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EDITORIAL AND ANNOUNCEMENTS
GUEST EDITORIAL

At the ASTIN Colloguium i Cambrnidge Willem de Wit has left the ASTIN
Committee which he has served for many years. The editors have therefore invited
him to write a Guest Editorial reflecting his thinking and his great expenence from
which ASTIN has profited over decades We are happy that he has accepted this
task.

THE EDITORS

ACTUARIAL SCIENCE
PAST - PRESENT - FUTURE

The concept of msurance 1s very old, if tradition 1s to be believed. Already in
ancient times we find traces of insurance business

Obviously we are talking about risks, and it 1s well known that already the
Asipus collected data to describe risks and to point the way how to cope best with
these risks. One could say that this was a very first start of risk management. Their
descripuon of risks was mainly based on concepts like certainty, trust and expertise
(which we fundamentally stull acknowledge today), while even religious consider-
ations were taken nto account. Good as well as bad results were recognized, but the
concept of probability was unknown to them.

The roots of thoughts on probability we find at Anstoteles, but for the
development of the concept of probability we have to wait until the 16th century,
when Cardano (1565) wrote his 1deas about that concept, while the final break-
through was realised by Pascal and Fermat (1654) and Huygens (1657).

LIFE

Then the ime was ripe for the first actuarial activity - John Graunt (1662), Johan de
Witt (1671) and Edmond Halley (1694) made a mortality table. They used data
which were taken from censuses. For the sale of annuities (among others) they used
this historical matenal For the time being they had to manage with different,
uncertain sources, until the 19th century when regular censuses started, from which
up-to-date mortality tables could be derived.

In fact life insurance mathematics has always been very simple and the invention
of commutation columns can be seen as the most important invention 1n life
insurance mathematics. Recently the complexity has, also because of the use of
computers, increased very much, on the one hand because of the application of
stochastic techniques, on the other hand because of asset-hability-management.

ASTIN BULLETIN, Vol 24, No 1, 1994




2 GUEST EDITORIAL

NON-LIFE

For the non-life branch we had to wait somewhat longer Not only was there no
data for a long ume, but also the theory started later. If we consider the work of
Lundberg (1909) as the start of actuanal activities 1n the field of non-life insurance,
then we can’t yet celebrate the centenary.

Sull in 1940 the application of the theory of probabilitics was described as
doubtful After the Second World War non-life insurance business became more
important, and theories developed further, in which automobile insurance acted as a
pioneer. However observational data sull remaned scanty and often one had to
deal with hmited samples. In contrast with hfe nsurance, where only a simple
two-dimensional development (mortality table) exists, non-life insurance moved
quickly on to econometrical models, where numerous vanables play a role. Sull
today one has to conclude that a number of fields of non-life insurance business are
even yet very difficult to handle.

OBSERVATIONAL DATA

It appears very hard in many Countries to collect the adequate observational data
and 1t 1s remarkable that sometimes for practical apphcation one has to make use of
old data, even sometimes from other countries

Slowly but surely this situation improves, but considering the coming of bigger
and open markets, especially in Europe, 1t 1s very important to collect the adequate
observational data It 1s also necessary to be sure that the data are mutually
comparable.

FUTURE

In the succession of mortality tables actuaries notices soon a decline of mortahty.
First they tried to find an *‘explanation’’ for this, on the base of Newtonian
determinism, but that failed. The consequences of a further decline of mortality are
becoming more and more apparent, because of the recent shift from insurances of
death risk to insurances with a long hife nisk Yet 1t appears impossible in any
rehable way to make a good forecast of future mortality And that 1s just what we
need. Also in non-life insurance this forecasting plays an important role Next to the
process of inflation. one could also think of, for example, a changing risk structure,
but also of changing legal and social views.

Now that developments 1n the world are happening rapidly, so also are risks, the
basis of insurance, evolving at the same rapid pace. But all our observational data
come from the past There are too few attempts that try to make a forecast for the
future. If this 1s already being done, it 1s often not much more than the continuation
of an observed trend from the past. Popper once wrote that a forecast in social
science 1s 1n principle impossible (in my opmion we should conceive actuarial
science as a social science) He warns particularly against assuming a continuation
of what happened 1n the past into the future The elaboration of scenarios in which
the parameters of the model can be changed in different ways seems to be an
obvious alternative.
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SOCIETY

Actuanal science becomes more and more socially involved. Because of the fact
that in many countries the government is partly withdrawing from social insurance,
private msurance companies are confronted with new problems, like affordability,
obhigatory acceptation, and so on, 1n short, with problems of solidarity.

WHERE TO?

Besides further development of the theory, in my opinion actuanal science in the
future has especially to be working on

— collecting the adequate data, mutually comparable,

— developing scenarios for the future to forecast the consequences for the
future,

— considening hfe, non-life and financial services as one and the same branche,

— social problems.

One must search for the greatest possible simplicity with regard to the above,
both for our own practice as well as for those countries where the concept of
insurance 1s not yet so far developed. After all they have to join in too

G.W. DE WIT






ARTICLES

RISK ALLOCATION IN CAPITAL MARKETS:
PORTFOLIO INSURANCE, TACTICAL ASSET ALLOCATION
AND COLLAR STRATEGIES

By Eric CHEVALLIER AND HEINZ H MULLER

University of Ziirich

ABSTRACT

The theory of risk exchange is applied on the allocation of financial risk 1n
capital markets It 1s shown how the shape of individual payoff functions
depends on risk tolerance and cautiousness. For the special case where the
Neumann-Morgenstern utility functions of all individual investors belong to
the HARA class and have non decreasing risk tolerance it is proved that

generalized versions of * portfolio insurance”, ““ tactical asset allocation” and
“collars” are the only strategies occurring in price equilibrium.

KEYWORDS

Non linear risk sharing, price equilibrium; portfoho insurance.

l. INTRODUCTION

For quite a long time the MArRkowITZ (1952) approach and the Capital Asset
Pricing Model (SHARPE, 1964; LINTNER, 1965) played a predominant role in
financial economics In such a framework only linear risk allocations can
occur. However, in 1973 BLACK and ScHOLES published their famous option
pricing formula, which allows in particular for a replication of options by
means of dynamic strategies. Options and their dynamic replication became
increasingly popular. Nowadays, non linear investment strategies, such as
portfolio insurance, tactical asset allocation and collars are widely used.

In actuarial science non linear nisk allocations are a central issue in the
remnsurance context. Already in 1960 Borch’s theorem on Pareto efficient risk
sharing was published. Later on, BUHLMANN (1984) proved the existence of a
price density leading to a Pareto efficient risk allocation which is typically non
linear. In BUHLMANN (1980) and LIENHARD (1986) price densities were
explicitly calculated for some special cases.

LELAND (1980) was the first who applied the actuarial results on non linear
risk sharing in financial economics. By means of Borch’s theorem he analysed
the occurrence of portfolio insurance 1n the context of capital market equilib-
rium. MULLER (1990, 1991) applied Biuhlmann’s equilibrium model on the
capital market and obtained some first results about the qualitative shape of
risk allocations.

ASTIN BULLETIN, Vol 24, No 1. 1994



6 ERIC CHEVALLIER AND HEINZ H MULLER

In this article total financial risk has to be allocated to » investors. Following
the tradition of RUBINSTEIN (1976), BRENNAN (1979) and LeLanD (1980) all
investment decisions have to be made at one point of time. First, the main
results of the theory of risk exchange are shortly summarized. Thereafter,
different types of investment strategies such as portfolio insurance, tactical
asset allocation and collars are explained 1n the context of risk exchange. It is
shown how the type of investment strategy chosen by an individual investor
depends on the risk tolerances of all investors and their sensitivity to wealth
changes. Finally price equilibria are analysed in the special casc where the
Neumann-Morgenstern utility functions of all investors belong to the HARA
class. Generalized versions of portfolio insurance, tactical asset allocation and
collars are the only investment strategies which can occur.

2. THEORY OF RISK EXCHANGE

2.1. The model

As in RUBINSTEIN (1976), BRENNAN (1979) and LELAND (1980) trade takes
only place at one point of time
There are n investors i = 1, ..., n with the following characteristics :

1) All investors have the same planning horizon and the same expectations. In
particular, their expectations with respect to total financial wealth (aggre-
gate market value of all financial assets in an economy) at the end of the
planning period are given by a random variable W.

2) Moreover, the value of investor i’s ({ = 1, ..., n) initial endowment at the
end of the planning period can be represented by random variables X,,
s.t.

X, =0, Z X =W, ae.l.
=1

3) Each investor i =1, ..., n evaluates his wealth at the end of the planning
period by a Neumann-Morgenstern utility function

u,.: R—> R, i=1,...,n.

Hence, for the investors i = 1, .. , n with the imtal risk allocation

(’\7I, "'aXn)

! If initial endowments consist only of the market portfolio and a riskless asset, then

n n
/?,=a,+.s, W,ae 1=1, ,n wth Za,=0. ZJ,=]
P P

holds
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a reallocation of total financial risk
Z,....2) with ) Z=W

has to be found.

X
Imitial allocation of total financial wealth

®
Reallocation of total financial wealth

FIGURE |

Obviously, this framework allows for the application of standard results in

nisk theory (e.g. BORCH (1960), BUHLMANN (1980, 1984))

2.2. Theory of risk exchange: standard results

The following assumptions will be useful:

A.l. a) The random variable W 1s given by the probability space (R, B, P),
where B denotes the Borel-g-algebra. There exist constants m, M with

0 <m< M < oo, such that
Pm< W< M]=1
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b) There exist measurable functions #,, i= 1, ..., n such that
X =h (W), ae.2.
c) E[X]>0.

A.2. The Neumann-Morgenstern utility functions u,, R— R, 1=1,...,n are
twice differentiable and satisfy

u/(x)>0, u"(x)<0 Vx.

A.3. The Neumann-Morgenstern utility functions u,; R— R, i=1,.. ,n are
three times continuously differentiable

Moreover, the following definitions are needed:

Definition 1: An n-tuple of random variables (Z,, ..., Z,) 1s called a feasible
allocation if it satisfies

Definition 2: A measurable function
¢:[m, M] > [0, oo

is called a price density 1f 1t satisfies

E[g(W)]=1.
Remark : Under a price density ¢ the value of a random variable Z, = f, (W) is
given by
0 EL, (W) ¢ (W)] = jf,(ww(w) 4P ()

Definition 3: The tuple {¢, (Z*,;.., Z*)} consisting of a price density ¢ and
a feasible allocation (Z¥, ..., Z*) 1s called a price equilibrium 1f for all
1=1,...,nZ* s the solution of

max E{u(Z)]
z

(]
under

E[Z ¢(W)] < E[X, 6(W)].

2 Assumpuion_A 1 b 1s made for expository convenience As in BUHLMANN (1984) one could
define X,, ., X, as random vanables on a common probability space (2, A,17) Using the

subscquent analysis one could show afterwards that W = X7 | X, 1s a sufficient statistic for the
problem under consideration
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Definition 4: The feasible allocation (Z*, s ZX) 1s called Pareto efficient 1f
there exists no feasible allocation (Z,, ..., Z,) satisfying
Elu,(Z) z E[u,(ZM)], 1=1,...,n

with strict inequality for at least one 1€{1, ..., n}.
The standard results for this model can be summarized as follows (BUHL-
MANN (1980, 1984)):

Theorem 1:

1) Under A.1., A2, A.3.3 there exists a price equilibrium {g, (Z¥, ...Z"5%.
2) Under A 1., A.2. each price equilibrium {@, (Z}¥, ..., Z,")} has the following

properties: N -
a) The risk allocation (£, .. , ZF) 1s Pareto efficient.
b) There exist y,, ..., y,€(0, o) such that

Q) u (Z*) =y,6(W)* ac i=1,...,n.

As an immediate consequence one obtans-

Corollary 1: Under A.1., A.2. for each price equilibrium {4, (ZF, ..., Z*)}
there exist measurable functions f, such that

(3) Z*x = f(W), ae.,, 1=1,...,n.

In the context of financial economics it is of particular interest to have some
information about the shape of the functions f,, ..., f, and ¢. Some results on
this 1ssue are derived in the next section.

3. ANALYSIS OF PRICE EQUILIBRIA

3.1. Portfolio insurance, tactical asset allocation and collars

The term “ portfolio insurance” is widely used for investment strategies where
a reference portfolio 1s protected by a put option. Obviously such strategies
lead to convex payoff functions. Therefore, LELAND (1980) introduced the term
“general nsurance policy” for convex payoff functions. In this article we use
the following terminology:

Definition 5: An investment strategy leading to a twice differentiable payoff
function

S lm, M] - R

/" (x)
u, (x)

condition In E Chevallier’s forthcoming thesis assumptions A 1, A 2, A 3 will be relaxed
4 See also BRENNAN/SOLANKI (1981)

3 Instead of A3 BUHLMANN (1984) assumes that the functions p,(x) = — satify a Lipschitz
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is called

a) “Portfolio insurance” if /" (w) > 0 Ywe[m, M].
b) “Tactical asset allocation” 1f f” (w) < 0 we[m, M].
¢) “Collar” if

S" (w) > 0 Ywe[m, wy) and

S " (w) <0 VYwe(wy, M], where m <wy < M

f(v)
f(w)

Portfolio 1nsurance Tactical asset allocatuon

f(w)

Collar
FIGURE 2

Remarks:

1) Of course strategies with a continuous payoff function f(w) can be
approximated by buying and selling put and call options with different
striking prices (see also LELAND (1980)).

2) The term *“ tactical asset allocation” is motivated by the widely used * buy
low, sell high™ strategies. The term ‘““collar” 1s used for the popular
investment pohicy where a reference portfolio is held, a put option 1s bought
and a call option is sold.

3.2. Risk tolerance, cautiousness and properties of price equilibria

The following definition will be useful for the discussion of price equilibria.
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Definition 6:

u; (x)

”
1

a) 7,(x) = — is called the risk tolerance of investor i.

d
b) R(x) = - 7,(x) 18 called the cautiousness of investor ;3.
X

Some well known characteristics of price equilibria can be formulated as
follows:

Proposition 1: Under A.l., A.2. a price equilibrium {g, (f,(W),...,f,(W))}
where ¢ and f|, ..., [, arc differentiable has the properties:

Q) Y fiw=1,

1=1

7,(/,(w))
E;=l rj(fj(w))
) ¢(w)>0, ¢ (w) <0,
o $@_ _ l |

¢ (w) =1 T,(f,(w))

Proof: ¢.g. BUHLMANN (1984, p 16-17) or HUANG/LITZENBERGER (1986).

b) fi'(w) = e©1),

In order to decide whether a payoff function f, corresponds to portfolio
insurance, tactical asset allocation or a collar strategy its second derivative
f,"(w) has to be known. The notion of a ‘“‘representative investor” will
considerably simplify the analysis of f," (w).

Definition 7: Given a price equilibrium {¢, (£, (W), ..., f,(W))} a function v,
with

U (W) = ¢ (w)

1s called Neumann-Morgenstern utility function of the representative inves-
tor.

Remark: The representative investor is a fictious individual representing the
market. Under the conditions of Proposition 1 and differentiability assump-
tions the risk tolerance 7,,(w) and the cautiousness R,,(w) of the representative

5 Hence, the cautiousness R, 1s a measure for the sensitivity of the risk tolerance 7,(x) with respect
to wealth changes
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investor are given by

U:,, (w) ¢(IU)
4 m = - . = — — n= ,
@ () v (w) ¢ (w) RAAC)
) Row) = Lo ) = 2= R 5 w)
dw 5 (f, W)

Hence, the nisk tolerance 7,,(w) 1s the sum of individual risk tolerances,
whereas the cautiousness R,,(w) is a weighted mean of individual cautiousness
terms.

Now the result on the second derivatives of the payoff functions f, and the
price density ¢ can be formulated as follows:

Theorem 2: Under A 1., A.2., A.3. a price equilibrium {¢, ( /, (W), ..., f, (W)}
where ¢ and f, . ., f,, are twice differentiable has the properties-

" 1
2 R -Raw), i= 1, o,
S tw(w)
by 29 o R, W,
¢ () T (10)

9 Lin (f@) _ R(w) = R, (f,w)
dw \f)w) T (1) ’

Comments:

1) In particular Proposition 1 and Theorem 2 contain the key result

(6) f,'(w)=T'(f_'(w)), t=1,...,n,

T (W)
M sign { /" (w)} = sign {R,(f,(w))~ R,(w)}, i=1,...,n

In other words, the slope of the payoff function f, is given by the ratio of the
nisk tolerances 7,{ f,(w)) and 7, (w), whereas the curvature of f; 1s related to the
difference of the cautiousness terms R, (f,(w)) and R, (w).

2) Theorem 2.a) leads to the following criteria
a) An investor te{l, ..., n} chooses portfolic insurance 1f and only if

(8) R.(f(w)> R, (w) VwS
b) An investor ie{l, ..., n} chooses tactical asset allocation if and only 1f
) R(fiw)<R,(w) VYw.

6 LFLAND (1980) derived a similar result in a less formal context
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¢) If an mvestor :€{l,...,n} chooses a collar strategy there exists
wo€(m, M) such that
l) R,(f;(u)())) = Rm(w0):
2) R,(f,(w))—R,,(w) is strictly decreasing in wy.

3) An easy calculation shows that under A.2., A3. 4" (f,(w)) >0,i=1,...,n
imphies R, (w) > — 1.

Therefore, one concludes from Theorem 2b):
(10) " (w)>0if u" (fiw)>0,i=1,...,n.

Proof of Theorem 2:

a) Differentiation of the formula in Proposition 1b)

j;'(w) — tl(ﬁ(w))
T (W)

leads to
(i S oy = R oy S0 Ryw)

“m () v ()
or

" 1

(12) O {R,(f. (W)~ R, (w)}.

Siw) ot (w)

b) Differentiation of the formula in Proposition 1d)

2 @)
¢ (w)
leads to
2 — "
(13) ¢ (w)—pw) ¢" (w) _ “R, ()
¢'* (w)
or
(14) L Roy() = =1 () S
¢ (w)

¢) From Proposition 1b) one obtains

(15) lﬂfmﬂ=m@ummﬂumUM)

and

i im(ﬁw)z&MWDanD_&MWDQMw»
dw S, (w) T,(iw) T.(w) 7,(f,(w) 1,(w)
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4. ANALYSIS OF PRICE EQUILIBRIA FOR THE HARA CLASS

In Section 3 general properties of price equilibria were derived. Now we look at
the special case where the risk tolerance functions 7,(x) are linear. Assumption
A.2. and A.3. are replaced by the assumption:

A.4. The Neumann-Morgenstern utility functions are increasing, concave and
satisfy
a) t(x)=a,+R, x>0, with R, >0,i=1, .. n,
b) Not all R, identical.

Remarks:

1) Assumption A.4. allows for all Neumann-Morgenstern utility functions
which belong to the HARA class and have a non negative cautiousness”’.

2) In the case where all R, are identical the risk aliocation 1s linear and a
detailed analysis can be found in BUHLMANN (1980) and LIENHARD
(1986).

3) For R,> 0 the Neumann-Morgenstern utility function u, 1s only defined

a . .
on the interval (— - oo). Therefore, assumption A.2 is not satisfied and
]

existence of a price equilibrium 1s not guaranteed by Theorem | However,
1t can be easily verified that Proposition 1 and Theorem 2 are still vahd 1f
Assumption A 2 and A 3. are replaced by A 4.

By restricting the analysis to the HARA class one obtains:

Lemma 1: Under A.l., A.4. a price equilibrium {g, (f, (W), ..., f,(W))} where
¢ and /f,, ..., [, are differentiable® has the property:

R, (w) 15 strictly increasing .

Proof: A.4 and (5) lead to

a7 Ry(w) T, w) = Y, R7,(f;(w)),
=1

n

(18) Ry () T (w)+ R, w) = Y, RS (w)9.

s =1

7 A negauve cautiousness would lead to problems with satiation and an unrealistic investment
behaviour (scc ARROW (1965))

8 If @, f1, .[,are differenuable, then due to Proposition tb), 1d) and A 4 they are also twice
differentiable

? From the derivation of formula (18) 1t becomes obvious that Lemma | depends crucially on the
assumption that each investor 1 has a constant cautiousness R, (A 4 a)
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Moreover, Proposition 1b), (5) and (18) imply
Z_';=l Rjzzj(f;(w)_) _ R!n(uL)27=| R}Ej(.fj‘(w))
A 72, ()

and the strict monotonicity of R, (w) follows from

(19) R, (w) =

2 (R= Ry () R,7,(/; )

= Y (R=R,) R1,(fw)+

R,> Ry (w)

+ Z (R_]— Rm (w)) Rj Tj(f} (w)) >

R<R,,(w)
> Y (R= Ry () Ry (@) 7,(, () = 0.

Lemma 1 leads to the main result of this section

Theorem 3: Under A.l., A.4. a price equilibrium {¢, (f, (W), .. , [, (W)}
where ¢ and f;, ..., f, are differentiable has the properties:

a) The only investment strategies chosen by investors i =1, ..., n are
— portfolio insurance,
— tactical asset allocation,
— collar strategy.

b) Investors 1€{l,. ,n} with R, = max R, choose portfolio 1nsurance !0

J=1, W n

c) Investors te{l, .., n} with R,= min R, choose tactical asset allocation !
=1 .n

Proof: Formula (5) implies

(20) min R < R,(w)< max R Ywe[m, M].

J=1 ,n J=1, !

Now, a), b) and ¢) follow immediately from Theorem 2a) and Lemma 1.
Some additional information about price equilibria 1n the HARA case 18
provided by the next result.

10 Sce also MULLER (1990)
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Proposition 2: Under the assumption of Theorem 3 one obtains

a3 R, fi(w)

a+ Y Rfw)
=1

, where a=
J

a) f'(w) =

a,
l

n

d
b) —In
dw

(f,’(w)) _ R-R
S (w) T, ()

Proof: Special case of Proposition 1b) and Theorem 2c).

Comments:
1) In particular Proposition 2b) implies
d (f,’(w)

, 20« REZR ij=1,..,n.
dw \ f," (w)

(21)

2) For sufficiently large values of w one can show f(w)>0 for i=1,...,n
and Proposition 2 leads to the following inequalities

a+R fi(m) . .
a") [, (w) > »—L)— with a = z a,, Rpx = max R,
atw R J=1 =1,

d i R—R ,
) L (L) S I, if R >R,
dw /) (w) a+w- R«
Finally, an example illustrates some typical properties of a price equilibrium
in the HARA case.

Example:

— The random variable W representing total financial wealth is uniformly

distributed over [0.3, 20].
— There are n = 3 1nvestors with risk tolerance functions

T,(x) = 20 x,
T,(x) =2.5x,
(x)=x

and an initial risk allocation
X, X,, X)=(0.16- W,035 - W,049-W).

The price equlibrium {@, ( f, (W), f (W), f(W))} is illustrated in Figure 3.
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5. CONCLUSIONS

In this article the theory of risk exchange was applied to the allocation of
financial risk Special emphasis was put on the shape of the payoff functions in
price equilibrium. Under general conditions the role of risk tolerance and
cautiousness was analysed. The notion of a representative investor was very
useful for the interpretation of the results. Finally, in the HARA case a full
charactenzation of all equilibrium payoff functions was possible.
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A RECURSIVE PROCEDURE FOR CALCULATION OF SOME
COMPOUND DISTRIBUTIONS
By OLE HESSELAGER
University of Copenhagen

ABSTRACT

We consider compound distributions where the counting distribution has the
property that the ratio between successive probabilities may be written as the
ratio of two polynominals. We derive a recursive algorithm for the compound
distribution, which is more efficient than the one suggested by PANJIER &
WiLLMmoT (1982) and WiLLMOT & PANJER (1987). We also derive a recursive
algorithm for the moments of the compound distribution. Finally, we present
an application of the recursion to the problem of calculating the probability of
ruin n a particular mixed Poisson process.

KEYWORDS

Recursions; compound distributions; moments; probablity of ruin.

l. INTRODUCTION
Let
x=3 v,
=1

denote the aggregate claims amount where X = 0 if ¥ = 0. It 1s assumed that

the severities Y, Y,,. . are mutually independent and distributed on the
non-negative intcgers with common probability function
(1.1 fi=PX=y), y=01.

It is further assumed that N 1s stochastically independent of Y, Y5, ... with
probability function

pn=P(N=n), n=0,1,...

The compound distribution

9]

(1.2) ge= D Puf*",

n=0

ASTIN BULLETIN, Vol 24, No 1, 1994
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where f*" denotes the n-th convolution of f, can sometimes be calculated
recursively. PANJER (1981) derived his by now famous recursive formula for the
case where the counting probabilities p, satisfy the recursive relation

an+b

(1.3) Pn = Pn—1, n=1,2,..

n

SunDT & JEWELL (1981) showed that (1.3) 1s satisfied by the Poisson, the
binomial, and the negative binomial distributions, and no other. PANJER &
WiLLMoT (1982) went on to consider the class of counting distributions which
satisfy a recursion

k

> an
=0

(14) Pn= —F————Pn-1> n=]a23--':
bn'

M=

I
<

for some k, and derived recursions for the compound distribution when k = |
and k = 2. These recursions were further developed by WILLMOT & PANJER
(1987). Recursions for a different extension of the class (1 3) can be found 1n
SCHROTER (1990) and SuNDT (1992).

