandre-Vachon Building 
Laval University 
Samte-Foy (Qu6bec) 
G I K  7P4 

Laval University applies an equal opportunity program and dedicates half of ~ts 
openings to women applicants In accordance with Canadian Hnm~gratlon reqmre- 
ments, th~s advertisement ~s directed, m the first instance, to Canadmn cmzens and 
permanent residents. 
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