In the case of arbitrary k, it 1s clearly not possible to give a complete
characterization of the class (1 4). ORD (1967) charactenizes those distributions
which satisfy a difference equation analogous to Pearson’s differential equa-
tion, and also derives a recursive relation for the (factoral) moments. Also
GuLDBERG (1931) considered recursive calculation of moments for certain
members of the class (1.4).

Important distributions satisfying (1.4), which are not already covered by
(13), are the hypergeometric distribution (k = 2), the Polya-Eggenberger
distribution (k =2), the Waring distribution (k= 1), and the generalized
Waring distribution (k = 2).

Note that the coefficients a, and b, appearing in (1.4) are only specified up to
a multiplicative constant.

In this paper we consider the class (1.4) and derive a new recursion for the
compound distribution (Section 2) The derivation is elementary, and is valid
for arbitrary k. In Section 3 we derive a recursion for the moments of the
compound distribution. In Section 4 the proposed recursive formula for the
compound distribution 1s compared to that of WiLLMOT & PaNJER (1987) for
k=1and k=2, and 1s found to be more efficient. In Section 5 we present an
application of the recursion to problem of calculating thc probability of
eventual ruin 1n a (particular) mixed Poisson process.
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2. RECURSION FOR THE COMPOUND DISTRIBUTION

Assume that p, satisfies (1.4) For 1=0,. |k we define the auxiliary func-
tions

o0

@.1) g= Y Ap S x=0,1,.,

n=0
and note 1n particular that g, , 1s the compound distribution (1.2). Let

(22) g\=(go.\',---agk.\')"

and let m denote the smallest integer for which f,, > 0. Thus, f, =0 for
y=0,. ., m— 1. The following result gives a recursion for the vector g,, and
hence the compound distribution g .

Theorem 1: Assume that (1.4) holds true. With initial values

W
23) Go= O, pun'fis  1=0,..k,
n=0

9., =0, 1=0,...,k, x=1,..,m-1,

the compound distribution g, =g¢,, may be obtained by calculating g,
recursively as
g.=T 't,, x=2mV 1,

where

] —m/x 0 0

0 1 —m/x .. 0
@4 T.= ; : : :

0 0 1 —m/x

(ho=Sfoco) (br—Soc) .- -1 —fock—1) (be—Sfock)
and t, = (t5,,.. , ;) is given by
@) te=—Y fur, {i"” Grrtney + y_xg,_.._\,}, P<k,
m y=1 X X

\ k

26) n\ = Zv, S ZO i

k
with ¢, = Z
J—t

J
a,.
!
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Remark 2.1. Note that 7, does not depend on the values of g, ;, and that ¢, can
be calculated when g, is known for all z < x. a

Proof: The expression (2.3) is obtained from the definition (21) of g, . by
noting that f;*" = f,". Also the fact that g, ., =0 for x=1,...,m—1 is an
immediate consequence of (2.1) since f*"=0forx=1,. .,m—1.

From DE PriL (1985) we have the identity,

X

@.7) 0=y |:(n+1)£ - 1}5 o
X

y—0

Multiplying (2.7) by p,n’ and summing over n > 0 yields

gu:—y}.

By omitting terms corresponding to y =0,.. , m—1 from the summa-
tion and substituting x = x—m, we obtain after a little rearrangement that

X y
23) 0=% fv{—g,+._,_y+
y=0 X

LA
X

m

(2 9) 9 — gl+l,.\=tl,\7
X

where ¢, 1s given by (2.5). From assumption (1.4) we obtain for n > 1 that

k k k
(210) Pn Z blnlzpn—l Z atn‘=pn~l Z Cl(n_l)la
=0 =0 =0
where
k
211 ¢, = Z J a,.
J=1 4

Muluplying (2 10) by f*"=Z,_,/, /%" and summing over n > 1 yelds
for x = 1| the relation

k k X
(212) L b=, Y Sy, x= 1
-0 =0

t=0

By 1solating terms mnvolving ¢, , on the left-hand side, we rewrite (2 12) as
3
(2.13) Y Bi=foedg =t x21,
=0

where 1, , 1s given by (2.6). The linear equations T, g, = t,, with T, given by
(2.4), now follow from (2.9) for 1=0,..., k—1 and (213) QED

Remark 2.2. It is useful to consider separately the to cases where m >0
(fo=0)and m=0 (fy > 0).
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m>0 When f; =0 we note from (2.3) that gy o= pg and g, (=0 for i = 1
Note also that the terms fy¢, in the last row of T, disappear in this
casc.

m=0. The linear equations T,g,=t, are easily solved analytically in this
case, and we obtain that

X

R~ y y—x
(2]4) gv = — z fy{_gr+l,v—y+*‘gl,.\—y , i<k,
Jo »=1 x

X k
{ Z Z 1gl.\~y+z (fOcl-'b:)gl,.\}-

(2.15) gux =
‘ —fock

The mtial values g, , may be expressed in terms of the derivatives ¢/’( fp),
j=0 , k, where ¢() denotes the probability generating function of the
countmg dlstrlbutlon However, for the class (1.4) of counting distributions,
there is tn general no simple expression for ¢(-).

1=

a

Example 1: The Waring distribution arises as a mixed geometric distribution
with a beta mixing function. If P(N = nl|p) = (1—p)p”", and p ~ Beta («, ),
then

B(a+n, f+1)
B(a, )

n

and

n+oa—1
————Pp—-1
nta+f

This corresponds to (1.4) with k=1 and

ay=a—1 a =1
bO = a+ﬁ bl = | >
cp=0a ¢ =1
where ¢, 1s obtained from (2 11). O

Example 2: For the hypergeometric distribution with parameters (s, D, S),

-

P —

L)
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it holds that
_ [n—(D+ l)} [n—(s+1)]

—— 1

n n—

nln+(S—D—ys))]
which corresponds to (1.4) with £ = 2 and

a=(D+1)(+1) a=—(D+s5+2) a, =1
bO:O b|=S—D_S b2=1
¢y = Ds ¢ = —(D+s) c, =

O

Example 3: The Polya-Eggenberger (Negative Hypergeometric) distribution
arises as a mixed binomial distribution with a beta mixing function. The
probability function

a+n—l)

f+M—n—1 )
n M—n
pn L

at+f+M-—1
M

satisfies

_ [n—=(M+ D] [n+(a—1)]

n[;1—(M-Fﬂ)] "

n

which corresponds to (14) with £ = 2 and

aG=—(M+D)@—1) a=-M-a+2) ay=1
Cy = - Ma C|=(OC—M) 5]

—

a

Example 4: The gencralized Warning distribution arises as a mixed negative
binomial distribution with a beta mixing function,

_L(ctn) [(a+p) I(etn)(f+c)
"T remt r@re) retprern)
and
_ [n+(c—D][r+ (x—1)]

" Pu—1

n[n+(oe+f+c—1)]
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This corresponds to (1.4) with £ =2 and

(10=(a"l)(C‘_l) a|=(a+c—2) (12=1
bO:O b|=a+ﬂ+c_] b2=1.
Cp = e ¢ =atc ) =

3. RECURSIVE CALCULATION OF MOMENTS

For the class (1 3) of counting distributions 1t was pointed out by Dg PriL
(1986) that also the moments m,=EX’, s=0,1,..., of the compound
distribution can be calculated recursively in a simple manner. Expressions for
the moments m, are useful if one wants to calculate the NP- or Edgeworth
approximation to the compound distribution as an alternative to the (exact)
recursive method.

Let

Hs = E ch
denote the s’th moment around the origin of the severity distribution, and

define

[es]

3.1) M=y xg..,

A=0

where g, , 1s the auxiliary function (2.1). Note in particular that m, = mq , 1s the
s'th moment of the compound distribution. The following result gives a
recursion for the vector (my ., ..,m, ), s=10,1,..., and hence the moments

m

Theorem 2: Assume that (1 4) holds true. With initial values

oc
(3.2) mo=EN'= Y pn, 1=0,. ,k,
n=0
the moments m, = m, . of the compound distribution may be obtained by
calculaung (my , ..., my ) recursively for s =1,2, ... as
s—1 s—1 s—1 - 1
(33) m,= Z ( . ):us—_;rnm-l.j~ Z ( . ):u.\‘jml.j9 1<k,
=0 / J=1 j—1
1 = $ k=1
(3 4) mk.x = — Z <, #r~j'nl,j+ Z (Cl_bt)ml,:
be—c¢ L =0 ;50 \J i=0
Remark 3.1. When (mg ,, .., m, ) is known for u < s, one calculates m, ; for

1=0,...,k—1 from (3.3) and then m,  from (3.4). O
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Proof: According to (3.1) and (2.1) the iitial values are given by

oc o0 [ee) o
= — ! *xN __ [
ml,O - Z g = Z Z n pnf:\' - Z Pnht
v=0 n=0 n=0

v=0

To verify (3.3) we muluply (2.8) by x°, s= 1, and sum over x>0 to
obtain

A

0
= Z Z ./:v{yxj“lg;+l,(—y+(.})xx_l—-’r\)gl.\—y}-
x=0 y=0

By changing the order of summation and using the binomial formula
. s
35 x=) ( )y"f(x—y)f,
=0 \J

(and the similar expression for x* ') 1t follows that

0= ¥ fy[ Z ( j’)y“‘”(rn,ﬂ,ﬁm,,,) Z ( ) ”m]

y=0 J=0 J=0
s—1 S“l 5 5

= Z ( ) /u.\'—j(ml+l,_/+ml,j)— 2 ( ) ,uv—_,m
=0 J =0 \J

Equation (3.3) now follows by extracting the term corresponding to j = s
from the last sum and making use of the fact that

0050

To verify (3.4), multiply (2.12) by x°, s > 1, and sum over x > 0 to obtain

X

k k @
Z blml.$= Z Z Z xsfyg:‘r—_vcr

=0 =

By changing the order of summation and using (3 5), it follows that
k © s
R
(3.6) Y. bm Z Z Y (
=0 - =0 =0 ]
k s
N Jaim

$=J
freyim,

and (3.4) follows by solving (3.6) for my ;. QED
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4. COMPARISON WITH THE RECURSIONS OF WILLMOT & PANJER (1987)

In PANJER & WiLLmMoT (1982) 1t is demonstrated how recursions for the
compound distribution may be obtained by use of generating functions; in
principle for arbitrary k& when the counting distribution satisfies (1.4). Formu-
las for the cases k = | and k = 2 are found in WILLMOT & PANJER (1987). We
cite the following recursive procedure:

Define the auxiliary function

(CRY) go = m,
x+m) fesm 1
9« = - S Z
fm y=1 m
where m is the smallest integer such that f,, > 0, and also
10 = r— l .
@.2) [ = (x+ry(x+r— l),fi’ B i (y+rf)f)+, eyt
rf, =1 rf,
where r 1s the smallest integer such that f, > 0.
For k =1 the class (1.4) may be rewritten as
Bn—1)+k
Pn = ———————Pu-1» n=]721"5
an+ 1
and the compound distribution g, satisfies the recursion
qu\+ Z [(ﬁ(y_x)+’cy)fy_qy]g.\—y
y=1
(4.3) 4. =
x(a=pfo) + 4o
For k =2 and b, = 0 we may rewrite (1.4) as,
Bn—1)(n—-2)+x(nrr—1)+4
Pn = T Pn-1> n=192,~-‘

nn—1)+an

Define a new set of auxiliary functions,

(44) u, = Z yqr-yfy: b, = Z l.\—)./:}'l
y=0 y=0

and g, can be calculated recursively as

X
Z Ire—yk.

4.5) g, = ,
x[(x—to— 1) (1—Bfo) + agol
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where

@6)  kep=(x—=y){t,—0g,~ o, +[ky+Bx—y— D] [} +bu,.

It 1s interesting to compare the recursions (4.1)-(4.6) to the one proposed in
Theorem 1.

Each step in the proposed recursion involves (k + 1) summations of the type
Z;,=, fyh,,, (for some function A, ,). The number of computations involved
with the calculation of g, when g, ..., g, are known 1s therefore propor-
tional to x, and the number of computations involved with g, 1s of order x2. In
practice, the severity distribution f, has finite support such that f, =0 for
¥ > Ymux» Say. In this case the sum Z,_, f,h, , involves only y,, non-zero
terms, and the number of computations involved with g, 1s of order x.

TABLE 1

COMPUTING TIML, munuies Seconds TO OBTAIN ¢ FOR K = 2 WHEN f, HAS FINITL SUPPORT
WITH Yy = 50

. m>0 m=0 Willmot & Panjer
200 0 04 0 04 0 07
400 0 09 0 08 0 22
600 0 14 0 13 0 45
800 0 20 0 19 I 16
1000 0 26 0 24 1 54
1200 0 32 0 30 2 41
1400 0 39 0 37 3 37
1600 0 46 0 44 4 43
1800 0 54 0 SlI 5 54
2000 1 02 0 59 7 18

Also the recursions (4.3) and (4.5) of WiLLMoT & PANJER (1987) ivolve
summations E_:,_,. However, these sums do not simphfy in the case where f,
has finite support, and the total number of computations 1s therefore of
order x?

Table | shows for k = 2 the total computing time as a function of x for the
recursion of WiLLMOT & PANJER (1987) and for the proposed recursion. For
the latter, we have treated separately the two cases where m > 0 and m = 0 (see
Remark 2 2). In the first case we have programmed the recursion as presented
in Theorem 1, and the matrix T, has been inverted using STSC APL standard
facilities. In the latter case we have used the formulas (2.14) and (2 15) The
computations were done on a 486,50 mHz PC. The severity distribution has
been chosen such that y,,, = 50 It should be noted that the computing time
does not depend on the actual choice of parameters for the counting
distribution, and also not on the actual choice of severity distribution (except
for the choice of y.,,) The results are also displayed in Figure 1, where the
computing times (in seconds) are shown as a function of x It is seen that the
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Computing time —e— m>0
—&— m=0

Seconds
—&— Willmot & Panjer

450 r
405L
360—-
315 -
270 |
225 |
180
135 |
90
a5 |

O 1 i 1 1 1 " 1 Il |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
x

FiGurE | Computing time to obtain g, for k =2 when f, has finite support with y,_ ., = 50

total computing time 1s linear in x for the proposed recursion and quadratic for
the recursion of WILLMOT & PANJER (1987).

With a hypergeometric counting distribution (k = 2) we have checked the
recursions for numerical nstabilities We consider two different severity
distributions, 2
Sfiy=eY e y=0,..,20.

y=0
S2.y = 1/150, y=0,...,149.

The distribution f| 1s very short-tailed with a high probability f, = 0.2837 of
zero-claims. The second distribution f, is more heavy-tailed with a **large”
average claim size EY = 74.5 For each of the severity distributions f; and f, we
have calculated the compound distribution using a hypergeometric counting
distribution with parameters (s, D, §) (see Example 2), where D = S/4 and
s=g¢8, and (S, ¢) varies in the set {40, 100, 200} x {0.25,0.5,0.75}. The
corresponding average number of claims, EN = sD/S = ¢S/4 1s shown in
Table 2. For the proposed recursion, m > 0, we have shifted the distributions /|
and f, one step to the right, such that m =1 in this case. The check for
numerical instabilittes was performed by simple graphical inspection. In
Table 3 we have indicated by a * those cases where instabilities were found. All
computations were continued until the 99.5% fracule of the compound
distributions was reached.
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TABLE 2
AVERAGE NUMBER OF CLAIMS, EN = ¢S/4
g=1025 g=05 q=075
S= 40 25 5 75
S=100 625 125 18 75
§=200 125 25 375

TABLE 3

NUMERICAL INSTABILITIES FOR COMPOUND HYPERGEOMETRIC DISTRIBUTIONS
INSTABILITIES ARE INDICATED BY A *

Sevenity distribution f, Severity distnnbution f,
g=025 g=05 q=075 qg=025 g=05 g=075
m>0
S= 40
S=100
§=1200
m=0
= 40
§=100 "
§ =200 - * * *
Willmot & Panjer
S= 40
S =100 * *
§=200 * * *

It is noted that no instabilities were found for the proposed recursion in the
case where m > 0. The recursion of WiLLMoT & Panjer (1987) was unstable
for the severity distribution f,, when the average number of claims exceeds 10
(in this case). These instabilities can be attributed the accumulation of
round-off errors. The proposed recursion, when m > 0, was unstable for
“large” values of S and “small” values of g—irrespective of which severity
distribution was used. An explanation for this instability can be found by
examining the expression for g, . 1n (2 15) This expression involves subtraction
of terms b,g, ,, i <k, and subtraction (of equally large numbers) is known to
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increase the relative errors. For the hypergeometric distribution it holds that
by =0 and b, =1, whereas b, = S—D—s5 (see Example 2). For the present
combination of parameters it holds that b, = §(0.75—¢q), which assumes its
maximum when S 1s “large” and ¢ 1s *“small . In general, we would therefore
expect that the proposed recursion 1s unstable for m = 0 when $S—D » s and
stable when S—D =~ s.

It should be noted that all calculations were done with single precision, and
that the results could (obviously) be improved by using double precision.

5. CALCULATION OF RUIN PROBABILITIES

Let
N(1)

s=73 z,
1=1

where N (¢) denotes the number of claims incurred during [0, ¢], and
Z,,Z,,..., denote the corresponding claim amounts., The amounts Z, are
assumed to be independent of N(r) and mutually independent with common
distribution H. The average claim size is denoted by ¢ = EZ,.

If premiums are paid continuously at a rate B pr. time unit, the maximal loss
incurred 18

L= sup {S(¢t)— Br},
t20

and the probability of ultimate ruin is
wu)=P(L>u),

where u denotes the initial capital. Assume that B = (1+0)Au, where the
relative safety loading 6 is non-negative. It 1s a well known result (see e.g.
BoOWwERs et al., 1986) that if {N(¢)} is a time-homogeneous Poisson process with
claims rate A, then

M
(5.1) L2y L,

=0

where M has a geometric distribution

(5'2) P(M:m):(]—p)pm, P = m=0) l" R
1+0

and L,, L,,. . are mutually independent with common density

(5.3) S(y)=(—-H))p

PANJER (1986) suggested a discrete approximation to f(y), and then to
calculate (1) recursively by means of the Panjer-recursion, which is valid in
the case of geometric counting distributions.
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Consider now the case where {N(r)}, conditionally given A = A, 1s a Poisson
process with claims rate 4. Since, 1in this case,

M
(Lid=D2) L,
1=0

with M and L, being distributed as before, 1t follows that
o

> L

=0

where L, still is distributed according to (5.3), and M’ has a mixed geometric
distribution. If we take a beta mixing function with parameters (a, f) for p
appearing in (5.2), it follows that M’ has the Waring distribution from
Example 1. Using the same method as suggested by PanNJER (1986) for
discretizing the density (5.3), we may then apply Theorem | with k=1 to
obtain a recursive method for calculating w (u).

Note, that if p 1s beta distributed with parameters («, §), then the claims rate
A 15 distnibuted as (B/u) U, where U 1s beta distributed with parameters

(a, B)-

IS

L
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SOME COMMENTS ON THE COMPOUND BINOMIAL MODEL

By DavipD C.M. DICKSON*

The Umversity of Melbourne

ABSTRACT

We show how ruin probabilities for the classical continuous time compound
Poisson model can be approximated by rutn probabilities for a compound binomial
model We also discuss ruin related results for a compound binomial model with
geometric claim amounts

KEYWORDS

Ruin, compound binomial model; recursive calculation.

1. INTRODUCTION

GEerBER (1988) presented some results for the compound binonual model which
were analogues of results for the classical continuous time compound Poisson
model These results were further discussed by SHiu (1989). WiLLmot (1992)
presented some explicit results for ultimate ruin probabilities for the compound
binomial model.

In this note we derive some known results for the compound binomial model
using very elementary methods. We also present results for a binomial claim
numbers/geometric claim amounts model which correspond to results for the
classical continuous time Poisson/exponential model Our mamn purpose 1S to
consider the conditions under which ulumate ruin probabilities for a compound
binomial model give good approximations to ultimate ruin probabilities 1n the
classical continuous time compound Poisson model

We start by considering some basic results for a general discrete time risk
model.

2. A DISCRETE TIME RISK MODEL
We will consider a nisk model with the following charactenstics :

(a) X, denotes the aggregate claim amount in the i-th tme interval;

(b) {X,}’2, s a sequence of independent and identically distmbuted random
vanables, each distributed on the non-negative integers,

(c) the insurer’s premium ncome per unit time is 1,

d EX)<l.

* Part of this work was completed while the author was at Heriot-Watt Univeraty, Edinburgh

ASTIN BULLETIN Vol 24, No | 1994
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We will assume throughout that the insurer’s mual surplus, denoted u, 1s an
integer.
The 1nsurer’s surplus at time ¢ (t=1,2,3,...) 1s denoted Z(¢) and given by

!
Z(ty=u+t- Y, X,

1=1

The ultimate ruin probability for this model 1s defined by
w)=Pr{Z(t)=0 for some !, (=1,2,3,...]

This definttion corresponds to that given by GERBER (1988) but differs from that
used by SHIU (1989) and WiLLMOT (1992). The reason for choosing this definition
will become clear 1n Section 5 Note that ruin does not occur at time 0 if the initial
surplus 1s zero. The survival probabihity 1s denoted & (u) and O (u)=1 -y (u).

We define the seventy of ruin function G(u,y) for u=0,1,2,.. and
v=1,2,3, by

G(u,y)=Pr|T<oe and Z(T)> -y]
where T 1s the discrete time of ruin and s defined by

T=min{tr Z(1)=<0, =1,2,3,...}
=00 (f Z@)>0 for =1,2,3,...

Thus G (u, y) represents the probability that ruin occurs and that the deficit at the
time of ruin 1s at most y — |

We denote by b (k) and B (k) respectively the probability function and distribu-
tion function of X,.

3 GENERAL RESULTS

Result 1: For u=1,2,3,

(3.1) O)=0(0) + 3, (k) [1-Bu— k)|

h=1

Proof: By considering the possible aggregate claim amounts n the first time
period we have that

S(@=b(©0)d(1)

and for u=2,3,4, .
u—1

(3.2) S(u-1)=bO0)S(u) + Z S()bu—))

J=1
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Hence, for u=2,3,4,. .
L=

u—1 u u -
2 0(k)=b(0) 2 0k + Y X 0(Nbk=))

=0 k=1 k=2 y=1
u u—1
=b(0) 3, OKk)+ 3 S(Kk)[Bu—k)—b(0)]
k=1t A=
u-1
=b©0)O) + Y, O(k)Bu—k)

k=1

Thus
u-1
b d(u)=0(0) + Z Ok)[1—Bu-k)]
A=1
u-1

=8u—-1)— 3, Ok)bu—-k) (by (32)

A=1

=1

so that 0 (u—1)=0(0) + z OkY[1 =B(u—-1-k)]

k=1

for u=2,3,4, , or equivalently,

Ow)=0(0) + Y, Sk)[1-Bu—-k)] for u=1,2,3,...

k=1

Result 2: The rumn probability from initial surplus zero 1s given by

(3.3) Y (O0)=E(X)

Proof: For y=0,1,2, define g(0,y) to be the probability that ruin occurs from
initial surplus zero and that the deficit at the time of ruin 1s y Note that when the
mitial surplus 1s u(>0), g(0, y) can be interpreted as the probabihity that the
surplus falls below 1ts imitial level for the first ttme and by amount y When y=0,
g(0, y) gives the probability that the surplus returns to its initial level for the first
time without previously having been below its imitial level Using this interpretation
we can write

i

(34) dw)=0(0) + 3, g(O,u—y)o(y)

v=1

The first term on the nght hand side gives the probability that the surplus never
falls below its 1nitial level. For a fixed value of y(<u), g(0, u — y) 0 (v) gives the
probability that the surplus falls below its 1ninal level for the first ime to y and that
survival occurs from surplus level y. A sinular interpretation applies when y = u.
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Summing over y gives the probability that survival occurs and that the surplus
process has not always been above its imtial level.
By (3.1) we also have

S)=0() + Y, O(v) |1 =Bu—)]
y=1
Since equattons (3 1) and (3.4) hold for w=1,2,3,..., it follows that
g0, y)=1-~B(y). Equation (3.3) follows since

v =Y g@O,y)

yv=0

If we wnite the premium income of 1 as (1 + &) E(X)), then
(3.5) w(©O)=1/(1 +0)

as in the classical continuous time model.
We can easily obtain further ruin related results when the mittal surplus 1s zero,

starting with the joint distribution of the surplus prior to ruin and the deficit at ruin.
We define a new function f(u,x,y) for x=1,2,3,... and y=0,1,2, as
follows

fu,x,y)=Pr[T<o, Z(T)=-y and Z(T-1)=x]

Thus f(u, x, y) gives the probability that ruin occurs from initial surplus u, with a
deficit of y at the time of ruin and a surplus of x one time unit prior to ruin. When
u=0, the function 1s defined for x=0,1,2, ., and (0,0, y) simply gives the
probability that ruin occurs at time 1 with a deficit of y at ruin. Thus

f@0,0,y)=b(y+ 1)
By considering the possible aggregate claim amounts 1n the first time penod we
can write

flu,x,y)= Z b(Nfu+1—-3,xy) for u=0,1,2,. .,x-1,x+1,
1=0
and
fux,y)=Y b fU+1-p0,y)+b(x+y+1) when u=x
=0

Assuming that

(3.6) Z [l x y)<e
u=0
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we have that

Yo fuxy)y= 0 D b flutl-pxy)+bx+y+1)
=0 u=0 ;=0
=Y fuxy) Y, b())+bx+y+])
u=1 J=0
Hence
37 fO,x, Y )=b(x+v+1)

As an immediuate consequence of this we have that

y=1 v=1

GO,»)= 2 Y bx+y+ly= Y [1-B())

J=0 =0 ;=0

and
YO =Y, [1-B()
=0
Simularly

v=1 x
(38) Pr(T<e and Z(-D=x-lu=0]=), D b(y+y+1)
Jj=0 v=0

=1
= 2, [1=-B()HI=G(0, )
J

l]
(=)

We have not discussed the conditions under which (3.6) holds The most obvious
situation when (3.6) holds 15 when Lundberg’s inequahty applies Formula (3 7)
does however hold when the sum m (3 6) 1s infinite

The results presented above are in terms of a general distribution 8 (k) However,
they are 1n fact the same as tesults given by GERBER (1988) and Stiu (1989). This
follows since the distribution of X, can be expressed as a compound binomial
distributton with binomial parameters | and 1 —5(0) and probability function for
individual claims A ()[1 - b(0)] for y=1,2,3,.. .

4. THE BINOMIAL/GEOMETRIC MODEL

Throughout this section we assume that the distribution of the number of claims per
unit time is binomial with parameters 1 and p, and the individual claim amount
distribution 1s geometric with distribution function P (x) and probability function

for x=1,2,3, .

=1

p)=(1 —a)a
Then
B(k)=1-pa* for k=0,1,2,...
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Since we have assumed that E(X,) <, the parameters p and « must be such that
pll-a)<i
We can rewrite equation (3.1) as

Yu)=y (O - kil [(T=p &)1 -Bu=-4)]
and nserting for ¥ (0) we have
Yu)= klZ_’,l Y& [1-Bu-k)]+ Li [1=B(k)]
The continuous time compound Poisson analogue of this equation can be found 1n,

for example, GERBER (1979).
Now nsert for B (k) to find that

@1 Y=Y, p®pat+ Y pat
k=1 h=u
and
u+l =
(4.2) Yu+l)= Z Yk)pat' Tt 4 Z pot
k=1 A=u+1

If we multiply (4.1) by o, subtract from (4.2) and rearrange we find that

o
W+ 1l) - — pu)=0
l-p

The solution to this difference equation 1s

w(u)=6[ * ]
l-p

from which 1t follows that ¢ =1 (0). In fact, we can wnite ¢ (u) =y (0) exp { — Ru},
where R is the adjustment coefficient for this process. R 1s the unique positive
number satisfying

Elexp {R(X,—- D}I=1

and 1t is an elementary exercise to show that for this model exp {R} =(1 - p)a
Thus we have a complete analogy with the form of the ruin probabihity for the
Poisson/exponential model which can be written in exactly the same way (See, for
example, GERBER (1979)). We note that this solution matches that given by
WiLLMoT (1992) for O (u), allowing for different definitions of ruin/survival

We now extend the analogy to the severnity of ruin. We can use the function
g(0, y) to wnte down an equation for G (u, y) by considering the first occaston on
which the surplus falls below (or returns to without previously having been below)
its mitial level
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We have
u+v=1 u-1

Gu,yy= 2 gOKk)+ X g0k Gu—ky)

A=u k=0
u+3y-1

= ¥ gk + Y gOu-k)Gky)

k=u A=1

Now msert g(0,k)=1 - B(k)=pa* to give
n+y-1

Gu,y)= ¥ pat+ Y, pa "Gk y)

k=u k=1
and
u+y u+
Gu+l,y)= 2 paA+ Z pau+l—LG(k’y)
k=u+1 k=1

Using the same technique as before we find that

«
Gu+l,y) - ——Gu,y)=0

I-p
and hence
o u
Gu,y)=G(@O,y)| —
I-p
Finaily
y-1 -1 l—a“
GO, y)= 3, g0, k)= pa*=p for v=1,2,3,
k=0 k=0 | -«

and so we can write

NP a Y
Guy)=(l-a") — [—) =P(y) y )
f—al\l-p

Thus the form of G (u, y) 1s 1dentical to that for the Poisson/exponential model.
(See, for example, Dickson (1992)). However, unlike the Poisson/exponential
model, the distribution of the deficit at the time of ruin is not identical to the
individual claim amount distnibution. The deficit is geometrically distributed with
parameter «, but on 0, 1, 2, ..., since G (u, y)/9 (u) gives the probability that the

deficit 1s less than or equal to y— I, given that ruin occurs, and so

Pr|-Z(TY<ylT<w]l=l-a" for y=1,2,3,..
Let us now constder the situation when u =0 further. We have already noted that
the deficit at the time of ruin 1s geometrically distributed on 0, 1,2,... with
parameter ¢, and by (3 8) the distribution of the surplus at ime 7 -1 1s the same.
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The conditional probability function of the deficit at T and of the surplus at T— |,
conditioning on the event that ruin occurs, 1s

go,v)=( —a)a', x=0,1,2,

If we consider the conditional distribution of the surplus one time unit before ruin
and of the deficit at ruin, conditioning on the event that ruin occurs, and agam use a
tilde to denote a conditional probabihty, then

+y

fOx, ‘,)zb(x+_v+ D =P(1 -~
v Pt — )

so that, conditionally, the surplus one time unit before ruin and the deficit at ruin
are 1ndependent and 1dentically distributed This situation also exists in the
Poisson/exponential model where the surplus prior to ruin and deficit at ruin are
independent, 1dentically distributed vaniables, and the conditional distribution of
the claim causing ruin 1s Gamma(2)

Finally, if we define the conditional probability function of the claim causing ruin
as h(0,z) for z=1,2,3, ... then

=g(0,v)g(0, y)

L -1
hO0,2)= Y, fO,x,z-x-1)= Y (I-a)c'=z(1 ~a)a""
1=0

v=0

The conditional distribution of the claim causing ruin 1s thus negative binonual with
parameters 2 and | — «, shifted one unit to the right

5. CALCULATION OF RUIN PROBABILITIES

GERBER (1988) states that the compound binomial model can be used to approxi-
mate the continuous time compound Poisson model. In this section we investigate
this statement by considering ultimate ruin probabilities

To calculate ruin probabilities for the compound binomial model, we will adapt
the framework described by DicksoN and WATERS (1991, Sections | and 8) who
use a discrete ime compound Poisson model to approximate a classical continuous
time compound Poisson model under which both the Poisson parameter and mean
individual clarm amount are |. The characteristics of this model are as follows

(a) mndwidual claim amounts are distributed on the non-negative ntegers with
mean f3, where 8(>1) 1s an integer;

(b) the Poisson parameter for the expected number of clums per unit time 15
11(1 +6)B];

(c) the premium income per unit time 1s 1.

We will replace this discrete compound Poisson model by a compound binomual
model. We simply change (b), replacing the Poisson distribution by a binomial
distribution with parameters | and 1/[(1 + 6)3]. For reasons given by DICKSON and
WAaTERS (1991) we can regard ¥ (Bu) as an approximation to p.(u), the
ulumate ruin probability for the continuous compound Poisson model. Note that the
defimition of 4 (u) given in Section 2 corresponds to that used in this approxima-
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tion. In effect all we are doing 1s approximating a discrete compound Poisson model
(which approximates a continuous compound Poisson model) by a compound
binomial model The approximation to the discrete compound Poisson model 1s
reasonable for large values of f, since the Poisson distribution with parameter
/[(1+6)B] 1s then very close to the approximating binomial distribution. For
example, if =100 and @ =0 1, then the probability of more than one claim per unit
ume under the compound Poisson model 1s 0.00004. Note that there is one small
difference between this formulation of the compound binomial model and that used
by previous authors In this formulation, individual claim amounts are distributed
on the non-negative integers rather than the positive integers The reason for this 1s
simply that in order to approximate ruin probabilities in the classical continuous
tme compound Poisson model, we have to discretize the continuous individual
claim amount distribution in that model In our first two examples, we will use the
discrenization proposed by DE VYLDER and GOOVAERTS (1988), which discretizes
the distribution on the non-negative integers If we had chosen a discretization on
the posttive integers then our model would correspond to that used by previous
authors
We will calculate ruin probabihities recursively from the formulae

(5.1) 1/)(1)=b(0)_'ll/J(O)—|+B(0)l
and for u=2,3,4, ..

(5.2) w<u>=b(0>"[w<u-l)—l+B(u—l)— )y b(nwu—n}

s=1

These formulae correspond to GERBER’s (1988) formulae (5) and (6) In each of the
following examples the premium loading factor, 8, 1s 10%

Example 1: Let the individual claim amount distribution 1n the continuous time
mode] be exponennial with mean 1. Then it 15 well known (see, for example,
GERBER (1979)) that

P, (u)= exp (=R u) where R.=0/(1+0)

1+

Table | shows exact and approximate values of 1 .(«) The approximate values
are calculated from (3.5), (51) and (52). The legend for this table 1s as
follows

(1) denotes the exact value of ¥, (u);

(2) denotes the approximate value when f3=50,

(3) denotes the ratio of the value 1n (2) to that in (1);
{(4) denotes the approximate value when $=100,

(5) denotes the ratio of the value 1n (4) to that n (1);
(6) denotes the approximate value when =200;

(7) denotes the ratio of the value in (6) to that in (1).
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TABLE |
{SEE EXAMPLE | FOR DETAILS)
(N 2) (3) 4) (5) (6) (7
u=0 09091 09091 1 0000 09091 1 0000 09091 1 0000
u=2 0 7580 07567 09983 07573 09992 07576 09996
u=4 06319 06299 09967 06309 09983 06314 09992
u=>6 05269 05243 0 9950 05256 09975 05262 09988
u=38 04393 04364 09934 04378 09967 04386 09983
u=10 0 3663 03632 09917 03647 09959 03655 09979
u=20 01476 0 1451 09835 0 1463 09917 01470 09959
u=40 00240 00232 09673 00236 09836 00238 09918
=280 0 0006 0 0006 09357 0 0006 09674 0 0006 09836

We note the following points about Table 1-

(a) When u >0, the approximate values are less than the exact ones. This 1s to be
expected since the compound binomial model excludes the possibihty of
multiple claims per unit time.

(b) As the value of § increases, the approximate values become closer to the exact
ones. This 1s as expected for reasons given by DiCksoN and WATERS (1991,
Section 2)

(c) The larger the value of u, the poorer the approximation becomes.

(d) Even with a large value of 8, the approximate values do not always agree with
the exact values to four decimal places

Example 2: Let the individual claim amount distribution in the conttnuous time
model be Pareto with parameters 2 and 1. Table 2 shows exact and approximate
values of v, (4) (The exact values have been calculated using DiCcksoN and
WATERS’ (1991) algorithm and are ‘‘exact’’ at least to three decimal places) The
legend for Table 2 1s the same as for Table I The only additional comment that we
would make about Table 2 s that, for the same magnitude of ruin probabulity, the
approximate values are shightly closer to the exact values than in Example I

TABLE 2
{SEE EXAMPLE 2 IOR DETAILS)
() (2) (3) 4) (3) (6) )
u=0 09091 09091 1 0000 09091 1 0000 09091 1 0000
u=2 08102 0 8097 09994 08100 09997 08101 09998
u=4 07498 07491 09991 07494 09996 07496 09998
u==6 07021 07014 09990 07018 09995 07020 09997
u=_8 0 6620 06613 09989 06617 09994 06619 09997
u=10 06271 06264 09988 06267 09994 06269 09997
u=20 04981 04974 09985 04978 09992 04980 09996
=40 023479 Q3473 09982 03476 09991 03477 09995
u=280 0 2040 02036 0 9981 02038 09990 02039 09995
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In Section 4 we discussed the binonual/geometric model as the discrete analogue
of the Poisson/exponential model. In Example 3 we illustrate how ruin probabulities
for the binomial/geometric model can be used to approximate those for the
Poisson/exponential model. We have included this example purely for interest as
the approach does not generalise to other compound Poisson models.

Example 3: We will use the same framework as in Examples 1 and 2, but will
discretize the exponential individual claim amount distribution as a geometric
distribution with mean 3. This discretization s a reasonable one for large values of
B since when f 1s large

Px)=1-(1-B""Y'=1-exp{-x8) ftor x=0,1,2,

As noted 1 Section 4, for the geometric individual claim amount distribution,

(1+9Hp-1 )

W (Bu)= exp (- RAu) where R=log,
' ((l L F-1)

1 +6

It 1s easy to show that

0
lim BR =
fine 1+

so that for large values of 3, w(Bu) should give a good approximation to
Yo ().

00958 -
0.095 1

00945

S

0.094 -

00935 -

0093 -

00925 -

0.092 4

0.0915

0091 i

00905 — T r T T T : T r —
) 100 200 300 400 500 600 700 800 900 1000
FIGURE | SR 4s a tunction of § when 6 15 10%

Figure 1 shows the function SR (when 68 1s 10%) and Table 3 shows exact and
approximate values of y.(u). The legend for Table 3 1s as follows-

(1) denotes the exact value of . (u);
(2) denotes the approximate value when §=100;
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(3) denotes the ratio of the value 1n (2) to that in (1),
(4) denotes the approximate value when §=1,000;
(5) denotes the ratio of the value in (4) to that in (1),
(6) denotes the approximate value when 5=10,000,
(7) denotes the ratio of the value n (6) to that in (1)

TABLE 3
(SEE EXAMPLE 3 TOR DETAILS)

n (2) (3) (4) (3) ) N
u=0 09091 09091 I 0000 09091 1 06000 0909t 1 0000
u=2 07580 0 7566 09982 07578 09998 07579 1 06000
u=4 06319 06297 0 9965 06317 09997 06319 1 0000
u=6 05269 0 5241 09948 05266 09995 05269 09999
=38 04393 04362 09930 04390 09993 04393 09999
u=10 03663 03631 09913 03659 09991 03662 09999
=20 01476 0 1450 09826 01473 09983 01475 09998
u=40 00240 00231 09656 00239 09965 00239 09997
u=380 0 0006 0 0006 09323 0 0006 09931 00006 09993

Table 3 shows the same features as Tables 1 and 2 The great advantage of using
the geometric discretization 1s that approximate values for 1, (1) can be calculated
from a formula This allows us to use very large values for 3, and shows that even
with a large value of 8 (1.e 10.000) the approximate values do not all match the
exact ones to four decimal places By contrast, if b (x) and B(x) in (5 1) and (5.2)
are values from a compound Poisson distribution, then a relatively small value of 3
produces the same degree of accuracy. (See, for example, DICKSON and WAT-
ERS (1991, Table 5)).

We conclude that 1t is possible to successfully approximate ruin probabilities for
the classical continuous time compound Poisson model by those for a compound
binomial model The main advantage in using the compound binomial model 1s that
1t is not necessary to perform recursive calculations to find the probability function
b (x) to use formulae (5.1) and (5.2). However, this advantage 1s outweighed by the
fact that a large value of 5 1s required when using the compound binomial model 1n
order to obtain a good approximation to ¥, ().

ACKNOWLEDGEMENT

I am grateful to the referees and editor for comments on the first draft of this
paper.

REFERENCES

DE VyLbER., F and GooOvagRrTs, M J (1988) Recursive calculation of finite-uime ruin probabilities
Insurance  Mathemancs and Econonucs 7, 1-8

Dickson, D C M and Wairrs, H R (1991) Recursive calculation of survival probabilines ASTIN
Bulleun 21, 199-221



SOME COMMENTS ON THE COMPOUND BINOMIAL MODEL 45

DIcKSON, D C M (1992) On the distribution of the surplus prior to nun [nsurance Mathematics and
Economues 11, 191-207

GERBER. H U {1979) An Introduction to Mathemancal Risk Theorv S S Huebner Foundation Monograph
Series No 8 Distnbuted by R Irwin, Homewood, IL

GERBER. H U (1988) Mathematical fun with the compound binormal process ASTIN Bulletin 18,
161-168

SHiu, E S W (1989) The probability of eventual ruin in the compound binomial model ASTIN Bullenn
19, 179-190

wiLLMor, G E (1992) Rum probabihties 1n the compound binomial model Insurance Mathematics and
Econonucs 12, 133-142

Davio C M. DiICKsON

Centre for Actuarial Studies, Faculty of Economics and Commerce,
The University of Melbourne, Parkville,

Victoria 3052, Australa.

February 1993
Revised November 1993






LIMITING DISTRIBUTION OF THE PRESENT VALUE
OF A PORTFOLIO
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ABSTRACT

An approximation of the distribution of the present value of the benefits of a
portfolio of temporary tsurance contracts 1s suggested for the case where the size
of the portfolio tends to infinity. The model used i1s the one presented in PARKER
(1922b) and involves random interest rates and future lifettmes Some justifications
of the approximation are given. Illustrations for hinuting portfolios of temporary
insurance contracts are presented for an assumed Ornstein-Uhlenbeck process for
the force of interest

KEYWORDS

Force of interest, Ornsten-Uhlenbeck process, Portfolio of policies; Present value
function; Limiting distnbution

|. INTRODUCTION

When considering random interest rates in actuanal functions, a question of
particular mterest 1s the distribution of the present value of a portfolio of policies
Studying such distributions could be very useful in areas such as pricing, valuation,
solvency analysis and reinsurance.

Some references which considered stochastic interest rates in actuanal functions
are BOYLE (1976), WILKIE (1976), WATERS (1978), PANJER and BELLHOUSE (1980),
DEVOLDER (1986), GiacoTTo (1986), DHAENE (1989), DUFRESNE (1988), BEEKMAN
and FUELLING (1990), PARKER (1992b).

Recently, DUFRESNE (1990) derived the distribution of a perpetuity for 1.1d
interest rates. FREES (1990) recursively expressed by an integral equation the
distribution of a block of n-year annuities for 11d interest rates.

This paper, taken for the most part from the author’s Ph.D thesis (PARKER
(1992a)), presents an approximauon of the limiting distribution, as the number of
policies tend to infinity, of the average present value of the benefits for a specific
type of portfolio of insurance contracts Although, theoretically, the approach may
be used for any stochastic process for the interest rates, 1t 1s more convenient for
Gaussian processes The approximation is justuified by two correlation coefficients
which happen to be relatively high mainly because of the definition of the present
value function. Some illustrations of the distribution function of the present value of
portfolios using the Ornstein-Uhlenbeck process are presented Finally, the
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moments of some approximate distributions are compared with the corresponding
exact moments

2. A PORTFOLIO

Consider a portfolio of temporary nsurance contracts, each with sum insured 1,
issued to ¢ lives mnsured aged x. Let Z(c) be the random present value of the
benefits of the portfolio

PARKER (1922b) used a definition of Z(c) mvolving a summation over the ¢
contracts of the portfolio. That is

(2.1 Z(c)= z z,,

where 2, 1s the present value of the benefit for the ith life insured of the portfolio.
This definition 1s convenient for calculating the moments of Z(c) because 1t s
possible to stmphify the expressions for these moments under the assumption that
the future lifetumes of the ¢ policyholders are mutually independent.

Another defimtion which 1s equivalent appears to be more appropriate for
studying the limiting distribution of the random varnable zZ(c).

Instead of summing over the c policies, one could consider summing the present
value of the benefits 1n a given year over the n policy-years of the contract
Algebraically, we have

n-1

(2.2) Zc)= Y, ¢ e *U*Y,
=0
where
|l
(2.3) yi+1)= J 0, ds,
0
d, 1s the force of interest at time s and ¢,, 1=0,1,.. ,n—1 1s the random vanable

denoting the number of policies where the death benefit 1s actually paid at time
t+ 1. We let ¢, be the number of hves nsured surviving to the end of the term, »n
Note that the sum of the ¢,’s from : equal 0 to » is ¢, the total number of policies in
the portfolio. Thus,

(24) Y c=c
1=0

When studying Z{c), we will assume that the future lifetimes of the lives insured
are mutually independent and independent of the forces of interest {4}, = o. In this
case, the {¢,}7_, is multinominal We will also assume that the discounting of all
the benefits for the policies in the portfolios 1s done with the same Gaussian forces
of Interest.

In the next section, we consider limiting portfolios, 1.e portfolios where the
number of contracts tends to infinity.
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3. LIMITING DISTRIBUTION

Using (2.2), one could intuitively derive that the average cost per policy (defined as
Z(c)c) as the number of such policies tends to nfimty would simply be a
weighted average of the present value functions from year | to year n. The weights
being the expected proportion of contracts payable in each year, 1.e. ,4, The
probabilistic version of this intuition 1s presented 1n Theorem |

Theorem 1: As ¢ tends to infinity, the average cost per policy for a portfolio of
n-year temporary insurance contracts tends in distribution to  (see also proposi-
tion 5 of FREES (1990))

n=1

(3 1) = z W4 e—\‘(l-f-])

1=0

Proof: This result s true 1f

n—1

(3 2) Z(C)/(,— C” = Z (C',/C _ ”q\) eh,\'(l+ 1)
=0

tends in probability to 0.

We use the well-known result that if X tends 1n probability to 0 and Y has finite
mean and vanance, then X Y tends in probability to O (see, for example, CHUNG
(1974, p 92)).

Here, ¢, 1s binomial (c, ,4.) so, (¢,/c —,4,) tends 1n probability to O for each 1.
And as ¢~ ""*" )5 log-normally distnbuted with fimte mean and varance, 1t
follows that

n-1

5, (G- e

1=0

tends n probability to 0 O

Now, one could theoretically obtain the density function of {, by integrating the
Jomnt density funcuon of the y(1)’s over the appropriate domain. The expression
would look like the following

(3 3) fp;"(z)_—-J J J fL()’Iv."Z’ ,y,,)d_\’|d_)’2~~ d,\’n ’
v 3, v

n 2 Rd}

where Y = (y(1),y(2), .,y(n)) and 1s muluvariate normal

But this approach 1s not possible from a practical point of view as it 15 almost
impossible to evaluate (3 3) even for n as small as 5 In the next section, however,
we derive a recursive equation from which onc can approximate the distribution

of C,.
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4. APPROXIMATION

Since §, 1s a summation over the policy-years, 1t 1s easy to break it down into the
sum of {,_, and a term for the nth policy year. The recursive equation for £, 1s then
given by:

n=| n-2
- —v(e+ 1) -v(+ 1) - {(n)
Cn— 2 g, € - 2 1q € +n—-llq\ e
1=0 1=0
— = (m
(41) CII_CH—I-’-II—I\[I\ € .

Let z, be a possible realization of z, and v, be a possible realization of y ()
Let the function g,(z,,v,), a somewhat unusual functuon based on the distribu-
tion of &, and the density function of y(n), be defined as:

(42) gn (Zn J .\)u) = P(gn = Zu) f\'(n) (yn|Cn = Zn) )
or equivalently,
(4 3) gn (Zn ’ yn) =f\ (n)(y”) P (Cu = Z,,l_)’ (”) = .yn) .

From this last definition, it follows immediately that the distribution function of
G, 1s given by:

(4'4) FC,I (ZII) = J gn (Z" ’ .yll) d.yﬂ ’

where the function g,(z,,y,) may be calculated with a high degree of accuracy
from the following recursive equation

(4 5) gn (zu ’ )’n) = J f\'(n) ()’u')’ (ﬂ - l) = yn— l) X

X gn—l(zn—n—llq\ e_v"vyn—l)dyn—l

with the starting value:

-,
lth €

-Elyl
46) 01 (21, ) = ¢(y‘i“(5)]J T
Viy(l)]

0 otherwise

We use the notation ¢ () to denote the probabihity density function of a zero
mean and unit vanance normal random variable. Note also that given that y(n - 1)
equal y,_,, y(n) 1s normally distributed with mean

@47 Elymyn-1)=y,_\|
cov (y(n), y(n—1))

=E[v(m]| + {v._1=Ely(m-1])
VI y(ml
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and variance

cov? (y(n), y(n-1))
Viy(n-1)]

(4.8) Viymly(n=1D =y, |=VIynl -

(see, for example, MORRISON (1990, p. 92))
To derive (4.5), we start by noting that from (4.1), we have that-

(4 9) P(C” = Z'll)‘ (”) = yn) = P(Cn -1 = Ip=n-14. € B 'V"|,V (”) = .Vn)
Now using (4 2), (4.3) and (4.9), we have
(4.10) g, (zp. y) = P(Cu_ 1=Z,—n-1q, € T x

X f)(n)(ynlgx- S n-19, € \',,)

The conditional probability density tunction of y{n) i (4.10) may be written as:
(MELSA and SAGE (1973, p. 98))

(41 l) f\‘(ﬂ)(.)’nICn-l = Zy = n-14 e—\',,)

) J. f“(“)(y,,|y(n— ])=yll—|v§ﬂ—| = Z,."n-nf/\ e—v,,) X

X f\'(n—l)()‘n—IICn—l EZn_u-liqx E—"") dyn—l~

Equation (4.3) implies that

=gn—l(zu_u-llq\ e—‘"'yn—l)
P(Cu-lszn_n—HQ\ e_‘vn)

If we now make the following approximation (see the next section for some
Justifications)

(4 13) f\(n)(.\’nly(” - 1) =Yn-1> c"— | = n = n- 1, e \") =
Ef) (n) (ynly ('1 - l) =Vu- I)’

(4 12) fv(n—l)(Vn—IICn—lSzu_n-lqu e—_\',,)

then equation (4 11) becomes
(4 14) f\(ll)(.vlllgll—l = Zp—n-19, e_‘v")E J f\'(n)(ynl.y(n_ 1)=yn—l) X

X g”—l(zn_n—llq\ e-""yn—l)
P(Cn—l SZn_n—liq.\ e_‘.")

Finally substituting this last expression (4.14) into (4 10), we obtain (4 5).
To obtain the starting value (4.6), we simply have to note that:

dyu—l

4 15) Ci=q, eV
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and that
4 16)
gz, y)=PE=zly()=y) fi,(v)
yn—Ely()]
=P =gly()=v) ¢(V|—5—)
Viy(D]
Then, since
“.17 Ei=g, e™ f y()=y,
we have that
if =g, e "

(4 18) P(§|SZ||\’(|)=.\’1)={1
0 otherwise
Finally, by combining (4 18) and (4 16), we obtain (4 6) This completes the
derivation of (4 5) and (4.6)
Before doing numerical evaluations of approximation (4.5), it is important to
study n greater details and to jusufy the approximation (4 13) mvolved here This
1s done 1n the next section.

5. JUSTIFICATIONS

Looking at the steps leading to (4.5), we note that the result 1s not exact due only to
approximation (4.13) made n order to obtain a recursive equation involving only
known quanttes This approximation may be justified theoretically by looking at
two particular correlation coefficients, one of which validates the approximation for
large values of n and the other for small values of n

5.1 Correlation between y(n) and y (n - 1)

From the subject of multvariate analysis, we know that the approximation (4.13)
will be acceptable 1f y(n) and y(n - 1) are highly correlated (see, for example,
Marpia, KENT and Biy (1979, Section 6.5)) This 1s true since 1f they are highly
correlated, knowing y(n — /) would explain much of y(n). Now if this 1s the case,
introducing any other variable, correlated or not with v (i), in the regression model
to further explain v(#) cannot improve the sttuation much.

Looking back at the definition of v(n) (see (2.3)) 1t 1s clear that y (n — 1) and v (n)
must be highly correlated. Their correlation coefficient will be given by: (Ross
(1988, p. 280))

cov (y(n), y(n—1))
(VIyem)l Viyn-n)'"?

Note that 1if the force of interest 13 modeled by a White Noise process, 1.e.

(5.1 o(y(n),v(n-1)=

(5.2) S, ~ N4, 62),
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where 1t is understood that its mtegral, y(r), 1s a Wiener process, it can be shown
that, the expected value of y(r) 1s

(53) Ely(DHl=4 1
and 1ts autocovarnance funcuon 1s
54 cov (y(s), v(n)) =0 min (s, 1)

If the force of interest is modeled by the following Ornstein-Uhlenbeck
process.

(5.5) do,= —a(d,~8)dt+0 dw,,
with nitial value &, then y(r) has an expected value of
1 _ e—al
(5.6) Elv(t)1=0 14(6¢-90) |—
[0 4

and its autocovanance function ts

o2
(57) cov(y(s),y(r)= — min (s, 1) +
ol

2

ot
+ —— | -2+2e”
2a°

as -al_e—ml-s!__e—a(l+\)]

+2e

(see, PARKER (1922b, equations 38 and 39))

The correlation coefficients between y (n) and y(n — 1) for different values of n,
when the force of interest 1s modeled by a White Noise (see (5 2)) and when 1t 1s
modeled by an Ornstemn-Uhlenbeck process (see (5.5)) with parameter ¢ =.1, 2 or
5 are presented tn Table 1

TABLE |

CORRELATION COEI FICIENT BETWEEN v (1) AND v{n— 1)
FORCE O INTEREST AS WHITI: Noltst AND ORNSTLIN-UHLENBECK PROCESSES

Ornstein-Uhlenbeck

n White Noise

wa= 1} a= 2 a=5
2 7071 8773 8707 8516
3 8165 09474 9423 9270
4 8660 9701 9659 9535
5 8944 9804 9769 9664
6 9129 9860 9829 9739
7 9258 9894 9867 9788
8 9354 9916 9891 9821
9 9428 9931 9909 9846
10 9487 9942 9922 9865
20 9747 9980 9969 9940
40 9874 9992 9987 9972
60 9916 9995 9991 9981
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Results for the White Noise process are presented here because this process
involves 1.1d. forces of interest, therefore, leading to the lowest correlation
coefficients Results for the Ornstein-Uhlenbeck process are presented because 1t 1s
the process used for illustration purposes in the next section.

Note that the correlation coefficient between y(n) and y (# — 1) 1s not influenced
by the parameter g, of the White Noise process. For the Omstein-Uhlenbeck
process, the parameter d,, 0 and ¢ have no ncidence on the correlation
coefficients

Table 1 clearly shows that y(n) and y(n— 1) are very highly correlated,
especially for large values of n. Therefore, approximation (4.13) made to obtain the
recursive equation (4.5) should be acceptable

Another correlation coefficient could also justify approximation (4 13), indepen-
dently of the one discussed here This is the subject of the next section.

5.2. Correlation between ¢ Y and {,

Again from the subject of multivanate analysis, we know that the approximation
(4 13) would also be acceptable if y(n — 1) and {,_, contained about the same
useful information to explain y(n) (see, for exemple, MaRDIA, KENT and BiBBY
(1979, Section 65)). This may be investigated by studying the correlation
coefficients between e >~ " and &, _,

If e=*™ and £, are highly correlated, the approximation would be reasonable.
The correlation coefficient between these two random variables 1s: (Ross (1988,
p- 280))

- (
cov (¢ ¢)

(58) ( —\(n)’ ”)= B )
TR R

Using (3.1), we obtain
n—|{

2 g cov(eT e

1=0

n-=1 n-1 5'
{we“"”l DI INTE cov(e“"*”,e““f*”)}

i=0 y=0

(5.9) o™=

V()
s

where cov (e ™", e 7 ) s given by

510) covie W e U= Fle™ W) eI EleTM ] Ele™V )

Note that if the force of interest 15 Gausstan, the expected values mnvolved 1n
(5.10) are simply the expected values of lognormal vanables (see PARKER (1992b,
Section 6)).

The correlation coefficients between ¢ ‘" and &,, for different values of n,
when the force of interest 1s modeled by a White Noise or an Ornstein-Uhlenbeck
process with particular parameters are presented in the following table. The
mortality rates used are the male ultimate rates of the CA 1980-82 mortahty table
(Cowarb (1988, pp. 227-231)).
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TABLE 2

CORRELATION COE} FICIENT BCTWEEN ¢ ™' ™ AND £,
FORCE OF INILREST AS WHITE NOISE AND ORNSTEIN-UHLENBECK PROCESSES

White Noise Ornstetn-Uhlenbeck & = 06, dy= |, a= |
" 4= 06, 0,= 0l
v=30 o= 01 =130 o= 02.1=30 o= 0l 1=50

I 1 0000 1 0000 1 0000 1 0000

2 9447 9899 9899 9912

3 9199 9824 9824 9849

4 9064 9770 9770 9802

5 89S0 9728 9727 9765

6 8925 9693 9692 9735

7 8890 9665 9663 9708

8 8868 9642 9638 9684

9 8856 9622 9617 9662

10 8851 9605 9599 9641

20 8969 9535 9518 9455
40 8999 9368 9321 8693

60 8486 8730 8494 —

Note that o (¢ ™*", £,) 1s | This implies that approximation (4.13) 1s exact for

n=2. The correlation coefficients of Table 2 suggest that the approximation should
be good, especially for small values of n.

Combining the two conclusions drawn from the results presented in Table |
and Table 2, we note that the approximation should be acceptable for all values
of n

Now that approximation (4 5) appears to be justified, we may use 1t to find the
distribution of §,. Equations (44) and (45) may be computed by numerical
integration or by some discretization method Although some methods are certainly
more accurate than others, 1t 1S not our ntention 1n this paper to discuss or compare
the possible methods In the next section, we present some results obtained by an
arbitranly chosen discretization of (4.5)

6. ILLUSTRATIONS

Figure 1 1llustrates the cumulative distribution function of §,, n=35,10, 15,20
and 25, the hmiting average cost per policy for temporary insurance contracts tssued
at age 30 and with the force of mterest modeled by a Omstemn-Uhlenbeck process
with parameters 0 = 06, dg=.1, a«=.]1 and o =.0l. The mortality rates are again
the male ulumate rates of the CA 1980-82.

The range of possible values for &5 1s much shorter than the one for §,5. This 1s
due to the fact that with a hmiting portfolio, there 1s no fluctuation due to mortality,
and therefore, all the possible vamations in the random variable £,, are caused by the
force of interest. When there are only five years of fluctuating force of interest
involved, 1t 1s clear that the results will be less spread than when there are 25 years
of fluctuating force of interest. Finally, it should be obvious why &,s takes larger
values than 5.
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FIGURL 1 Cumulauve distribution function ot &,
Temporary nsurance policies 1ssued at age 30, Ornstein-Uhlenbeck 6= 06 0y= 1 = 1 0= 0]
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— — 10 years

15 years
— — 20 years
— 25 years

There 1s no doubt that the distribution of &, provides very useful information n
solvency problems. One may also be interested in using such informauon for
pricing or valuation of a portfolio of insurance policies. In this regard, the relevant
information 1s contamed 1n the nght tail of the distribution of ,,.

Table 3 contains some numerical values of the night tail of the distnibutions of £
and §»s 1llustrated in Figure |

From Table 3, we know, for example, that a company charging a single premium
of 005602 to each life insured of a very large porttolio of 5-year tempotary
contracts will meet 1ts future habilities with a probability of about 995.

TABLE 3

RIGHT TAIL OF THE. APPROXIMATE DISTRIBUTION OF £,. 5 AND 25 Y1 ARS 11 MPORARY INSURANCE ISSUED A1
AGE 30, ORNSTEIN-UHLENBECK 0= 06 0y= 1 aa= 1 o= 0l

5 years temporary 25 years temporary

5 o (zs) pal Fr(2as)
005381 940609 036135 966095
005436 972183 038092 082494
005547 592830 040048 989498
005602 995229 042004 994551
005823 997927 049827 999505
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7. VALIDATIONS

A validation of the results described above has been done by comparing the exact
first three moments of {, with 1its estumated first three moments from the
approximate distribution.

A discretization of the variable £, has been used to estimate the moments of the
approximate distribution. Algebraically, the mth moment of §, about the origin has
been approximated by the following equation.

h

. " " l m
an  Eigm= Y [Z—E”—;[ﬁ—') (Fe (zalt+ 11 = Fe zal1]).

1=0

where z,li], 1= 1,2, ..., s the ith ordered value of , at which F, was evaluated.
For the dlustrations presented above, /i was chosen to be 25. To deal with the
extremities of the distributions the following values were arbitrarily defined as.

2 - n l
72 2101 = 2,111 - (Z"l ‘_Z_L')
2
h=z,lh=1
(7.3) Z,,[h+ 1= Z,,[/I] + (M]
2
(74) FC,,(ZHIOI):O
73) Fr (z,lh+1])=1

The exact moments of &, about the origin may be obtained by using the
defimtion of &, given by (3 1) Its mth moment about the ongin 1s then given
by

n-1 m
(76) E(c,’,"|=5[(2 04\ e““‘*“] }
1=0

Now, with m equal 1, the first moment 1s

n-|

(1.7) ElL0= Y El,q. e "

1=0

With m equal 2, the second moment 1s

n- 1 n-1
(78) E[Cﬁl:El:(z 14, e"'(’”)] (z 4, e—)wﬂ)j]

r=0 =0
n=1 n-1
(79 =El:z Z W e—\‘(:+l)-\'(_;+l)]
=0 =0
n=1 n-1
(7.10) =Y Y g jgq. Ele7r0rbmrisny

=0 =0
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With m equal 3, the third moment 1s

n-1 n=1 n-1

(7.11) E[g}]: 2 2 Z Wy 4y 0 E[e—\(»+\)—\(j+\)—\(A+l)]

1=0 ;=0 i=0

Note that the moments of §,, are exactly the limiting moments of the average cost
per policy studied 1n PARKER (1992b)

Table 4 presents, for different terms of temporary insurance contracts 1ssued at
age 30, the exact moments of &,, £[§,'], and the difference between the exact and
the estimated moments (given by (7.1)), 1.e. E{Z] — E[E™], for m equal 1, 2 and 3.
The force of interest 1s modeled by an Ornstein-Uhlenbeck process with parameters

0= 06, 0p=.1, =1 and o = .0l.

TABLE 4
COMPARISON OF ENACT AND APPROXIMATE MOMENIS OF §,. n-YEAR TEMPORARY INSURANCE ISSULD
AT AGE 30, ORNSTEIN-UHLENBECK 0= 06 0y = 1 @ = | 0= 0]
EILH ElgM-E1e0

n m=1 m=2 m=3 m=1 m=2 n=3
(x10) (x 100) (x 1000) (x 10) (x 100) ( x 1000)
! 01197 00014 00000 00000 00000 00000
2 02284 00052 00001 00000 00000 00000
3 03291 00108 00004 00000 00000 00000
4 04246 00180 00008 - 00001 00000 00000
5 05160 00266 00014 - 00003 00000 00000
10 09517 00909 00087 - 00017 - 00004 - 00001
15 14163 02023 00292 - 00031 - 00011 - 00003
20 19731 03964 00811 — 00041 - 00024 - 00009
25 26356 07167 02013 - 00054 - 00053 - 00030

Note that, in order to present more significant digits, the first moment has been multiplied by 10, the
second moment muluphed by 100 and the third moment multiphed by 1000

From Table 4, we note that the exact and approximate first three moments of £,
agree to at least four, five and six decimal places respecuvely (for n = 25). This 1s
excellent, especially 1f one considers that many approximations were 1nvolved
before obtaining the estrmated moments of &, £[C,].

Let the relative error for the mth moment of £, be:

EG) - LG
EIE)]

Then, for any term, #n, the relative error on the expected value of ,, 1s about .2%
or less. For 1ts second moment, it 1s about .7% or less. And for 1ts third moment, 1t
1s about 1.5% or less

The results for other parameters of the Ornstein-Uhlenbeck process and for other

ages at 1ssue, not tllustrated here, were all excellent The maximum relative error
observed, generally for the third moment, being about 3%. Although for the

(712)
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illustrations presented here, the error 1s always negative, for other situations it may
be positive or even alternate over different ranges of values of the term, n. In all
cases, however, the relative error 1s small.

From the jusufications made in Section 5 and from the validations presented
here, it appears that the approximation (4.13) suggested to obtain the resursive
equation (4 5) has to be highly acceptable.

8 CONCLUSION

The results of this paper provides a way of approximating the distribution of
Iimiting portfolios that 1s valid for any process for the force of interest as long as
the conditional density function of y(n) given y(n = 1) 1s known and expression
(5.10) can be evaluated As indicated earlier, choosing a Gaussian process simplify
things considerably

Although equation (4.5) might not be acceptable for any random variables, the
very nature of the problem under consideration here, 1.¢. the present value of future
benefits, has some particular properties which imply that the approximation is good
The worse possible case for Gaussian interest rates 1s when they are independent,
1e White Noise process Even in this case, the correlation resulting between
consecutive present value functions is fairly high.

There 15 no doubt that knowing the distribution of the average cost per policy 1s
useful for pricing, valuation, solvency and reinsurance The approximation sug-
gested in this paper 15 certainly accurate enough for most situattons one may
encounter, 1t 1s more justifiable and less subjective than the testing of a hmited
number of scenartos and 1t avoids the extremely lengthy simulations required to
obtain reasonable information about the tail of the distribution
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ABSTRACT

The paper introduces an alternative approach to the traditional experience
rating theory in automobile insurance The approach 1s based on a simple
theory of how high deductibles financed by loans maintain the risk differentia-
tion 1n an automobile insurance arrangement Thus the approach differs totally
from the usual bonus-malus classes as well as from the credibility based
experience rating i1deas. The paper is of a theoretical nature and leads up to a
mathematical description of how the approach may be optimalized within the
framework of a risk model.

KEYWORDS

Bonus-malus systems; optimal deductibles financed by loans.

1. BACKGROUND

From a practical point of view 1t 1s well-known that the existing automobile
bonus-malus systems possess several considerable disadvantages which are
difficult, or even impossible, to handle within the traditional theory of
experience rating. The aim of this paper 1s to introduce an alternative
bonus-malus approach which, at least theoretically, eliminates the most
important ones of these disadvantages.

2. CRITICISM OF EXISTING BONUS SYSTEMS

To motivate the new bonus-malus (B-M) approach 1t 1s appropriate to stress
the usual criticism of the existing B-M systems. In particular, the existing
systems are, among other things, based on two general characteristics:

(i) The claim amounts are omitted as a posterior tariff criterion
(1) At any time the policyholders may leave an nsurance company without
any further financial commitments to the company.

These characteristics lead to three of the most considerable disadvantages -

(2.1) Regarding an occurred claim, the future loss of bonus will in many cases
exceed the claim amount.

I An earlier version of this work has been presented at the ASTIN Colloquium, Stockholm 1991

ASTIN BULLETIN, Vol 24. No 1, 1994
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(2.2) The systems create the possibility of malus evasion, that 1s, the possibility
of the policyholders leaving the insurance company to avoid premium
increase because of occurred claims.

(2.3) The systems stimulate a slide towards higher average discount rates in the
Insurance arrangements.

Because only the number of claims (and of course the discount rate) in an
insurance period determines the premium 1n the following period, 1t follows
that (2.1) 1s an immediate consequence of (1) In many cases (2.1) gives the
policyholder a feeling of unfairness, especially if the loss of bonus i1s much
higher than the occurred claim amount. A consequence of this is the well-
known bonus hunger behaviour of the pohcyholders.

Disadvantage (2.2) 1s of course a consequence of (i1). Malus evaders let the
remaining policyholders pay the bill for their (the evaders’) claim costs. This
has, at least in Norway, been a serious problem in the insurance industry,
mainly because of an unsatisfactory exchange of bonus information between
the insurance companies

Because all insurance arrangements attached to existing B-M systems are
exposed to bonus hunger as well as malus evasion, 1t follows that (2.3) is a
secondary consequence of (2.1) and (2.2). A higher average rate of discount 1s
contrary to risk differentiation, which is the objective of all B-M systems. In an
extreme situation the result might be that the great majority of the policyhold-
ers are at, or close to, the maximum rate of discount

A number of authors have focused on the disadvantages mentioned above, in
particular the problem of bonus hunger — see e.g. NORBERG (1975), LEMAIRE
(1985) (Chapter 18) and SUNDT (1989). The aim of these authors has not been
to solve or climinate the disadvantages, but rather to take them into the
modelling account 1n connection with the mathematical optimalization of the
B-M systems. However, to eliminate the disadvantages one probably has to
leave the traditional framework of experience rating, and construct a bonus
principle which 1s basically different. This 1s precisely the mtention of this
paper, and in Section 3 we will first introduce the alternative B-M 1dea, and
thereafter place the 1dea into a mathematical description and notation. The
alternative approach may be called a new premium system, and in Section 4 it
is shown how the system may be optimalized within the framework of a risk
model. In Section 5 some practical deficiencies of the system are discussed, and
in Section 6 some concluding remarks are given.

3. AN ALTERNATIVE APPROACH TO EXISTING BONUS SYSTEMS

3.1. Preliminary aspects and assumptions

The fundamental principle of the existing B-M systems simply expresses that
the higher the claim frequency of a policyholder, the higher the insurance costs
that on average are charged to the policyholder However, this principle is also
valid 1n an insurance arrangement consisting of a high maximum deductible
which is common to all policyholders This follows from the simply fact that



BONUS MADE EASY 63

good drivers will pay fewer deductibles than bad drivers. Thus we may imagine
a premium system where the costs of the incurred deductibles are defined as the
malus (the loss of bonus) after a claim occurred. Within this framework it
seems natural to assume an individual risk premium above the maximum
deductible which 1s reflected by a priort tanff criteria, but not by a posterior:
knowledge about the policyholders. This system defines a malus system rather
than a bonus system. However, we may interpret the claim free driving bonus
as avowdance of deductibles

Two questions are now appropriate :
(3.1) In what way do we determine the size of the maximum deductible?

To attain a sutable cost differentiation in the risk heterogeneous arrange-
ment, the maximum deductible has to be relatively high, maybe as high as
2000-3000 US dollars (USD). This leads to question number 2

(32) How do we act when knowing that the average policyholder hardly
manages (at least in Norway) to cash pay deductibles of more than about
1000 USD?

Let us first look at the latter problem. The new system solves problem (3.2)
by giving the policyholders a possibility of financing the incurred deductibles
by loans from the insurer. Moreover, this leads to the advantage of smoothing
the “loss of bonus” (the deductible) over a period of time, precisely the way
that the total loss of bonus 1s smoothed 1n the traditional systems.

Before commenting on problem (3.1), we shall illustrate the abovesketched
premium system with a simple example: Let us assume that a policyholder has
two occurred claims of respectively 5000 USD and 500 USD in periods
number 3 and 9 during an insurance period of 15 years We also assume for
simplicity that the deductible loans are ordinary term loans, and that the
period of repayments is 5 years. Assume the maximum deductible to be, for
mstance, 2000 USD, and the premium for large claims above this maximum
deductible to be 300 USD during the whole insurance period. Finally, the
borrowing rate 1s assumed to be 10% 1n arrears. These assumptions lead to a
sequence of payments for the policyholder shown in Figure 1 We note that the
cffcct of the alternative system is not essentially different from the effect of a
traditional B-M system ; the insurance costs increase in the period(s) following
an occurred claim. We also note that the loss of bonus is differentiated
regarding the size of the claim amounts. Or to be more precise; the loss of
bonus will never (except for the interest on the loan) exceed the claim amount,
and hence the bonus hunger effect is eliminated. In theory the new system will
not be exposed to malus evasion either, because the loan 1s repayed even if the
insurance is terminated — see Section 5 for a further discussion on this. Hence,
at least theoretically the new system eliminates the disadvantages (2.1), (2.2)
and (2.3) in Section 2.

Return to problem (3.1). The solution of this problem ought to be linked to
a mathematical optimalization of the system. In addition to problem (3.1), we
have to decide a) the amortization form of the deductible loans, b) the length
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of the repayment period, and c) the rate of interest The conditions a), b) and
c) are 1n practice given by the money market. Thus it may seem meaningless to
find mathematical ““optimal” lending conditions. However, these conditions
will never be absolute, therefore it may be after all interesting to find optimal
values at least for some of the conditions.

400
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FIGURE | The payments for the policyholder over a pertod of IS years

Now, stress item a), the amortization form of the loans In principle we
ought to choose an amortization form which imitates the traditional influence
of the premiums n the time periods following a claim. More precisely, an
amortization form where the repayments are high during the first periods
following a claim and then gradually fall. Moreover, this satisfies the desire of
the policyholders to repay most of the claim costs shortly after the claim has
occurred. Within annuity loans the repayments are exactly the same in the
repayment period, while the repayments are not decreasing enough within
ordinary term loans. Hence, these alternatives of the amortization form are
ignored. However, there exists an alternative fulfiling all the mentioned
properties, that is, the exponential amortization form. Ths form s also
relatively handy in the mathematical computations

Before touching the mathematical description of the alternative system, one
last assumption concerning the financing of the deductibles has to be made. In
a practical application of the new system it 1s of course the pohicyholders who
decide how much to pay cash, and how much to borrow Hence, a deductible is
partially financed by a cash payment greater than or equal to zero, and
partially by a sum borrowed from the insurer However, to simplify the
mathematical analysis we assume the entire deductible of an occurred claim to
be financed by a loan. This 1s an advantage because the costs are then
smoothed over a period of time. In addition, a full-financing by loans is
computationally easier to analyse.
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3.2. Mathematical description

Assume the following mathematical description of the alternative system: Let
Y; 1=1,2,... be the values at time zero of the claim amounts of a
policyholder that occurred at the time points 7;; i =1, 2, ..., respectively. Let
Z, be the value at time zero of the amount payed by the policyholder of claim
number i, and assume Z, on the ordinary excess-of-loss form

1) Z,=mn (Y, b),

where b is interpreted as the value at time zero of the common maximum
deductible of all policyholders at time 7.

Let = be the inflation discount intensity related to the values at time zero of
the claim amounts Hence it follows that the future nonunal value of Z, at time
T is Z, exp (nT,). Note besides that the deductible (b at time zero) is thought of
as following the inflation intensity «.

Let Z,exp (nT,) be fully financed by a loan from the insurer. The loan 1s
charged a rate of interest  and continuously amortized by a stream of payment
{r,(s); s = 0}, where s = 0 refers to the time T, of the claim occurrence.

The payment stream of loan number i has to satisfy (see e.g. GERBER (1990),
Chapter 1)

fe el

@ Z,exp (aT) = j v'r, (s) ds,

0

where v’ = exp (—ds) = the interest discount factor at time s.
Let N(r) be the number of claims occurred in the time interval (0, ¢].
Then
N (1)
3 r) =), n@=T)
=1
is the amortization rate of the policyholder at time 1.
Assume an exponential form of amortization, that 1s,
4) r.(s) = B, exp (—ps).
B, 15 here called “ the initial amortization level”, and may be interpreted as
interest + repayments 1n the first repayment year. When the rate of interest J 1s
known, p expresses the amortization profile of the sums borrowed, that 1s, the
obliquity of the repayments, or to which extent the repayments should be high
in the beginning and then gradually decreasing.
From (2) and (4) we obtain

[« o]
Z, exp (nT) = j‘ exp (—ds) B,exp(—ps) ds
0

i

3

5+p
or

®) B,=Z, exp (nT) (6+p).
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Formula (5) gives the relationship between p and ““the initial amortization
level” B, when the rate of interest & and the sum borrowed Z, exp (nT)) are
known. In particular, we see that p= 0 (constant amortization) implies
B, = 6Z,exp (rnT), which means solely repaying interest to infinity. Henceforth,
we will assume p > 0.

From (4) and (5) we have

(6) ri(s) = Z,(8+p) exp (nT) exp (—ps).
Therefore, from (3) we finally obtain the expression
N(1)
@ r)= ), Z(3+p)exp (xT,~p (1= T)).

t=1

To obtain an impression of the effect of p, it may be suitable to take a closer
look at the function (6). Under assumptions of 6 = 10% and Z, exp (rT)) = 1,
Figure 2 shows the stream of payments r,(s) for some specified values of p
Note that the higher p is, the higher the payments are during the first
repayment period(s). In the case of p = 0, we see that only 10% interest of
Z,exp (nT;) = 1 1s continuously payed

0.5+

+ . .
2 . 6 H 10 12 14

FIGURE 2 The stream of payments {r,(s), s > 0} when p ={0,01,02,03,04}

4. A MATHEMATICAL OPTIMALIZATION DESIGN

4.1. Model assumptions

To carry through an optimalization of the new system, a claim risk model has
to be built. In this paper we assume the widely accepted negative binomal
model, see e.g LEMAIRE (1991):

The claim number process {N(¢); ¢t > 0} of a policyholder 1s a homoge-
neous Poisson process given the claim intensity @. Let @ follow a gamma
distribution Gamma (, f). Assume also the values at time zero Y, Y,, . .
of the claim amounts to be independent and identically distributed (1.i.d.),
and independent of {N(t); ¢ > 0} and of 6.
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Under these assumptions we also easily establish the values at time zero of
the sums borrowed, {Z, = min (Y,, b); i= 1,2, ...}, to be i.i d. and independent
of {N (1}, t > 0} and of O.

4.2. Choice of loss function

Within the risk model in subsection 4.1 and the mathematical description 1n
subsection 3.2, we want to minimize an expected loss function to find some
optimal parameter values of the system

The theoretical individual risk intensity of the policyholder at time ¢ is easily
evaluated as Q (¢) = exp (nt) @EY. Now, the point 1s to estimate Q (¢) using a
loss function which includes the amortization rate r (7). In a real application of
the system we have already indicated the suitability of a constant individual
premium for all risks above the maximum deductible. For simplicity, we
henceforth disregard this individual differentiation, and instead we assume a
constant collective premium. Hence, let p(¢) be this premium of large claims at
time /:

8) p(t) = exp (nt)p = exp (nt) EOE(Y - Z),

where Y and Z are the values at time ¢t = 0 of the random claim amount and
the random sum borrowed, respectively Now, write

OFEY =0OFEZ+OE(Y-2Z).

Then one can interpret p(¢) as an estimator of exp (nt) OE(Y—2Z). If we
now just let r(t) be an estimator of exp (nt)@EZ and use the traditional
expected quadratic loss function

E[p(t)+r()—Q),

we will in the first place obtain a loss expression dependent on the time ¢, which
13 not a desirable situation. In the second place r(r) would not alone be a
sufficiently good estimator of exp (zt) @ EZ. Owing to the fact that the loss of
bonus (the sums borrowed) is payed in arrears, the amortization rate r () is too
small during the first periods according to the true intensity exp (nt) @EZ.

However, to solve these problems we may construct a loss function which
integrates the total cash flow of the policyholder over a period of time The
actual loss function ought to reflect the total financing of a) the large claim
risks and of b) all deductibles occurred 1n the actual optimahzation period.

The following expected quadratic loss function takes care of the mentioned
objections 1 a reasonable way .

M

M
)] El:j V(p)+r@)di+v™S(M) — J.

0

2
v Q1) dr} ,

0
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where
M = a restricted time horizon.
v = exp (—(n+w)r) = total discount factor at time 1, with the flation

discount intensity 7 and a mathematical weight discount intensity w
exp (— wt) 1s hereby interpreted as a weight function; we see e.g. that
w =0 mmplies a umiform weight function over the time period
0, M].

p(t) =exp(nt) EOE(Y—Z)
= the large claim premium at time ¢

r(ty =ZX0Z,@+p)exp(nT,-p(t—T))
= the amortization rate of the policyholder at time 1.

O() =exp(nt)OEY
= the theoretical risk intensity at time ¢

S(M) = L [ exp (= n(t=M)) r, (1~ T) dt
= the value at time M of all future repayments caused by claims
occurred 1n (0, M].

Summary :

Loss function (9) may be interpreted as the expected quadratic deviation
between a mathematical value at time zero of the actual cash flow of the
policyholder and the corresponding mathematical value at time zero of the
theoretical risk intensity of the policyholder over the time period (0, M]. Note
that all raised loans during (0, M] have to be repayed, and hence one has to
include v™ S(M) in the loss function.

4.3. Computation of the expected loss function

To minimize (9) analytically or numerically with respect to e.g. the system
parameters d, p and b, the function has to be of algebraic nature To obtain an
algebraic form of (9) some statistical computations have to be made.

Let

N
(10) Z@y= ), Zoexp((n+p)T).
=1
Then by (7)
(11) r(5)=(S+p) exp (—p1) Z(1),

and by simple algebra we obtain

(12) MS(M) = (@)exp(—(n+w+p)M)Z(M).

n+p
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Introduce the annuity
M

amg; = j‘ exp (—ot) dt = o~ ' (1 —exp (— 0M)),
0

and the expression

M

Y’=j v'r(t)dt=(6+p)j exp(—@+aw+p)t) Z@) dr.
0 0

Then function (9) may be written as
(13) EV 4+ 2 E[P0™ S(M)1+E[v™ S(M))* +
+2ain E[(F+ o™ S(M)) (p— OEY)]+
+aslp*—2p(EO) (EY)+ EQ* (EY)H.
By (13) we have to find the 1.- and 2.-order moments of the Z(¢)-process,
that 1s EZ (t) and E[Z(s) Z(¢)]. However, the stochastic process Z(¢) does not
have independent waiting times between steps, and hence the calculations

become somewhat complex. We may however show that Z(¢) has the same
distribution as

N*

(14) zZv =) Zexp(a+pU),

=]
where
given @ = 8, N* ~ Poisson (6t),
U,,..., Uy~ arc iad. ~ Uniform [0, ¢],
Z,,. ., Zysvare11d ,

and where N*, the Us and the Z’s are stochastically independent. This result
was in general discovered by JunG (1963); see also BUHLMANN (1970),
pp. 57-60 By standard statistical calculations we then obtain

EZ

(15) EZ(1) = EO [exp (+p)t)—1],

(n+p)
and for0<s <1t
EZ?
(16) E[Z(s) Z(1)] = E® ——_k [exp (2(n+p)s)—1]+
2(n+p)
)2

)2

+ E@* (E2
(m+p

lexp ((m +p)s)— 1} [exp ((x+p) 1) —1].

To obtain an algebraic form of the expected loss function (13), one has to
complete seven 1solated computations. Below, these computations are noted as
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¥, ..., ¥; (remember the integral definition of ¥):

(7 y, = EY?

(18) yy= E[Pv" S(M)]
(19) y3 = EPpYSM))?
(20) .= E(@Y)

1) s = E[0v" S(M))
(22) ye=EY

23) wy=EPYS(M)].

In this paper we restrict ourselves to indicate that (17)-(23) are easily

calculated by use of standard statistical methods. The clue 1s here to use the
expressions (15) and (16). Thus, for instance, we have

M 2
w, = E¥? = ((5+p)2E[j Z(l)exp(—(n+w+p)t)dl:,
0
M M
= (6+ p)? j ds j E(Z(s)Z(Dexp(—(m+w+p) (s+1)) dl.

0 H

Finally, we establish the expected loss function
M

M
(24) E[j o' (p()+r@)) di+vS(M) — j‘

0

2
v'Q (1) dt}

0

=y P2y tyst2alpys — EYyat+pyr— EYys)+
+ @ plp*—2pEQEY + EG*(EY)Y.

4.4. Comments on the loss function
Under the model assumptions of subsection 4.1 we have
EO =aff, EO®=oa(o+1)/.

If the claim amount distribution is assumed known, the function (24)
depends on eight unknown parameters. Two of them, a and f, can e.g. be
estimated by the maximum hkelihood estimators described by LEMAIRE (1985),
Chapter 12 Further, it seems natural to keep the inflation intensity 7z, the
mathematical weight intensity « and the time horizon M constant (they might
also be considered as random variables). Thus the actual optimalization
(varying) parameters are the remaining system parameters 6, p and b.

In this connection, analytical optimal parameter solutions are in general
difficult to find. However, numerical solutions are easily computed by a
computer system, for example the mathematical software system Mathematica.
Note that the maximum deductible & enters into the function (24) via the
moments EZ and EZ? Thus, an approximating optimalization of b4 demands a
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statistical analysis of the claim amounts in a representative claim portfolio.
Also the premium of large claims, p(t), has to be estimated 1n association with
a real claim portfolio

Note finally that the alternative premium system may be mathematically
compared with traditional B-M systems via the expected loss function (9). Or
to be more precise; within each of the traditional B-M systems one may
construct an estimator to the estimand _f(’)" v' Q (1) dt. By using these estimators
in loss function (9), we are able to compare the expected losses of the
traditional B-M systems with the expected loss of the alternative system, and
hence find the best mathematically fitted system

4.5. The loss function for the special case M = o0

To give some more information on the structure of the loss function, one may
exhibit the function for the special case when the time horizon M tends to
infimty Assume in this case that w > 0, which is 1n accordance with economic
theory. When M = oo, we see from (12), (16) and (19) that y, tends to zero. By
(18), (21) and (23) then also w,, ws and w4 tend to zero. In formula (24) thus
only yv,, w4 and ¢ remain different from zero. Straightforward calculation
gives

1 5+ 2 2
v, =— | —°"P_\ | E@EZ? + Z E@*(EZ)* |,
2 \nt+tw+p w
I S+
ve=—|-—"22 _\E0%EZ,
w\ntwtp
1 o+p
We = — | ——— | EBEZ
w\ntwtp

Inserting p = EO(EY—EZ) the loss function may then be put into the
following form

x2 A4, (b)—2xA,(b)+ A5(b),

with
(25) = 0tP
n+wtp
(26) A (b) = b [15@1522 2 E@Z(EZ)2:|
2w w
2
27 A,(b) = | —| EZ[(E®)?EZ+Var OEY]
w
2
(28) Ay(b) = l) [(E@)*(EZ)*+ Var O (EY)Y].
«w
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The influence of the system parameters ¢ and p 1s contained 1n x, and thus 1s
separated from that of the system parameter b.
For fixed b the loss function attains its minimum for

(29) x=x(b)= 4,(b)/4,(b),
and the minimum is
(30) mun (b) = A3 (b)— A2 (b%)/ A, (b).

Denoting the claim amount c.d.f by F, we have

31) EZ

b
j (1= F(y)] dy

0

bZ
[ [ = F(Jy) dy.

0

(32) EZ?

Thus EZ and EZ? are continuous functions of b. If Fis continuous, they are
also differentiable. The same 1s then also true for min (b). Thus, for special
choices of F 1t should not be difficult to minimize min (b) with respect to b, and
thereby obtain a global minmum.

For the moment we content ourselves with the following remarks.

By (25) optimal values of & and p for fixed b are related by

) = [x(B)— 1] p(b) + (1 + w) x(b).

Thus the interest intensity J(b) is greater than, equal to or less than the
market interest intensity 7 +w according as x(b) 1s greater than, equal to or
less than one.

As b tends to infinity, EZ and EZ* tend to EY and E£Y? respectively. From
(26)-(28) we see that

2
Ay(00) = A3(0) = A,(0) — LE@EY2 = (l) EO*(EY)?.
2w w

Thus by (29), x(0) < 1.

For b tending to zero, 4, (b) will be of the order of magnitude 52. 4, (b) will
be of the order of magnitude b, because of the second term within the
paranthesis. Thus by (29), x (0+) = co. This means that there 1s (at least) one b
with x (b) = 1. From (26)-(32) it can be shown that for such a b we will have
x'(b) <0 and min’ (b} > 0, 1f F(y) >0 for y > 0. This proves that there 1s
exactly one value of b with x(b) = 1 and that x () > 1 to the left of this point
and x(b) <1 to the night of it. Furthermore, min (b) has, at least locally, a
minimum to the left of the pomnt. This indicates that the optimal J-value is
greater than z+, or, in other words, the interest intensity for the loan should
be greater than the market interest intensity.
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5. PRACTICAL SYSTEM DEFICIENCIES

In general 1t 1s often difficult, or even impossible, to eliminate deficiencies of an
existing financial market system without generating other system deficiencies
The automobile insurance B-M principle seems typically to be characterized by
this two-sided effect, and hence it 1s not difficult to point out some general
practical deficiencies of the alternative B-M approach. An obvious one is that a
high common deductible necessarily involves a lower total premium income
compared with traditional bonus systems, and thereby generates a lower
insurance profit to the insurer. Another deficiency is the credit risk of the
policyholders, or, more precisely, 1t is not certain that the policyholders are
able to repay their deductible loans. Hence, the insurer has to, in one way or
another, make conditions linked to the individual solvence security 1n order to
meet possible losses One way of doing this 1s € g that the insurer demands the
policyholders to save an amount of money in each insurance period to build up
an individual risk reserve to cover (parts of) futurc incurred deductibles. A
“claim risk account” with the insurer should, in regard to reduce the credit
risk and to maximize the rate of interest on deposits, be closed for withdrawals
during the nsurance periods, except for financing incurred deductibles. Thus,
the premium and claim costs of the policyholders will also have a more
uniform dispersion during the insurance periods.

6. CONCLUDING REMARKS

In theory the alternative B-M approach eliminates the most important
disadvantages of the existing B-M systems. A policyholder will for instance
within the existing systems, unlike the alternative approach, often make a
profit by asking a bank for a credit to cover an occurred claim cost, instead of
reporting the claim to the insurer. This seems obvious, but can also under some
specified conditions be explicitly shown by comparing the effective rate of
interest on a banking credit with the *effective rate of interest’” on the loss
of 1nsurance bonus. By constructing a B-M approach which eliminates
bonus hunger, one also avoids mathematical risk modelling which includes
assumptions about bonus hunger, as e.g. NORBERG (1975), LEMAIRE (1985)
(Chapter 18) and SunDT (1989) have built into their models.

On the other hand the alternative B-M approach contains, as pointed out 1n
Section 5, some practical deficiencies like credit nsk and lower premium
income. The point 1s however that these deficiencies are just relevant for the
(existing ) insurers, and not for the policyholders. In other words; the alternative
approach is less favourable to the existing insurers than to their customers.
Thus, 1t seems conceivable that the traditional insurance industry at once will
be rather sceptical about introducing the alternative B-M approach to the
insurance market. It seems, however, more probable that the possible initiators
in this connection will be the (future) financial institutions—or cooperations
between institutions—which consist of a superior banking service and a minor
(automobile) insurance service. In the first place these institutions are generally
interested 1n introducing customer-friendly products to increase their market
share and market profit in the insurance market. In the second place, and
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under these circumstances, they probably interpret the problem of lower
premium itncome as of secondary importance, while they obviously have the
best qualfications to handle the problem of credit risk. Finally, and 1n the third
place, these institutions already have the general administrative device which
the alternative B-M approach demands, or stated in its extreme form, an
optimal combmnation of actuarial and banking knowledge and culture.
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HIGH DEDUCTIBLES INSTEAD OF BONUS-MALUS.
CAN IT WORK?
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ABSTRACT

HoLTaN (1994) suggests to replace traditional bonus-malus systems by a high
deductible financed by a short-term loan. Practical consequences of this
proposal are investigated here. Simulation 1s used to evaluate the efficiency of
the Taiwanese Bonus-malus system and the variability of premiums of an
average policyholder. Holtan’s high deductible system is analysed under a
compound Poisson assumption, with truncated exponential claims. It is shown
that the introduction of a high deductible would increase the variability of
payments and the efficiency of the rating system for most policyholders'.

KEYWORDS

Motor insurance rating; bonus-malus systems; deductibles.

1. INTRODUCTION

Traditional menit-rating or bonus-malus systems (BMS) suffer from two major
drawbacks

(1) The severe penalties needed to compensate no-claim discounts cannot be
enforced, for commercial reasons. A continuous increase of the average
discount follows, until the system reaches stationarity. This forces insurers
to raise premiums annually After a few years, most policies cluster in the
high-discount classes, and there is no significant premium differentiation
between good and bad dnivers.

(i1) Penalties after an accident at fault are independent of damages. This
creates a bonus-hunger phenomenon, that induces policyholders to bear
small claims themselves, in order to avoid future premium increases. In
some cases, 1t is of the policyholder’s interest to pay substantial amounts
to their victims. This creates a feeling of unfairness, and encourages
hit-and-run behaviour

' The authors would like to thank Messrs Ted Chung and Chen-Yeh Lai, who kindly provided
detailed information about the Taiwanese ment-rating system and loss distributions

ASTIN BULLETIN, Vol 24, No 1, 1994
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HoLtaN (1994) suggests an ingenious alternative to BMS rating. a high-
deductible system (HDS). In this system, the premium would only provide
coverage for the part of the losses in excess of a high deductible D.
Policyholders who cannot afford to pay this amount could borrow 1t from the
company, and remimburse this loan over a small number of years.

The implementation of a HDS could eliminate the two main drawbacks of
BMS: the premium mcome would not decrease over time, and, since the
penalty after a claim never exceeds the claim amount (except for interest on the
loan), the hunger for bonus effect would be eliminated.

In this paper, we use simulation and a simple compound Poisson model to
compare Holtan’s proposal to the BMS in force in Taiwan, a system which is
rather “tough” to policyholders (see LEMAIRE and Z1, 1994). It 1s shown that
high deductibles improve the efficiency of the rating system, but increase the
variability of the payments, as measured by the coefficient of variation. The
Taiwanese BMS is analysed in Section 2, The HDS is studied in Section 3.
Practical considerations are to be found in Section 4. Section 5 summarizes
findings and suggest further research.

2. ANALYSIS OF THE TAIWANESE BMS

Our benchmark policyholder 1s a Taiwanese driver, whose annual number of
claims 1s Poisson distributed, with a parameter 1 = 0.10. At time 0, he enters
the BMS described 1n Table 1, n class 4.

TABLE 1
TAIWANESE BONUS-MALUS SYSTEM

Class after
Class Premium
Level 0 1 2 3 4 S+
claims

9 150 3 D) 6 7 3 9
8 140 3 5 6 7 8 9
7 130 3 5 6 7 8 9
6 120 3 5 6 7 8 9
S 110 3 5 6 7 8 9
4 100 3 5 6 7 8 9
3 80 2 5 6 7 8 9
2 65 1 5 6 7 8 9
1 50 1 5 6 7 8 9

Effects of inflation are removed by assuming that premuums, losses, deduc-
tibles, ..., escalate according to the same index

The evolution of the policyholder among the classes has been simulated for
30 years, the time it takes for system to reach a stationary state Figure | shows
that the expected premium level constantly decreases over time, reaching a level
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of 57.75 at time 302, The standard deviation of payments increases during the
first 3 years, the time 1t takes for the best policyholders to reach class 1. Then 1t
stabilizes around 17.89. As figures are expressed in premium levels in this
section, and 1n dollars 1n Section 3, a dimension-less parameter has to be used
for companson purposes: the coefficient of vanation (standard deviation
divided by mean). For the benchmark Taiwanese driver, the coefficient of
variation increases for 3 years, then stabilizes around 0.31 (see Fig. 2). Figure 3
shows the coefficient of variation as a function of A, when the system 1s stationary.

Simulation was also used to compute the efficiency, the elasticity of the
stationary premium with respect to the claim frequency. If P(4) denotes the
stationary premium for a policyholder with a claim frequency A, the efficiency
curve ¢ (1) is defined as the relative increase of the premium, divided by the rela-
tive increase of the claim frequency (see LOIMARANTA, 1972, and LEMAIRE, 1985).

dP(A)
P(A)

¢(4) =

yl

2 The observed average premium level in Tatwan 1s higher than that, due to the constant flow of
new policyholders entering the system 1n a high class However, since this note analyses two rating
systems from a policyholder’s point of view, new entries in the BMS are not considered
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Ideally, the efficiency should be close to 1. In practice, the efficiency of most
BMS in force around the world 1s much lower (LEMAIRE, 1988). For the
Taiwanese BMS, the efficiency is very low for the most common values of 4
(4 < 0.10); 1t peaks at 0.3 for claim frequencies in the [0.65 - 0.80] range (see

Fig. 4). For 4 = 0.10, ¢ (0.10) = 0.1155.

EFFICIENCY
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3. ANALYSIS OF THE HIGH-DEDUCTIBLE SYSTEM
Major assumptions for the HDS analysis are.

* Deductible: D = $3,000

* Policyholders always borrow the entire loss amount L (up to $3,000) from
their insurer. Loans are reimbursed over a 5-year period, with decreasing
amortization. A sum-of-the-digits principal repayment schedule 1s adopted:
after a claim, 5/15 of the principal 1s repaid with the next annual premium,
4/15 the year after, ... All accidents occur in the middle of the year. The
loan’s interest rate 1s 3%, a low value since we assumed an inflation-free
environment. This leads to the following payment schedule, for an accident

that occurred at time ¢— ' and a loan L = min (D, claim cost).
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Time Payment
! 3483 L
t+1 2867 L
t+2 2120 L
(+3 1393 L
t+4 Q687 L
Total 10550 L

* The annual gross premium, without a deductible, is $ 500. With 15% taxes, a
15% commission, and 10% operating expenses, the net premium 1s $300.

* Claim amounts are exponentially distributed, with parameter x = 1/3 (using
a $1,000 currency unit).

As a consequence of these assumptions, the introduction of a $3,000
deductible reduces the net premium to a basic premium

® A
A j (x—D)pe " dx = ¢ *P
D H

For the benchmark policyholder, the net premium 1s reduced from $300 to
$110.36 = 0.1104.

Aggregate claims up to D form a compound Poisson process S, with a
truncated exponential claim amount X. The first two moments of X are

D 00
EX) = j xpe *“dx+D j pe " dx
0 D
1 —pe™
= T~ 18064
U
D el
E(XYH = I x2pe " dx+ D? J. ue *dx
0 D
2 2D
= S (1—e™") — — 77 = 47563
T I

For a compound Poisson process (see for example BOWERS et al., 1986,
chapter 11),
E(S)=1E(X)=(0.10) (1.8964) = 0 1896
Var (S) = 1 E(X?) = (0.10) (4.7563) = 0.4756

Disregarding all expenses, the expected payment for the first policy year
consists only of the basic premium 0.1104. Expected payments (premium +
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loan repayments) for the second year amount to

Basic premium + [(expected claim number) - (expected claim cost) -
(0.3483 loan payment)]
A 1—e™#P
=21 7% (0.3483) = 0.1764
u J

The variance of payments for the second year is
Var (S)-(0.3483)> = 0.0577.
Expected payments for the third year are

Basic premium + [(expected claim number) - (expected claim cost) -
(0 3483 of second-year loan + 0.2867 of first-year loan)] = 0 2308.

The variance is Var (S)-(0.34832+0.28672) = 0.0988.
The system reaches stationarity after five years. Expected payments for the
sixth year are

Basic premium + [(expected claim number) - (expected claim cost) -
(0.3483 of 5th-year loan + 0.2867 of 4th-year loan + 0.2120 of 3rd-year
loan + 0.1393 of 2nd-year loan + 0.0687 of Ist-year loan)] = 0.31043.

Average stationary payments exceed the net premium of 0 3, since policy-
holders are constantly paying back loans. Expected payments, variances, and
coefficients of variation are presented in Table 2. Figure 2 shows that, for a
policyholder with 4 = 0.10, the varnability of payments is at all times much
higher under the HDS than under the Taiwanese BMS. Figure 3 shows that,
for all usual values of A, the coefficient of variation 1s higher under the
HDS.

TABLE 2
HDS EXPECTED PAYMENTS, VARIANCE, AND COEFFICIENT OF VARIATION

Time Year Expected Vanance Coef of variation
Payments

0 1 01104 0 0

1 2 01764 00577 1 3616

2 3 02308 0.0968 1 3481

3 4 02710 01182 1 2686

4 5 02974 01274 1 2002
56,7, 6 and after 03104 01296 1 1599

For the basic Compound Poisson process with exponential claims the

coefficient of variation of losses 1s \/5/,1=4.4721, for A=0.1. The high-
deductible system would reduce the coefficient of variation of policyholders’
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payments to 1.1599. Coefficients of variation in excess of 1 would probably be
considered as too high by regulators and consumers. A reduction of payments
variability can be achicved by

(1) spreading the loan reimbursements over more than five years, and/or
() adopting a loan reimbursement schedule with level payments.

For instance, a five-year loan with equal payments of .2152 L would increase
stationary expected payments to .3144, but reduce their variance to .1101. The
coefficient of variation decreases to 1 0552, a 9.02% reduction. If the loan 1s
spread out to 10 years, with equal payments of .1155 L, expected payments
increase to 3331, their variance decreases to 0635, and the coefficient of
variation drops to a more acceptable .7564.

Stationary payments for a policyholder with claim frequency 4 amount to

'1 ~uD
P(1)=01104 + Z (1—e *P) (1.055)
i

=0.1104+0.3165(1 —e~'%

if the basic premium3 15 set by the company at 0 1104 Consequently the
efficiency is

3.165 e~ 10/
0.1104+0 3165(1 —e™ %%

p(i) =

Figure 4 shows that the efficiency of the HDS is higher than the efficiency of
the Taiwanese BMS for the most common values of A (under 0.22). For
A=0.10, ¢(0.10) = 0.3751. For the larger 4, the BMS is more efficient. Since
most policyholders have a low 4, the computation of an average efficiency ¢
using any realistic structure function u (1)

qo=j p(3) u(2) dA

would provide a better efficiency for the HDS. u (1) is the density function of A
in the msurer’s portfolio.

4. PRACTICAL CONSIDERATIONS

The implementation of a HDS instead of a BMS would lead to several
practical problems:

1. Surcharges and discounts for other classification variables would need to be
revised For instance, in many countries, inexperienced drivers have to pay

3 In a defimition of the efficiency from an nsurer’s point of view, the basic premium of 0 1104
would be replaced by (4/4)e #P. From a policyholder’s point of view, however, the basic premium 1s
exogeneous, and not a function of his own 4
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a hefty surcharge In addition, they also pay an implicit penalty, as they
have to access the BMS at a level which is higher than the average
stationary level. As this surcharge would disappear, explicit penalties for
mexperience need to be reinforced.

. The administration of a BMS is extremely nexpensive, and routinely
handled by company computers. A HDS would lead to much higher
expenses, since the insurer has to examine the credit worthiness of the
policyholder before each annual period.

. A bad (or unlucky) policyholder could face considerable debt and possibly
personal bankruptcy. This 1s the kind of situation insurance 1S meant to
avoid.

As a partial remedy for possible insolvencies, Holtan suggests to open an
account for each policyholder. Each year, a specified amount would be set
aside, to builld up an individual risk reserve to cover future deductibles.
Creating such accounts would eliminate the solvency problem for most
experienced policyholders. However, it would do little to help young
drivers, who not only form the group with the highest accident rate, but
also the group with the worse credit rating. At most, policyholders could be
induced to save the gross premium reduction created by the introduction of
the deductible. In our benchmark situation, a $ 3,000 deductible reduces the
gross premium by $190. So $ 190 could be saved annually in the account. If
the savings account accrue 3% (real) interest, it will take 13 years to save
the amount of just one deductible.

With a HDS, many policyholders would in practice be prevented from
switching to a new company after a claim, since the former insurer would
demand a full reimbursement of the loan. This goes against current
regulatory trends and creates an adverse selection process: claim-free
policyholders would be free to leave a company, while policies with claims
could not be eliminated from the portfolio and sent to the residual
market

. Taxes, commissions, and operating expenses have been disregarded 1n the
preceding analysis. For simplicity, assume the operating expenses of the
HDS are $ 50, like in a BMS. It seems imposstble to include these expenses
in the loan reimbursement schedule. Commissions and taxes are not paid on
deductibles. A policyholder, who has incurred a $3,000 loss, will never
accept to repay $5,000, in order to provide $750 to his broker, $750 to his
government, and $ 500 to compensate the company for operating expenses.
Since the broker, the government, and the nsurer will not accept a decrease
of their revenue, all of these expenses will need to be included in the basic
premium, that covers losses above $3,000. So the gross premium of a
benchmark policyholder would be $310 (§110 net premmum + $200
expenses, tax and commission). 64.5% of the gross premium would be
needed to cover expenses. While 1n practice such a high figure may be
reached for some low-premium or high-deductible policies, it 1s certainly
excessive for compulsory auto third party coverage
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The inclusion of all expenses into the basic premium has another important
consequence* a decrease of the efficiency and the payments coefficient of
variation of the HDS. In a traditional BMS, expenses are proportional to
the premium level, and bad drivers pay more commussion, tax, and
operating expenses. In a HDS, all policyholders contribute equally towards
expenses. This reduces relative premium differentiation, and has a depress-
ing effect on the efficiency curve and on the coefficient of variation of
payments (see Fig. 5 and 6)

In the preceding analysis, the deductible has been set rather arbitrarily at
33,000, following a suggestion by Holtan to set the deductible around the
mean claim cost If the HDS is ever implemented, the value of the
deductible will probably be decided by practical considerations, and not as
the result of sophisticated modelling Holtan has presented a model, based
on the mimimisation of a quadratic expected utility function, that would
provide an “optimal” deductible, after lengthy calculations. A simpler
optimisation criterion coud be based on the efficiency. For instance, one
could select the deductible in such a way as to maximise ¢ (0.10). The first
derivative (with respect to D) of ¢ (0 10) is easily calculated, and a
numerical procedure leads to an optimal deductible of $2,941, very close to
the value arbitranly selected. Figure 7 compares the efficiency curve for
various deductibles. It shows that ¢ (0.10) is not an increasing function of
D A very large D improves the efficiency for small A’s, but reduces ¢ (0.10).
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5. CONCLUSIONS
Compared to a traditional bonus-malus system, a high deductible system

1. reaches a steady state much faster;

2. 1ncreases premium income during early years;

3. has a higher efficiency for the most common values of the claim frequency;
and

4. has a higher vanability of payments for all policyholders.

Of course the first three points are 1n favour of the HDS, while point 4 is a
very important drawback, that will probably prevent the application of a HDS
in practice. Further research might be needed to improve Holtan’s proposal
For instance, one should investigate the impact of less severe forms of claim
sharing than a straight deductible, such as proportional co-payments under D,
or annual vs. per claim deductibles.

Finally, 1t should be pointed that a HDS would be a good application of the
““bancassurance’ concept, since both insurance (above the deductible) and
banking (the loan under the deductible) expertise would be needed to manage
the system. The banking segment of the industry would be induced to develop
savings vehicles that would guarantee the repayment of the loans.
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NOTE ON THE PAPERS BY J. HOLTAN AND
BY J. LEMAIRE & H. ZI

According to the editonial rules of treating discussion situations n the ASTIN
Bulletin the paper by J. LEMAIRE & H. ZiI being somewhat a discussion on Holtan’s
paper was sent to the author of the original paper, who was given the opportunity to
make an additional comment. The editors then received the following note by JON
HoLTAN.

In this note I want to give some general comments on the papers by LEMAIRE &
Zi (1994) and HoLTAN (1994)

Interpret henceforth a bonus-malus (BM) principle as consisting of two basic
components :

(a) The BM design.
(b) The BM tanff parameters

Tradiuonal actuarial hiterature has basically been preoccupied with component
(b) Or more precisely, the taniff parameters of an mntial accepted BM design have
usually been mathematically optimalized within different criteria of succes like e g.
high efficiency and financial balance. In my opinion, however, this strategy seems
to be too narrow if the aim 1s to construct a BM principle which 1s totally
optimalized in favour of both the insurer and the insured In our strive for
maximzing BM advantages and minimizing BM disadvantages, actuarial BM
rescarch should instead simultaneously focus on both components (a) and (b).
The construction of the High-Deductible System (HDS) in HoLtan (1994) 1s
an example of this strategy However, as pointed out in LEMAIRE & Z1 (1994) (see
Section | and 4) and HoLTaN (1994) (see Section 3, 5 and 6), a HDS compared
with existing BM systems both elinunates and generates i1mportant disadvantages
which are hinked to component (a) Based on some mathematical model assump-
tions, LEMAIRE & ZI moreover concludes (see Section 3 and 5) that this two-sided
conclusion 15 1n princtple also valid within some mathematical criteria of success
linked to component (b) These complex, and perhaps confusing, conclusions make
it difficult for us to decide whether to prefer the existing BM systems or the HDS
However, the solution to this problem of decision seems to be naturally dependent
on some strategic questions hike: What kind of BM advantages and what kind of
BM disadvantages will be the most important to focus on in the future automobile
insurance market? In what way will new financial market structures and new
electronic technology moderate the stated criticism of HDS, and hereby make room
tor creative insurancc poducts like HDS? The answers to these quesuons are of
course by now not obvious, and hence a continuous prospective assessment of the
questions will probably be the most suitable way to procecd within the evaluating
of HDS. In addition, and as mentioned in Section 5 in LEMAIRE & Z1 (1994), the
design of HDS may also be improved by further research For instance, a traditional
BM system may be combined with a HDS such that all policyholders within the



38 JEAN LEMAIRE AND HONGMIN ZI

traditional system who attain a specific high rate of bonus discount are offered a
separated (comprehensive insurance) HDS on a permanent basis. In the first place
this modified HDS obviously moderates a great deal of the stated criticism of the
pure HDS, while 1t in the second place gives the offered customers a customer-
friendly choice between two different product alternatives.

In the immediate future the automobile msurance industry seems to meet market
demands which are even more customer-orientated than today. Under the circum-
stances, and as mmtimated above, it seems to be a must for actuanal research within
BM principles to be more onentated towards both the components (a) and (b) Or.
in other words, more orientated towards an optimal combination of insurance
market BM criteria and traditional actuarial BM methods.
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ON THE EXACT CALCULATION OF THE AGGREGATE CLAIMS
DISTRIBUTION IN THE INDIVIDUAL LIFE MODEL

By KARL-HEINZ WALDMANN

Institut fiir Wirtschafistheorie und Operations Research,
Unuversitat Karlsruhe

ABSTRACT

An 1teration scheme 1s derived for calculating the aggregate claims distribution
in the individual life model. The (exact) procedure 1s an efficient reformulation
of De Pril’s (1986) algorithm, considerably reducing both the number of
arithmetic operations to be carried out and the number of data to be kept at
each step of iteration. Scaling functions are used to stabilize the algorithm in
case of a portfolio with a large number of policies Some numerical results are
displayed to demonstrate the efficiency of the method.

KEYWORDS
Individual hfe model, aggregate claims distributton, De Pnl algorithm.

1. INTRODUCTION

Consider a portfolio of m independent life imsurance policies Suppose each
policy to have an amount at risk ie/=1{l, . ., a} and a mortality rate g, with
jeJ={l, .., b}. Let m, denote the number of all policies with amount at risk :
and mortality rate g,.

In the individual risk model the total amount of claims, S, 1s the sum
S= X+ ... +X, of the m individual claims X,,..., X,, produced by the
policies. The distribution of S, f(s) = P(S = s), referred to as the aggregate
claims distribution, can be obtained by successively convoluting the m two-
point distributions of the individual claims. Since the numerical calculation of
an m-fold convolution 1s usually very time-consuming, numerous approxima-
tions can be found in the literature. See, e.g, BEARD, PENTIKAINEN and
PESONEN (1984) for more details. The method derived 1n DE PriL (1986) 15 a
remarkable progress in computing the distribution of S exactly. Compared with
Panjer’s (1981) recursion formula, however, which can be thought of as the
counterpart within the collective nsk model, the computing time remains large
(cf Kuon, REICH and REIMERS (1987), DE PRIL (1988), REIMERS (1988))

In the present paper we shall reformulate the iteration scheme underlying the
method of De PriL (1986). A (much) more efficient organization of the data
will considerably reduce both the number of arithmetic operations to be carried
out and the number of data to be kept at each step of interation. Further, we
shall stabilize the algorithm by introducing a suitable scaling function. This
scaling function will enable us to apply the algorithm to a portfolio with an
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essentially larger number of policies. Finally, some numerical results will be
displayed to demonstrate the efficiency of the method

2. THE AGGREGATE CLAIMS DISTRIBUTION

ForjeJ,wesetp, = 1—q,,z, = q,/p,,m, = Z,eym,,and c = X, X ., im,.
Further, we use [x] to denote the greatest integer less than or equal to x.

It has been shown in DE PriL (1986) that the aggregate claims distribution
can be computed recursively via

b
(1) r@ =11 @y
=1
and fors=1, ..,¢c
min (a,5) (si]
o)) ==Y > gk fis—k
S =1 k=1
where
b
(3) g k==Y myzf
=1

Theorem 1: Equation (2) can be written as

minfa,s) b

) O Yoy imyrGs))
g1

1=1
where, for all iel, jeJ, 1< s
(5 r(s,i,)) =z, {f (s—1)—r(s—i,1,7)}

and r(s, i, j) = 0 otherwise.

Proof: Let

[s/1]
r(s,hy) =), (=D)*'zf f(s—ki)
k=1

Then, utilizing

[s/1)
G, i,j)=z,{f<s—i)— y (—1)"‘"”“2/‘"'f(s—i—(k—l)z)}
k=2

[G=n)/

=2,{f(s—1)— (—1)"+'z,"f(s—i—ki)}

k=1

=z{fG—)=r(s—4 1))}

the assertion immediately follows from (2) [
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Equations (4) and (5) can be thought of as an efficient reformulation of
equation (2). The superiority results from

(a) a lower number of anthmetic operations to be carried out at each step of
iteration
(b) arrays of smaller size to keep the data needed for further iterations

To specify (a), we first study equation (2). Fix (s, ¢, k). Then, having already
computed g (i, k—1), g (i, k) can be obtained as the result of

(= Z( z){m,z} ™"}

which can be managed by &+ | multiplications and 4 additions. Two additional
multiplications and one subtraction are necessary to compute g (1, k) f (s—ki).
Summing over k there 1s a need of (b+3) [s/1] multiplications and (b+ 1) [s//]
additions/subtractions.

On the other hand, by applying equations (4) and (5), for fixed (s, i, ), one
multiplication and two subtractions are necessary to compute r(s, i, j). Further,
one additional multiphcation is needed to obtain {1 m,} r (s, 1, j) Summing over
J, there 1s a need of 25 multiplications and 2 b additions/subtractions.

Now let &, (s) (resp. &,(s)) denote the number of multiplications (resp.
additions/subtractions) to be saved by applying equations (4) and (5) in place
of equation (2) at stage s of iteration. Then it easily follows that

min {a, §)
En(s) = Z {(b+3)[s/i]—2b} = {(b+3)log(a+1)}s—2ab
=1
min (a. )

E(5) = Y A+ D)Isii1—2b) & {(b+1)log (a+1)}s—2ab

=1

where use has been made of log (a+1) < ZY_, 1/i < 1 +log (a) (cf. e.g., Ross
(1983)).

Now let us specify (b). To apply iteration scheme (2), an array with ac (resp.
¢+ 1) elements 1s needed to keep ¢ (i, k) (resp f(s—ki)) for further iterations.
On the other hand, uulizing equations (4) and (5), an efficient implementation
of r(s, i,7) (resp. f(s—i)) needs an array with a(a+ 1)b/2 (resp. a+ 1) elements
only

To illustrate the basic idea underlying the implementation of r(s, i),
observe (see Figure 1) that the r(s, /,j) within the upper triangle (sohd hne)
have to be kept at stage s, while at stage s+ 1 the r(s, ¢, j) of the lower triangle
(dashed line) have to be retained.

To manage these data in an efficient way, we rearrange the elements of the
upper triangle in an array with a(a+1)/2 rows and b columns, and, switching
to the lower triangle, we replace the entries of (s—i, 1,y) (not needed any
longer) by the ones of (s, 1, ;) (to be kept for further use) and let the other
entries unchanged.
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(s-1,2,)) (s-2,3)) (s-at+l,a,))

(s-1,3.)) (s-a+2,3,))

FIGURE | Actualization of the data

Formally, we introduce

v, =1(i—1)2+1
w, =0, 1el
and actualize w, at each step s(s = 1) of iteration according to
w,+ 1, if w, <i1—1
w, =
0 otherwise

Then w, cotncides with s modulo ¢ and (v, +w,, y) is the position n the array,
in which the entry of (s, i, /) can be found.

3. STABILIZATION OF THE ALGORITHM WITH RESPECT
TO UNDERFLOW/OVERFLOW

Applying the algorithm to a portfolio with a large number of contracts, the
initial value f(0) 1s close to zero. This fact may cause an underflow followed by
an abort or irregular running of the procedure.

To discuss this aspect in more detail, let  and Q denote the smallest and
greatest numbers that can be represented on the computer to carry out the
algorithm. Suppose /' (0) < w. Then the algorithm stops with an underflow. On
the other hand, by formally setting f/(0) equal to zero, the sequence f(s) of
iterates degenerates to a sequence that has all its elements equal to zero, which
is not consistent with the property of being a probability mass function.

There are a variety of ways to overcome this difficulty. Three methods of
different efficiency and/or applicability are to be stated as methods 1 to 3.
There f*(s), 0 <s<¢, 1s used to denote the sequence of transformed
terates
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Method 1: Suppose
Srs)=vG6),  0<s<c

for some constant y with @ < yf(0) < Q. Then the transformed iterates f*(s)
can be obtained by formally starting (4) (resp. (2)) with p£(0) in place of
S(0). O

The use of a constant scaling function is the simplest way to stabilize the
algorithm. A more refined method is to combine a constant scaling function
with an exponential scaling function, which has been suggested by PANJER and
WiLLMoT (1986) within the collective risk theory.

Method 2: Suppose
fHs)y=ye7"Pr(s),  O0<s<c

where «, B, y are constants with 0 < < 0.5, y > 0, and
(6) p=

i

b
Y. my,log (p)
=1

To compute f*(s), iteration scheme (4) has to be reformulated as

S*(0) = yel! =%
min{a, s} b

f*(@¢)=- Z Z im,r*(s,ij), l<s<e

s =1 J=1
where, for all iel, jeJ

a

t{i,))y=ze”
r*s L) =t =) =r*s—i L)l 1 <s

and r* (s, i,y) = 0 otherwise. O

Method 2 starts with a larger initial value as well as method | and additionally
reduces the increase of the iterates. For large s, however, things may change
and the transformation may lead to an ealier abort on account of an
underflow. Our third method is one way to overcome this principal difficulty.
It again starts with a larger itial value, reduces the increase of the iterates
for s < E(S), and, additionally, reduces the decrease of the iterates for
s> E(S).

Method 3: Suppose

SE(s)=pe* ™ f(s), O<s<c



94 KARL-HEINZ WALDMANN

where
a=—piu’
b
p=ES)= ) myq,
J=1
and f# as in (6) To compute f/ *(s), the modified iteration scheme reads
S0 =y
1 min (a,5) b
f*(s) = - Z Z Ly r*(s, i ), l<s<c
S =1 =1

where, for all iel, jeJ

zjea’(z(’_“)_'), 1<s<2a—-1
(s, 1,7) = ot
t(s—11,7)e", a<s<c
re(s, ) =t LIS —D=r*(s—ii /), 1<s<c
and r*(s,1,7) = 0 otherwise. O

It 1s not surprising that the last scaling function is superior to the other ones,
since it 1s stimulated by the central hmit theorem and thus best utilizes the
asymptotic behavior of § as m — . Some numerical results to be given in the
next section will illustrate the efficiency. We finally remark that ¢(s, i,j) and
r*(s, i,y) can be implemented in the same way as r (s, ¢, f).

4. NUMERICAL RESULTS AND DISCUSSION

We consider as a starting point the portfolio discussed in GERBER (1979),
p. 53.

9 m,

003 2 3 1 2 —
004 — 1 2 2 1

00s — 2 4 2 2
006 — 2 2 2 1

Since the portfolio consists of 31 policies only, there 1s no need for a
reformulation or stabilization of the algorithm We therefore expand the
portfolio by considering km, pohicies in place of m, (for all iel and jeJ).

Let k = 5000 (corresponding to 155000 policies) to illustrate the numerical
progress resulting from the application of equations (4) and (5) in place of
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equation (2). Then, being interested in computing the aggregate claims
distribution up to the smallest ¢* with P(S > c¢*) < 107*, there is a saving of
more than 4.4+ 10° muluplications and a saving of more than 3.1%10°
additons/subtractions. Moreover, the arrays to be kept at each step of iteration
can be reduced by 140 851 elements

The maximal k implying a stable algorithm has been determined on the basis
of extended numbers (e w=19+10"" Q= 1.1%10?%). There stable
means that the algorithm does not stop with an underflow or overflow and that
both |E'(S)—E”(S)|/E”(S) < 107% and |Var' (S)"” — Var" (§)%|/Var"(5)* <
1073 hold, where E’(S), Var'(S) are determmed with help of the probabulity
mass function of § and E"(S), Var”(S) result from the moments of the
individual claims and the properties of expectation and variance. The maximal
k and the associated number of policies to be obtained in this way for
y = 1049 are displayed m Table 1.

TABLE |
STABILITY OF THE ALGORITHMS UNDER CONSIDERATION (y = 10%%%9)

Method maximal k number of policies
Equations (4) and (5) 7900 244 900
Method 1 15 100 468 100
Method 2 (¢ = 031) 22 100 685100
Mcthod 3 80 100 2483100

Stability of our numerical results thus means stability with respect to the first
two moments. For a more theoretial treatment of the numerical stability of
recursive formulae the reader is referred to PANJIER and WANG (1993).
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ABSTRACT

Mortgage insurance indemnifies a mortage lender against loss on default by the
borrower. The sequence of events leading to a claim under this type of
msurance is relatively complex, depending not only on the credit worthiness of
the borrower but also on a number of external economic factors.

Prominent among these external factors are the loan to valuation ratio of the
insured loan, the disposable income of the borrower, and movements in
property values A broad theoretical mode! of the functional dependencies of
claim frequency and average claim size on these vanables 1s established in
Sections 6 and 7. Section 8 fits these models, extended by other “internal”
variables such as the geographic location of the mortgaged property, to a real
data set.

Section 9 compares the fitted model with the data, and finds an acceptable fit
despite extreme fluctuations 1n the claims experiencc recorded in the data
set.

KEYWORDS

Mortgage 1nsurance, housing price index; loan to valuation ratio; regres-
sion.

| INTRODUCTION

Mortgage insurance indemnifies a mortgage lender against loss on default by
the borrower The typical sequence of events leading to the invocation of the
indemnity is as follows,

The amount of the mortgage is repayable by a sequence of instalments,
perhaps monthly, over a period of some years, up to perhaps 25 or in a few
cases more. If a borrower fails to meet one or more of these instalments,
arrears collection procedures will be instigated. If it appears that the borrower
is experiencing financial difficulttes which threaten his capacity to pay the
scheduled instalments, the lender’s initial response will usually be to attempt
rehabilitation of the borrower, possibly by some form of rescheduling of the
debt repayment.

In many cases this will render the borrower’s difficulties temporary. In other
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less fortunate cases it will become clear that the borrower is quite unable to
repay the debt. The lender will then force sale of the mortgaged property, and
retain that part of the sale proceeds required to discharge the remaining debt.
In the majority of sales, the proceeds will be sufficient for this purpose, but 1f
they are not the mortgage insurance indemnity is invoked to reimburse the
lender for the shortfall.

It is an elementary observation that inflation of property values reduces the
call on mortgage insurance; the proceeds of property sales cover a greater
proportion of the corresponding debts. It is also clear from the above
description that a loan needs to go through several stages (healthy — in arrear
— property under management — sale of property) before a mortgage
insurance claim arises, and each of these stages involves some delay. As will be
discussed in Section 3, each of them also depends on its own specific economic
factors.

For these reasons, the underlying process generating mortgage insurance
claims is complex and dependent on several vanables which are exogenous to
the insurance portfolio. Consequently, mortgage insurance run-off arrays,
whether in terms of numbers or amounts of claims, exhibit very different
characteristics from those of other lines of business. A striking example of this
1S given in Section 2.

These different characteristics necessitate rather different modelling tech-
niques. The purpose of the present paper is to illustrate these techniques by
means of a case study. Since this study is specific to a particular portfolio, 1t
cannot be claimed that the modelling techniques illustrated are generally
applicable. It is hoped, however, that they are fairly generally indicative of the
type of modelling which needs to be attempted.

2. NUMERICAL EXAMPLE: PRELIMINARY DISCUSSION

The following data are given as an indication of the difficulties likely to arise if
a mortgage insurance portfolio is subjected to conventional run-off analysis.
More detail of the data on which this paper is based appears in Appendices E and G.

Year of Number of claims, per 10,000 loan advances, emerging in development year (a)
loan
advance 0 1 2 3 4 5 6 7 8 9 10
1980 30 18 6 0 0 0 6
1981 116 42 31 5 0 0 0
1982 54 27 45 36 13 13 4
1983 25 20 20 23 9 0 3
1984 0 13 24 55 35 S \
1985 1 21 134 68 15 6
1986 0 17 30 a4 2
1987 3 1 0 2
1988 0 0 5
1989 0 0
1990 0

(a) Development year 1s defined as year of emergence of claim minus year of loan advance
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Let the term relative claims frequency denote the number of claims per
10,000 loan advances. If C, denotes the relative claim frequency in develop-
ment year j of year of advance ;, and A, denotes the age-to-age factor:

J+1 7
@.1) A=Y c,k/ Y cp
k=0 k=0
then the following table of age-to-age factors is obtained.
Year of Age-to-Age factor 1n development year ;=
loan
advance ! | 2 3 4 5
1984 286 250 1.38 104 100
1985 712 144 107 103
1986 271 108 105
1987 1.00 150

The great instability in these ago-to-age factors is evident in the sense of
variability within a development year. The basic reason for the instability is
clear from the first table. It 1s the apparent correlation between relative claim
frequency and year of emergence of claim, 1.e. with the number of the diagonal
in the table. Such a data structure suggests application of the separation
method (TAayLOR, 1977, 1986), with the model structure:

2.2) E[C)=r 2.,

The separation method yields the following parameter estimates.

7 f] k }‘Ir
0 000
1 006
2 020
3 022
4 014 1984 366
5 011 1985 167
6 003 1986 195
7 003 1987 350
8 002 1988 196
9 000 1989 48
10 020 1990 29

This produces the following comparison between observed and fitted relative
claim frequencies.
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Year of Observed and fitted (shown in bold type) relative claim frequency in development year
loan

advance [ O 1 2 3 4 5 6 7 8 9 10 Total
1980 30 52118 18( 6 6| 0 9|0 3|0 0|6 6| 60 94
1981 116 79(42 24|31 21| 5 110 S)0 1]0 @ 195 140
1982 54 72| 27 36[45 28|36 38(13 613 1|4 0 193 181
1983 25 21| 20 33| 20 42§23 509 21| 0 1|3 1 101 169
1984 0 I1{13 9{ 24 38| 55 76(35 28(5 50 1 131 159
1985 1 1|21 11|134 69 68 42415 7|6 3 245 133
1986 0 1[17 20} 30 38 4 10/ 2 4 53 73
1987 311 1nf o 91 2 6 6 28
1988 010 31 5 6 s 9
1989 0 0{0 2 0 2
1990 00 0 0

The table indicates that the separation method achieves a reasonable fit No
formal goodness-of-fit statistics are examined, because this model 1s later
discarded. The difficulty 1s that, despite the reasonableness of the fit, the
sequence of escalation index numbers 4, 1s pecuhar by normal standards Until
some explanation of this peculiarity 1s found, 1t 1s impossible to produce any
reliable projection of the sequence into future years.

One of the major objectives of subsequent sections of this paper will
therefore be to obtain such an explanation. The discussion of this aspect of the
modelling problem is taken up in Section 3.

3 THE PROCESS OF CLAIM OCCURRENCE

3.1. Major financial factors

As pointed out 1n Section 1, a loan must traverse several stages of financial
deterioration before producing a mortgage insurance claim. These stages are
subject to different financial influences Of these separate influences, two are of
particular prominence-

(a) the onset of financial difficulties for the borrower, and
(b) 1n the event of forced sale, the extent to which the sale proceeds repay the
outstanding loan.

These two factors are discussed mn the following two sub-sections.

3.2. Onset of borrower’s financial difficulties

Despite 1ts importance in a borrower’s budget, the mortgage payment instal-
ment will nevertheless be to some extent a residual item in that budget. It will
rank after tax and consumer expenditure on necessities (food, clothing, etc ). In
addition, most past loans have been of a type whereby the amount of
instalment varies with variations 1n current day interest rates.
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It appears, therefore, that a reasonable measure of the degree of financial
pressure on mortgage borrowers would be provided by an estimate of the
average residual income after allowance for tax, consumer expenditure and
mortgage mstalment. This residual income, called here the home affordability
index (HAI), was constructed m the following form:

Home affordability index = average weekly gross household income

minus

tax

minus

consumer expenditure

minus

mortgage instalment,

expressed as a percentage of gross income

A baseline distribution of gross household mcome over these categories of
expenditure was derived from a 1988/89 houschold expenditure survey (HES)
conducted by the Austrahan Bureau of Statistics. The items of expenditure for
this base year were adjusted to other years in various ways, indicated by the
following table.

Item of income or expenditure Adjustment from year to year according to
Gross houschold income Avecrage weekly earmings
Tax Avcrage weekly carmngs (a)
Consumer expenditure Consumer price index
Mortgage nstalments Average weekly carnings (b)

Mortgage interest rates (b)

(a) Preliminary investigation indicated httle varauon in the effective average tax rate over the
penod concerned

(b) The average amount of a ncw loan was assumed to change in proportion with average weekly
earnings These loans were assumed rcpayable over penods of 20 years, and the average
mortgage mnstalment calculated on the basis of the most common interest rate charged in the
ycar concerned 1n respect of the loan portfolio under analysis

The component time series used in the construction of the HAI (at year end)
are set out as Appendix F.

The resulting HAI (at mid-year) is as set out in the following table.

The rather irregular progression of this index is seen in Appendix F to derive
from quite reasonable component indexes Each of these components may be
projected over future years, producing a rationally based projection of HAL
This situation may be contrasted with that which arises on application of
“black box™ estimates of past claims ¢scalation, as in Section 2, and 1n which
no guidance as to future escalation 1s available



102 GREG TAYLOR

Year Home affordability index
1979 100 0
1980 104 8
1981 1119
1982 101 7
1983 104 1
1984 128 9
1985 128 3
1986 10t 7
1987 874
1988 90 6
1989 815
1990 812

3.3. Recovery of outstanding loan on forced sale

The HAI of Section 3.2 provides an indication of the likelihood that an
individual borrower will experience financial difficulty in a particular year.
However, such difficulty, while a necessary condition, is not sufficient for the
emergence of a mortgage insurance claim. It 1s quite possible the borrower’s
difficulties are such as to force sale of the property, but that property values
will be sufficient for the entirety of the outstanding loan amount to be
recovered by the lender.

Whether or not this is the case will depend mainly on movements in property
values between the date of advance of the loan and the date of the forced sale.
In Sydney these movements may be estimated by reference to the Housing Price
Index (HPI) computed and published by Residex Pty Limited. The following
table was derived from that index with shight modification.

Housing pricc index

Ygzar Jeunndeed (Sydney) at mud-year
(30/6/79 = 100)
1980 1153
1981 145 1
1982 158 6
1983 158 4
1984 168 2
1985 1772
1986 1824
1987 1915
1988 2458
1989 3635

1990 430 7
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Evidently, the greater the increase in value of properties generally, the less
the chance that forced sale of a particular property will lead to a loss to the
mortgage lender.

3.4. Lags in claims process

While movements in the HAT (Section 3.2) and HPI (Section 3.3) have been
identified as major variables in the frequency of mortgage insurance claims, it
1s to be expected that there will be a lag between cause and effect in each
case.

Information from the company operating the mortgage insurance portfolio
discussed in this paper was that, broadly:

(a) the average period between mortgage instalments falling in arrears and the
property being taken under management (if indeed this latter occurred)
was about 6 months; and

(b) the average period between taking a property under management and
effecting its sale was also about 6 months.

On the basis of this information, 1t might be reasonable to expect lags of.

(a) 12 months between movements in the HAI and the consequent movement
in claim frequency, and

(b) 6 months between a movement n the HPI and its consequent movement
in claim frequency.

Thus, 1t has been assumed in subsequent modelling that a claim frequency
experienced during year ¢ 1s dependent upon:

(a) the value of the home affordability index at the middle of year r—1;
and
(b) the value of the HPI at the end of year 7— 1.

Examination of alternatives suggested that this choice of lags provided about
the best fit of model to data. Further detail on the incorporation of the HAI
and HPI in the model 1s given in Section 6.2.

4. DATA

4.1. Variables affecting claims experience

Section 3 idenufied the HAI and HPI as likely to be major explanatory
variables of claim frequency Other variables in this category include:

(a) the proportion of the original property value advanced by way of
mortgage, 1.e. the loan to valuation ratio (LVR);

(b) the geographic area of the mortgaged property (described in more detail in
Section 4.2);

(c) the agreed term of the mortgage loan;
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(d) the type of property mortgaged (e.g. new house, old umt, land only,
etc.);

(e) the financial type of the loan (e.g. reducible loan with variable interest,
interest only instalments with fixed interest rate, etc)

In addition, it is hkely that claims experience will vary with development year,
even in the absence of movements in the HAI and HPI This would reflect a
process of natural selection operating on each year’s mortgage advances,
whereby the poorest risks succumb to financial pressures relatively early, and
the remainder survive the mortgage term.

It is clear that the major variable affecting claim size will be the size of the
original loan. In addition, the explanatory variables (a) to (e) of claim
frequency potentially affect claim size also

4.2, Form of data

As the tables of Section 2 indicate, claims experience relates to the period 1984
to 1990 In fact, the 1984 experience covers only 7 months of that year.

Data supplied in respect of these claims consisted of a claim by claim
tabulation, recording 1n each case the relevant variables identified in Sec-
tion 4.1:

(a) year of advance;

(b) amount of loan;

(c) value of property;

(d) geographic area of property;
(e) term of loan;

(f) type of property;

(g) financial type of loan;

(h) year of emergence of claim.

The tabulated geographic area was the postal code of the property. These
codes were grouped into 14 broad urban and rural regions within the states of
New South Wales and Australian Capital Territory, as follows:

Metropolitan regions 1 to 5; Canberra (6); Newcastle (7); Wollon-
gong (8), Central Coast (9); North Coast (10), South Coast (11); Blue
Mountains (12), Southern Highlands (13), Other (14).

The exposure base for the study consisted of all loans advanced over the
years 1980 to 1990 inclusive Thesc were recorded, loan by loan, according to
the vanables (a) to (g) listed above as potentially affecting claim frequency.

As the data described above constitute a unit record file, 1t 1s not practical to
present the full detail here. It 1s not even practical to tabulate cells of data since
there are 1499 exposure cells. However, Appendix G gives a tabulatton of
exposures and claims according to year of advance and development year Itis
to be stressed that, while such a tabulation 1s interesting, 1t omits a great deal
of the raw data.
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5. EXPLORATORY DATA ANALYSIS

5.1. Claim frequency

105

Section 4.1 1dentified a number of characteristics of individual loans (such as
LVR, term of loan, etc.) which might have a bearing on the likebhood of those
loans leading to claims These characteristics will be referred to here as risk

variables.

Initially, data concerning claim numbers were analysed according to the risk
variables listed i Section 4.1. This provided initial guidance concerning the
types of loans which were subject to high or low risk of default.

The results of this analysis are summarized 1n the following sequence of bar

charts.
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These charts raise the following possibilities:

(a) claim frequency peaks in the second, third and fourth years after the year
of advance;

(b) claim frequency increases dramatically with increasing loan to valuation
ratio (LVR);

(c) claim frequency increases significantly with increasing term of loan;

(d) certain geographic areas experience conspicuously higher or lower claim
frequencies than average;

(e) defaults appear to be confined totally to reducible loans carrying a
variable interest rate;

(f) clamm frequency appears highest in relation to land, higher in relation to
new properties than old, and lowest in relation to improvement loans

As stated, these are raised as possibilities only, rather than conclusions.
Without further analysis, 1t would be impossible to determine whether all of
these vanables affect the default risk directly, or some of them are merely
correlated with the genuinely operative risk variables.

For example, it might be the case that term of loan has no bearing on default
risk, but appears to be relevant because LVR does have such a bearing and
long terms are associated with high LVRs.

The question of possible correlation between risk variables 1s remarked upon
further 1n Section 8.1.

5.2. Claim size

Initially, data concerning claim sizes were analysed according to the risk
varibles histed 1n Section 4.1. This provided initial guidance concerning the

Claim size to loan amount ratio

a7

Ratio

0 1 2 3 4 5 6 7 8 9 10
Development year
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types of loans which led to larger or smaller losses when default occurred. The
detailed results of this analysis are set out in Appendix D. The results indicate
little variation 1n claim size with any of the risk varnables except development
year. The variation of claim size with development year is graphed in the
preceding chart.

The chart suggests that the greater the time elapsed between advance of loan
and default, the greater the claim size to loan amount ratio, i.e. the greater the
loss on default expressed as a proportion of the original advance. This result is
confirmed by formal regression analysis, as described 1n Section 8.2.

Since growth in property value generally increases with development year,
this chart is consistent with the predicted form (7.2) of model.

6. FORM OF CLAIM FREQUENCY MODEL

6.1. General

In the following the basic units of tabulation of claims data will be referred to
as cells. A cell will consist of an 1tem of data associated with a particular
combination of year of advance, development year, and any sub-set of the risk
variables identified in Section 4.1.

It 1s reasonable that the total effect of risk variables on claim frequency
should be multiplicative, i.e

(6.1) expected relative claim frequency = function (development year, HAI,
HPI)
X

function (nisk variables, e.g. LVR,
geographic area, etc.).

The form of the first of the two functions on the right will be discussed 1n
Section 6.2 As far as the second function is concerned, a reasonable first
approximation would consist of the product of a factor in respect of each of
the risk variables present. Equation (6.1) then becomes:

(6.2) expected relative claim frequency = function (development year, HAI,
HPI)

X

factor dependent on LVR
X

factor dependent on geographic area
X

etc.

Interactions between the factors making up this product could be added if
necessary.
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Expected relative claim frequency (per loan advanced) 1s adjusted by a factor
of 7/12 in all cells whose experience relates to 1984 This allows for the fact that
the data include only 7 months® claims (Section 4 2).

Some of the risk vanables identified 1in Section 4.1, e.g. financial type of
loan, are categorical by nature. Others, e.g. LVR, are continuous by nature Tt
was convenient for exploratory analysis of the data to convert all variables (1 €.
risk variables, not HAI and HPI) to categorical form Details appear in
Section 5.1. The categorical form of data was retained in the final modelling,
described 1n Section 8.1

6.2. Dependence on development year and economic variables

Preliminary analysis (Section 5.1) indicated that relative claim frequency,
expressed as a function of development year, was generally consistent with the
shape of a Hoerl curve. Appendix B provides a theoretical underpinning of this
observation. Consequently, the model adopted for relative claim frequency in
the absence of any other effects took the form:

(6.3) const x(j+ %) exp(—q),

where J represents development year.

The modification of (6.3) by HAI and HPI raises some questions Consider
HALI first.

As noted mn Section 3.2, the HAI may be regarded as a measure of the
average borrower’s residual income after payment of mortgage instalment. An
individual borrower will experience difficulties in payment of mortgage instal-
ment 1f this residual income turns negative. The frequency with which this
occurs in the event of movements of HAI will depend on the distribution of
individual residual incomes, rather than just the average of this distribution
represented by HAI. There 1s virtually no information available in respect of
this distribution

There 1s, however, some evidence that individual gross incomes are subject to
a Paretian distribution (M ANDELBROT, 1960).

If a similar assumption 1s made about residual incomes after payment of
mortgage instalment (1.e HAI), then Appendix A demonstrates that, to first
approximation, logged claim frequency will contain a term linearin R(: +/)/R (1),
where ¢ denotes year of advance, j development year, and R(¢) the HAI
experienced 1n year 1 Allowance for the one year lag in the effect of HAI, as
discussed in Section 3 4, modifies this term to R(i+;—1)/R({:) (1 in the case
J=0).

Because of the approximations leading to this result in Appendix A, an
alternative linear term involving

log [R(1+)— 1)/R ()] for J=1;
or

(6.4) 0, for 7=0,
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was tried. This latter form produced a slightly better fitting regression than the
unlogged ratio, and has been adopted henceforth. In fact, both alternatives
produced quite similar results

Appendix B, particularly (B.10), demonstrates that, under seemingly reason-
able assumptions about the accumulation of the amount of mortgage debt on
default, and about property values on resale, claim frequency should also
contain the following factor involving LVR and HPI:

L'[HQ+j))HQ)] ™, v const. > 0,

where L denotes LVR and H(¢) the HPI experienced 1n year (. In order to
accommodate the lag in the effect of HPI discussed in Section 3 4, this last
expression should be modified to the following.

L'[H(i+;-"2)/HW™, =1,
or
(6.5) L, =0,

where H(t— '2) 1s interpreted a the HPI experienced at the end of year r— 1.

Note that (6.5) indicates that claim frequency should include the same power
of both LVR and HPI. However, this result was derived in Appendix B on the
assumption that LVR affected the proportion of principal outstanding at
default, but not the risk of default itself. In practice, 1t 1s likely that LVR is
correlated with the ability of the borrower to meet financial commitments, n
which case 1t intrinsically affects the risk of default For this reason, (6.5)
should be generalized to the following:

LAH(i+)=%)HW]™Y, = 1;

or
(6.6) L, j=0.
Combination of (6.2) to (6.4) and (6.6) yields the following model:

(6.7) expected relative claim frequency in development year ; of year advance :
= const. X (j+ 2)* exp (—¢))
X L*[R(i+)= D/RWI™? [HG+j= B)H@]™
x factor dependent on geographic area
x etc. fory=> 1,
and with the two square bracketed terms removed 1n the case y = 0.
Let u(1,7) denote the expected relative claim frequency (6.7), and E(1) the
number of loans advanced n year 1. Let N(i, j) denote the number of claims

emerging 1n development year y of year of advance : Then the claim frequency
model adopted was:

(6.8) N(t,j) ~ Poisson [E(t) u(1, )]
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It should be noted that the precise form of dependency of relative claim
frequency on LVR and HPI 1n (6.7) relies upon distributional assumptions
made in Appendix B. If these assumptions were varied, the form of (6.7) would
change. Consequently, an alternative to (6.7) 1s considered in Section 8.1, in
which the terms involving LVR and HAI are replaced by:

exp (AL) exp[—v H(i+;— R)/H()].

This alternative model turns out to be inferior to (6.7).

7. FORM OF AVERAGE CLAIM SIZE MODEL

Appendix C shows that, on the same seemingly reasonable assumptions as in
Appendix B (referred to in relation to the development of (6.5)), the average
claim size 1n respect of loans advanced in year i should progress over
development years according to the following parametric form:

(7.DH E[Q(i,))] = const. x H(i+j)/H (i),
where

Q(1,j) = the claim ratio (i.e. ratio of claim size to original loan size) experi-
enced 1n development year ; of year of advance i;

H(:) = HPI experienced during year ¢.

One may note the interesting effect whereby average claim size increases with
development year even though outstanding principal 1s decreasing. Clearly this
result derives from the assumptions made in Appendices B and C. Different
assumptions would lead to a different parametric form in (7.1). However, an
examination of the development of Appendix C indicates that the property of
increasing E[Q (1,)} with H(i+y) derives only from an assumption that the
vanable y has a decreasing failure rate, where y = o/f and

o = a random variable representing the factor by which outstanding principal
has been enlarged after default by arrears of principal and interest and any
other costs,

f = a random vanable representing the factor by which the property value has
been reduced by the forced nature of the sale and the associated
expenses.

While there is no particular evidence concerning the failure rate of y, it 1s
interesting to note that the seemingly reasonable assumption of a Pareto
distribution leads to the result (7.1) which is found in Section 8.2 to accord
with experience, at least to the extent that the claim ratio trends upward with
increasing property factor. However, because the Pareto assumption may be a
little too specific, it is reasonable to widen the model (7.1) to the following:

(7.2) Q(,y)=a+b H(1+y)/H(i)+error term,

where approximately
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(7.3) error term ~ N(0, 0%).

The appropriateness of this error term is discussed further in Section 8.2.

8. FITTING THE MODEL

8.1. Claim frequency
By (6.7) and (6.8),

8.1 log E[N(1,j)] =log E(i)+const.+a log (y+ 2)—¢

+ Alog L—plog [R(+j—1)/R()]

~vlog [H(:+)— Y2)/H (1))

+ term dependent on geographic area

+etc,j=>1,
with the two square bracketed terms on the right omitted for the case y = Q.
This linear form, subject to the error structure (6.8), was fitted to the data
using GLIM (Generalised Linear Interactive Modelling) (Royal Statistical
Society, 1987). Various combinations of the potential explanatory variables

listed in Section 4.1 were tried, and the main results are reported in the next
table but one.

Geographic area

Orniginal coding (a) First aggregation Second aggregation
1 AREA |
4 } Area |1

3 Area 3

S Area 4

6 Arca 5

2 Area 2 AREA 2
7 AREA 3
10-12 } Area 6

i } Area 7

13 Area 9

8 Area 8 AREA 4

(a) As set out in Section 42
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The results of the tral regressions are displayed in the following table.

Vanable

Coefficient 1n vanable at left (a) in Regression No

1

2 3 4 5 6

7

—9 505
- 1093
4908
1 100

Regression constant

Development year

Log (development year+ '4)

LVR (d)

Log (LVR)

Log (home affordability factor) (b)
Property growth factor (c)

Log (property growth factor)

-3039

-1218
- 1143 — 1218

- 3070 — 2036

—10 50 -5776
—-1119

5076

—9 848
-1097
4 906
1100

-1290
~ 109
4903
1 099

5066
1144

4558
0994
893

=3017 - 3015
-4636

—5943
~ 08536
4 505

8413
~-2158

—5658

Indicator vanables (f)

AREA 2
AREA 3
AREA 4
Area 2
Area 3
Area 4
Area S
Area 6
Area 7
Arca 8
Area 9

60 < Term < 120 months
120 < Term < 180 months
180 < Term < 240 months
240 < Term

052
087
-524

052
087
- 524

053
087
—525

05131
08772
—7254*
060
016*
—035*
—026*
1 05
115
—533*
081

374
295*
200*

274 306*

Dwelling

mprovements & increases 133

All other than improvements,

Dwelling type missing

064
705*

nereases & land only

Deviance (e)

854 549 632 611 610 593 527

(a)

(b)
(©
(d)

(e)
0]

Dependent variable in regresston log (claim frequency), as in (8 1)

An asterisk attached to a cocfficient 1n the table indicates that this coefficient differs from zero
by less than 2 standard errors

The home affordability factor 1s the ratio of values of HAI appcaring in (8 1)

The property growth factor 1s the ratio of values of HP] appearing in (8 1)

The vanable referred to here 15 1n fact

I0XLVR~-35

The vanable log (LVR) uses the genuine LVR, though grouped in ranges of 10 percentage
points width Each such range 1s represented by 1ts mid-value

Deviance 15 a measure of goodness of fit, related to the log likelthood ratio of the model A
lower deviance mmplies a better fit

The variables Area £ and AREA mi have already been described as 0-1 indicator variables The
variables listed subsequently 1n the table are also of the 0-1 indicator type, taking the vatue 1 f
the loan 15 subject to the risk vanable displayed, 0 otherwise
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By (6.8) and (8.1), the model 1s multivariate Poisson with multiplicative
structure of the mean. GLIM fits this by maximum hkelihood. Note that the
logarithmic form of (8.1) is no more than a convenience of expression. It could
equally have been written in 1ts unlogged (multiplicative) form. In particular,
{8.1) does not imply that the observations N(i, y) (many of which are zero) are
to logged

For the interpretation of this table, special reference should be made to
geographic area of the mortgaged property. On the strength of the chart of
Section 5.1, a number of areas, seemingly similar in claim frequency and/or
physically contiguous, were aggregated. The areas at this imitial level of
aggregation were denoted by “ Area k. These were 0-1 variables, taking the
value 1 if the property lay in the relevant area, 0 otherwise.

Regression | in the table indicated that further aggregation was possible. The
new variables resulting from this aggregation were denoted by “AREA m”,
and were 0-1 variables, each of which consisted of the sum of the relevant
variables Area k. The key to the two aggregations 1s as shown 1n the previous
table but one

[t may be noted that the trial regressions included alternative versions of
(8.1) in which the terms dependent on LVR and HPI were replaced by their
respective unlogged forms, as discussed at the end of Section 6.2. These
alternatives were, however, inferior to (8.1) in terms of fit.

Regression 7 provided the best fit of model to data, and was adopted as the
final model. This final model, expressed in non-symbolic form, was as
follows:

CLAIM FREQUENCY = 2624 (1+ ¥2)* %% exp (— 08536 1)
(per 1000 advances) %
IN DEVELOPMENT YEAR ¢ pal

(LVR)* 413

[(HOME AFFORDABILITY FACTOR)? '

x

82
(82) (PROPERTY GROWTH FACTOR)® %)
X
1 1f AREA 1
1670 1f AREA 2
2404 if AREA 3
00007 if AREA 4
where

HOME AFFORDABILITY FACTOR and PROPERTY GROWTH FAC-
TOR are the ratios involving H and R respectively 1n (8.1).
The formula in the box indicates that claim frequency .

(a) moves sharply upward with increasing LVR,
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(b) moves sharply downward as property values or disposable incomes after
mortgage nstalments increase;

(c) varies significantly by geographic area, exhibiting a particularly low value
in the Wollongong district.

Because of correlations of the type discussed at the end of Section 5.1, not all
of the risk vanables exhibited a significant effect on claim frequency.

8.2. Average claim size

The form of the model was suggested in Section 7 as the following.
(7.2) QG ;) =a+b H(i+;)/H(t)+error term,

where approximately

(7.3) error term ~ N (0, 6%).

This model appears unnatural to the extent that the normal error term would
permit claim sizes to be negative. This would be avoided by the inclusion of an
error term which was by nature positive. An example would be a lognormal
error term, as would be incorporated in an alternative mode! of the form-

(8.3) log Q(1,j) = log a+blog [H(i+)/H(i)]+error term,
where
(8.4) error term ~ N (0, ¢?).

Equivalently,

(8.5) Q,j) = a[H(@i+j)/H ()]’ x error term,
where
(8.6) error term = lognormal (0, ¢%).

Note that both forms (7.2) and (8.5) accommodate the theoretical form

7.1

Ordinary regression produced the following two alternative models.

Parameter Unlogged model (a) Logged model (b)
a 01622 0 1555
b 0 0494 0 3083
a? 00257 0 8676

(a) This s the model described by (7 2) and (7 3) Of the 425 observed claim ratios, 2 large values
have been excluded as outlicrs
(b) This 1s the model described by (8 3) and (8 4)
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In fact, neither of the two models considered in the preceding table produced
an 1deal fit to the data. Their respective residuals are tabulated in the following
table.

Values of standardized Relative frequency of standardized residual in

residuals

Unlogged model Logged model

% %

less than -3 0 1
-3 to -2 0 3
-2 to -1 12 8
-1 0 47 32
0 to 1 24 44

1 to 2 10 12

2 to 3 5 0
more than 3 1 0
Total 100 100

These two tabulations of standardized residuals are very much reflections of
each other about the origin. While the unlogged model 1s somewhat skewed to
the right, the logged model 1s about equally skewed to the left. This suggests
that the correct model lies somewhere between normal and log normal. Such a
model might be of the form (7.2), but with the error term strictly positive and
skewed to the right but less so than log normal.

Note that the fitted values of claim ratios, according to the two alternative
models, are:

8.7)
EQ(i,j)=a+bH(+j)/H () for unlogged model;

(8.8) a[H (i+))/H()]” exp (Y202 for logged model.

In the event, (8.8) produced a rather heavy upward bias, about 18 % 1n total,
in fitted values of claim amount relative to observed amounts. The form of this
comparison was exactly as reported in Section 9.2, but with the unlogged
model used there replaced by the logged.

This result appears to indicate that the exponential scaling factor in (8.8) 1s
not robust agamnst the non-normality 1n the error term of (8.4), as was
demonstrated in the above table of standanzed residuals.

On the other hand, Section 9.2 indicates that the unlogged model provides
an adequate fit, and accordingly 1t was adopted.

9 MODEL VERIFICATION

9.1. Claim frequency

The model adopted in Section 8.1 has been used to compute standardized
residuals according to several variables. The resulting residual plots appear
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below. Note that each residual relates to the aggregation of all experience at
the value of the independent variable displayed. For exampie, the first residual
in the first plot may be obtamned from the second table of the present
sub-section as:

(8—6)/y/6 =08

A plot of the residuals of all cells (taken over all explanatory variables)
would not be helpful since the great majonty of cells contain very small
expectations.
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These plots appear generally satisfactory in terms of magnitude, with the
exception of year of default 1984. This one anomaly, in the relatively distant
past, involves relatively few claims (see first table below) and is insufficient to
invalidate the model.

The plot against year of advance contains a downward trend. If included in
the model, year of advance appears as a highly significant explanatory
variable; other things equal, claim frequency declines by 29 % as between each
year of advance and the next. Naturally, the effects of the other explanatory
variables, particularly those which are time dependent, change.

While this model provides a superior fit to the data, the abstract nature of
the year of advance effect 1s problematic It might be interpreted as a factor
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representing improvement in underwnting. However, in this case, the total
improvement over the decade of underwriting would be almost 97 %, which
might strain credulity.

It seems more likely that year of advance is acting as a proxy for some other
umdentified explanatory variable(s). When this variable is omitted from the
model, 1ts effect is largely captured by the other explanatory variables.

Moreover, an examination of the fitted numbers of claims (using the model
which omuts year of advance effect) against the data suggests that the apparent
trend 1n the residuals may not be particularly meaningful (see second table
below)

The following table displays the actual and model numbers of claims
underlying the above plot of standardized residuals by experience year.

Number of claims emerging

Period
Actual Model
1984 (7 months) 28 13
1985 32 24
1986 53 54
1987 168 174
1988 103 115
1989 21 22
1990 20 24
Total 425 425

The table illustrates the close agreement between actual and model numbers
of claims for all experience years except 1984, despite the extreme fluctuations
in numbers of claims.

More detailed information 1s given by the following table which tabulates
experience and model simultaneously by year of advance and development
year, and from which the above table may be derived.

Year of Observed and fitted (shown n bold type) number of claims in development year

loan

advance 0 1 2 3 4 5 6 7 8 9 10 Total
1980 3 183 15f1 12|10 L.2|0 03(0 00(1 00} 8 6
1981 13 45/ 8 48[6 44|1 49(0 140 0.1}0 0.0 28 20
1982 7 49| 6 76|10 87/8 11.4;3 35|3 03]1 0.1 38 37
1983 S5 1.6] 7 537 888 14713 52{0 05(1 0.2 31 36
1984 0 017 43| 13 155(30 37.7(19 168(3 18[00 08 7 7
1985 1 0316 162|104 86.6|53 56.7\12 7.6|5 3.8 191 171
1986 0 024 17.1 24 24.6| 3 48| 2 3.1 43 50
1987 3631 62 0 27(2 25 6 12
1988 0 04(0 27 8 5.6 8§ 9
1989 002|]0 71 ()
1990 0 03 0 0
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The following table presents these results in the same format as in Section 2,
enabling comparison of the present set of resuits with those from the
separation method

Year of Observed and fitted (shown in bold type) relative claim frequency in development year

loan

advance 0 1 2 3 4 5 6 7 8 9 10 Total
1980 30 1818 9(6 7/ 0 7{0 2|0 0|6 0|60 43
1981 116 41 (42 25|31 235 26/ 0 7(0 1|0 O 195 122
1982 54 38| 27 34 (45 39|36 S1)13 16|13 1|4 0 193 179
1983 25 8] 20 16] 20 26123 43( 9 15|/0 1| 3 1 101 109
1984 00|13 8|24 28| 55 6935 31| 5 3|0 1 131 140
1985 1 0 (21 21134 111 | 68 73 (15 10| 6 5 245 220
1986 00|17 21| 30 30| 4 6|2 4 53 62
1987 30|11 6] 0 3 2 3 6 12
1988 00|0 2 5§ 3 5 5
1989 000 6 0 6
1990 00 0 0

9.2. Average claim ratio

For each claim 1n the experience, a fitted value of its claim ratio was calculated
according to (8 7) using the values of @ and b tabulated in Section 8.2. Each of
these claim ratios was multiplied by the associated amount of its loan, to
produce a fitted claim size.

Observed and fitted claim sizes were then summarized 1n 2-way tabulations
by year of advance and development year. These tabulations are displayed in
Appendix E, and reduced to their corresponding 1-way tabulations below.

Amount of claims Amount of claims

Year of Ratio Development Ratio
advance Observed Fitted Observed year Observed Fitted Observed

fitted fitted

$ 000 $ 000 Y 5000 $ 000 %

1980 51 70 73 0 32 46 70
1981 294 312 94 | 425 471 90
1982 398 374 106 2 1750 1844 95
1983 354 323 110 3 1051 1133 93
1984 632 642 98 4 674 642 105
1985 1931 2063 94 5 321 30! 107
1986 425 472 90 6 47 38 124
1987 46 69 67 7 31 35 88
1988 259 222 17 8 56 28 199
1989 0 0 9 0 0
1990 0 0 10 1 7 14
Total 4388 4545 97 4388 4545 97
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It should be particularly noted that the fitted amounts of claims, according
to the above description are conditional upon the observed numbers of claims.
This 1s a proper approach to examunation of the fit of the average claim size
model. Agreement between model and data appears satisfactory.

It is useful to carry out some check that the common dependence of the
claim frequency and claim size models on the HPI does not lead to unwanted
correlation between the two. That this does not in fact occur is indicated by the
following scatter plot of the observed fitted ratios of average claim size against
a similar ratio for number of claims.

Each point represents a particular combination of year of advance and
development year. To give a simple indication of the significance of the plotted
points, they are divided into ““large cells” and ““small cells””. The former are
those cells containing a fitted number of claims in excess of 5; otherwise the
cell 1s “small”.
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9.3. Loan sizes associated with claims

While Section 9.2 models the claim size which will arise from a particular loan
size if a claim occurs, it provides no indication of which loan sizes are likely to
lead to claims

There 1s no particular reason to believe that the sizes of loans associated with
claims will be representative of the entire portfolio of loans advanced. Indeed,
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the table below indicates that, on average, it 1s the larger loans that lead to
claims.

Care is needed here, however, as the model of claim frequency 1n Section 9 1
conditions on LVR and other risk factors, for which average loan sizes may
differ from the portfolio average, and so without further analysis 1t 1s not clear
to what extent the inclusion of these factors in the model will effectively select
average loan sizes above the portfolio average. This question is also examined
in the following table.

As a percentage of portfolio average loan size
Year of advance average loan size weighted
average loan size associated
with past claims (a) by model numbers of
future claims (b)
% Y%

1980 135 (8) 96
1981 144 (28) 102
1982 119 (38) 101
1983 116 (31) 102
1984 85 (72) 102
1985 95 (191) 102
1986 144 (43) 103
1987 97 (6) 100
1988 241 (8) 98
Average 109 (c) (425) 102 (@)

(a) The numbers of claims on which the ratios are based are shown 1n parenthesis For each yedr of
advance, the average size of loans associated with recorded claims has been calculated and
related to the portfolio average (for that year of advance)

(b) For each combination of year of advance and risk variables, the average loan advanced and
model clarm frequency (according to the model of Section 8 1) are calculated The average loan
advanced, weighted by model claim frequency, 1s then calculated for each year of advance

(c) Average of the entnies 1n the column, weighted by numbers of claims shown in parenthesis

(d) Unweighted average of the entries in the column

The table suggests that the average loan size associated with claims of a
particular cell for a particular year of advance is about 7% higher than the
overall average loan size for the cell.

Thus, a forecast of future claim amount for a particular cell of development
year j of year of advance : would be computed as-

1.07 x average loan size in year of advance «

xN (@, j) 0, J),
where N(1, /), O, ) are estimates of N(s,j) and Q () from Sections 9.1
and 9.2.

An alternative approach to the above would be to include loan size as an
explanatory variable in the claim frequency model of Section 8 1. This might be
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awkward in practice, however, because 1t would increase very considerably the
number of data cells entering into the regressions of Section 8.1.

10. CONCLUSION

Section 8 fits models to the claim frequency and claim ratio in the mortgage
insurance portfolio examined. Section 9 verifies that these models provide a
reasonable fit to the data.

The models therefore can be, and indeed have been, used to estimate the
habihty for claims still to emerge in respect of past years of loan advance. In
order to carry out this estimation, one needs to project future values of the
HAT and HPI. This in turn requires projection of incomes, tax rates, mortgage
interest rates and growth in property values Projections such as these are,
problems of substance in their own right, but are beyond the scope of the
present paper
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APPENDIX A
DEPENDENCE OF CLAIM FREQUENCY
ON HOME AFFORDABILITY INDEX

Let X denote the random varnable representing the proportion of an individ-
ual’s income required for tax, consumption and mortgage instalment. Assume
this variable to be Pareto distributed, i.e. with p.d.f.-

(A.) S(x)=kx~*"" k const.

The borrower will experience financial difficulties if X > 1, which occurs
with probability:

(A.2) PIX 2 1]=kx"%|, -

Now, suppose that X shifts by a factor of ¢ to X’ = ¢X. Then the probability
(A.2) shufts to

(A.3) PIX" 2 1]= P[X > 1/c] = kx" %ol cm e

Comparison of (A.2) and (A.3) shows that the probability (A.2) has shifted
by a factor of ¢®. Now note that the scale shift of X to c¢X must shift the mean
of X by a factor of c:

(A4) E[X’'] = cE[X]
Let



122 GREG TAYLOR

and note that

(A.5) E{Y] o HAI
Then the factor by which HAT changes when X changes to X' 1s:
(A.6) R={1-E[X'T}{1 - E[X]}
=({-ew/(1-mw,
where
u= E[X].

Inversion of (A.6) yiclds:

(A7) c=[1-R(I-plip.
Thus, the shift in HAI by a factor of R causes the frequency with which
borrowers experience difficulties to shift by a factor of:

(A8) ¢ ={{I-R(I-mlm.

Now, it is convenient to analyse log (claim frequency), which will depend on
log (frequency of borrower’s difficulties), and (A.8) shows that this latter will
depend on an additive term of -

log ¢* = a log {[1 — R(1 — w)]/u}
~ —oR (1 —pu)+const.,

for small values of (1 —y) R.

Thus, to first approximation, the model of expected log (claim frequency)
should include a linear term 1in R, the ratio by which HAI has changed since
advance of the loan(s) in question.

APPENDIX B

DEPENDENCE OF CLAIM FREQUENCY
ON HOUSING PRICE INDEX, LYR AND DEVELOPMENT YEAR

Consider a loan taken at time 1 =0 Let V(1) be the value of the associated
property at time t, and P(r) the amount of principal then outstanding. Then

(B.1) V()= V() [H()/H(©O)],
(B.2) P(t)y=PO)S(1),
where

H(t) = HPI at time ¢,
f(t) = proportion of principal still to be repaid at time ¢
By (B.1) and (B.2),

(B.3) POV ()= LI (1) HO)H (),



MODELLING MORTGAGE INSURANCE CLAIMS EXPERIENCE 123

where
(B.4) L = P(0)/V(0) = loan to valuation ratio.

Suppose that the borrower has encountered financial difficulties at some time
s < t. At time ¢ sale of the property 1s forced. At that point, the debt n respect
of the loan will be P(¢) a(t), where

a(t) = a random variable representing the factor by which outstanding princi-
pal has been enlarged by arrears of principal and interest and any other
costs.

Similarly, the net proceeds of the sale of the property will be V(¢) f(¢),
where

(1) = a random variable representing the factor by which the property value
has been reduced by the forced nature of the sale and the associated
expenses

Then the ratio of outstanding debt (o sale proceeds 1s.

(B.5) X() =) P(O)V(),

where

(B.6) y(8) = a (/B (1)
By (B.3) and (B.5),

(B.7) X(0)=LIHOHOI f()y().
A claim will occur if X (1) > 1,1¢ if

(B.8) y(1) > [H )/ H O] L ()]
Now suppose that y(z) 1s Pareto distributed with d f.

(B.9) F)=1-@Gla)™", y>a,

assumed independent of t. Then, by (B 8), the probabulity of occurrence of a
claim is: '

(B 10) PIX(0)> 1]={af(1) LIH()/H©O]™'}".

Thus, expected clann frequency varies as a power of L[H (¢)/H (0)]'. Note
also that claim frequency for policies of a particular term »n varies over
development years 1 by a factor of

(B.11) /O « [g=),

which has the shape illustrated by the solid line in the following diagram

However, note the above assumption that the distribution of the factor y(¢)
1s independent of . While perhaps largely true, it will break down as 7 — 0 as the
screening procedures of the lender force claim frequency toward zero. Hence,
the curve (B.11) of frequency over development year will be modified for small
t 1n the manner indicated by the broken line in the diagram.



124 GREG TAYLOR

Multiplicative contribution to claim frequency

Development year

When allowance s made for the variety of original terms n, the dependence
of claim frequency on development year is seen to be represented by a weighted
average of curves of the type illustrated in the diagram.

APPENDIX C

DEPENDENCE OF AVERAGE CLAIM SIZE
ON HOUSING PRICE INDEX

As noted just prior to (B.8), the financial difficulties of a borrower will lead to
a claim if X (r), as defined there, exceeds 1. In fact, by the same argument as
led to that result, the amount of the claim will be

(cn Aty =oa(t) P()—-B() V(1)
=B V() [X()-1].
Note that f(¢) and y(¢) (and hence X(r)) will not be independent, even if
a(t) and B(r) are.. For general random vanables Y and Z, let 4, and u, denote

their means, vy and vy their coefficients of vanation, and py, thetr correlation.
It is straightforward to demonstrate that:

(C2 E[YZ} = uyp,(1+py vy0y).
By (C.1) and (C.2),
(C€3) ELAD] = V(1) ELX (1)~ 114 (1 + ppxvpv),

where E[Y], denotes E[Y|Y > 0].
Now, by (B.5)

(C4) E(X(t) =11+ = E[y(1)=V(O)/P()]+ P()/V(1).
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By the Pareto assumption (B.9),

(C.5) Ely()= V)P = [V(O/PYv/(v—1),
whence (C.3) and (C.4) yield:
(C.6) E[AD] = V(1) (1 +ppyvgoy) vi(v—1)

a V(0) H(1)/H(©)  [by (BI)]
if g, vg, vy and pgy are the assumed independent of 1.

Thus, the expected average claim size is directly proportional to property
values, all other things equal. This has the interesting effect of causing average
claim size in respect of a group of identical policies usually to increase with
development year even though outstanding principal 1s decreasing.

APPENDIX D
EXPLORATORY ANALYSIS OF CLAIM SIZE

D1. Variation of claim ratio with loan to valuation ratio

Claim to loan ratio 95% confidence limits (a)
Loan to Number -
valuation Sample
of claims Sample
ratio mean standard Lower Upper
deviation
up to 50% | 558%
50 to 60% 1 56 9%
60 to 70% 8 233% 137% 11 8% 348%
70 to 80% 36 239% 19 2% 174% 304%
80 to 90 % 189 229% 184% 203% 256%
over 90% 191 23.5% 15 6% 21 3% 257%

(a) These are the symetric -distribution confidence imits Where the sample size 1s less than 2, the
confidence limits do not exist

D2. Variation of claim ratio with term

Claim to loan ratio 95% confidence limits (a)
Term (:li l::?;:);rs Sample Sample
standard Lower Upper
mean
deviation
months
60 to 119 3 364% 14 1% 13% 71 4%
120 10 179 16 34 8% 29 8% 18 9% 50 7%
180 to 239 55 284% 202% 229% 339%
240 & more 352 220% 156% 204% 237%

(a) See Appendix DI
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D3. Variation of claim ratio with area

Claim to loan ratio 95% confidence limits (a)
Number
Area of claims Sample Sam?le
mean standard Lower Upper
dewviation
MI, M4 29 16.5% 11.7% 12.0% 209%
M2 63 212% 150% 17 5% 250%
M3 77 16 5% 126% 137% 194%
M5 5 258% 14 8% 75% 44 1%
Canberra 4 23 1% 130% 24% 43 8%
Coastal 100 24 6% 182% 21 0% 28 2%
Newcastle 32 317% 172% 256% 379%
Wollongong 0
Other 116 27.5% 19 4% 239% 31 1%

(a) See Appendix DI

D4. Commentary

All pairs of confidence limits in Appendices D1 to D3 straddle the overall
mean of 23.4% except in four cases. All four of these cases relate to area of
residence, and are found in Appendix D3.

APPENDIX E

COMPARISON OF OBSERVED AND FITTED CLAIM AMOUNTS

The following are the amounts of claim observed 1n respect of each combina-
tion of year of advance and development year.

Year of Amount of claims observed in development year

advance | 1 2 3 4 s 6 7 g | 9 [ 10
3 3 3 ) h) 3 $ 3 $ ) $

1980 28522 13349 | 7873 0 0o o 1009

1981 115151 69711105156 3724 0 0 0

1982 71488 | 29799 { 102851 | 81026 | 35484 | 20827 | 56169

1983 60085 | 71469| 61801 | 85959 64416 0 {10110

1984 0 | 45337 | 68811(325411 180820 11766 0

1985 9591 | 161743 | 1060021 | 474840 | 179612 | 44976

1986 0 1150351 219581 | 28174 | 26638

1987 22882 7054 0| 15810

1988 0 0| 258976

1989 0 0

1990 0
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The following are the amounts of claims fitted to each combination of year
of advance and development year by the procedure described 1n Section 9.2.

Year of Amount of claims fitted 1n development year

advance[ 1 2 3 4 5 6 7 8 9 | 10
$ $ 3 $ $ 3 $ $ 3 $ $

1980 27287 25853 | 9332 0 0 0 [7380

1981 125940 | 91833 | 84727 | 9687 0 o 0

1982 562801 43406 | 129344 | 70032 | 19012 | 27658 | 28253

1983 51324 | 96763 | 63585| 74571 | 29094 0] 7572

1984 0 | 68421 121228 (258339 [ 167683 | 26301 0

1985 14819 | 185929 (1089849 | 576994 | 130423 | 64647

1986 0 | 151670 258058 41149 20740

1987 30697 13995 0| 23866

1988 0 01 221693

1989 0 0

1990 0

Each cell 1n this table 1s of the form:

actual number of claims
X

fitted average claim size.

Hence comparison of the table with the previous one examines only
variation of experience from model amounts of claim.
An alternative version of the preceding table consists of cells of the form:

fitted number of claims
X

fitted average claim size.
This table 1s as follows.

Year of Amount of claims fitted 1n development year

advance | | 2 3 4 5 6 7 g |9 |10
$ h) 3 3 $ 3 $ $ $ $ 3

1980 16472 | 13202 | 11077 0 0 0| 52

1981 44040 | 55444 61935 | 47805 0 0 0

1982 39396 | 55278 | 111986 | 99883 | 22086 | 2637 2910

1983 15962 | 73512 80326 | 136558 | 50459 0 1408

1984 0 41551 | 144634 | 324560 | 148532 | 15693 0

1985 4668 | 188718 (907194 [ 617384 | 82395 | 49662

1986 0 | 185146 (264079 | 66099 | 31805

1987 3131 86881 0! 29785

1988 0 0| 153966

1989 0 0

1990 0

For cells 1n which where are no claims observed, the procedure of Section 9 2 does not produce a
fitted average claim size These cells, indicated in bold, have been assigned a fitled amount of claims
equal to zero
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APPENDIX F

HOME AFFORDABILITY INDEX

Economic indicators Houschold expenditure
Year Residual mcome
Aver- Gross Con- Mort-
(as at Con- Mort-
age ) house- . sumer gage As per-
31 De- sumer gage Tax
weekly hold expen- | 1nstal- centage
cember) price Interest (b)
ear- index rates (a) income diture ment | Amount of
nings (b) (b) (b) 2ross
income
s pa $ per $ per $ per $ per $ per
week week week week week
1978 224 35 824 1150% | 56274 | 11828 | 32621 64 40 5385 | 9569%
1979 246 00 911 1150% | 61705 12970 | 36065 70 61 5608 | 9089%
1980 278 25 10600 1200% | 69794 [ 14670 | 39589 8226 7310 |10473%
1981 31590 1102 14 50 % 79238 | 166 55 436 27 107 18 8239 [10397%

1982 346 70 1234 1550% | 86964 | 18279 | 48852 | 12378 7454 | 8572%
1983 37590 1309 1400% | 94288 | 19819 | 51822 | 12422 | 102.26 [l0846%
1984 405 40 1360 1350% | 101688 | 21374 | 53841 130 41 13433 113210%
1985 428 20 1475 1500% | 107407 | 22576 | 58393 | 14907 | 11530 [10735%
1986 450 85 1614 1550% | 113088 | 23770 | 63896 | 16096 9325 | 8246%
1987 47770 1737 1450% [ 1198 23 | 25186 | 68766 | 16207 9664 | B066%
1988 521 65 1877 1425% | 130847 | 27503 | 74308 | 17468 | 11568 | 8841%
1989 560 75 2030 1725% | 1406 55 | 29564 | 80365 | 21777 8948 | 6362%
1990 600 68 2130 1550% | 150669 | 31669 | 84324 | 21446 | 13230 | 8781%

(a) The most common interest rates applying to loans in the mortgage insurance portfolio under
analysis

(b) These four columns were derved in a consistent manner from the HES, as described n
Section 32
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APPENDIX G

DATA

The data described 1n Section 4.2 are summarized in the following table. This
should be considered 1n conjunction with the qualification set out in the final
paragraph of Section 4.2.

Y Number Number of claims (a) recorded in development year
car of
advance of loans
advanced | 0 1 2 3 4 5 6 7 8 9 10
1980 1700 3 3 1 0 0 0 1
1981 1917 13 8 6 1 0 0 0
1982 2231 7 6 10 8 3 3 1
1983 3426 5 7 7 8 3 0 1
1984 5496 0 7 13 30 19 3 0
1985 7781 1 16 104 53 12 5
1986 8077 0 14 24 3 2
1987 9910 3 1 0 2
1988 17646 0 0 8
1989 11878 0 0
1990 13614 0

(a) Development ycar s defined as year of emergence of claim minus year of loan advance Claims
emerging In 1984 represent the experience of only 7 months
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ABSTRACT

This paper gives a method for premium rating by postcode area The method 1s
based on spatial models in a Bayesian framework and uses the Gibbs sampler for
estimation. A summary of the theory of Bayesian spatial methods 1s given and the
data which was analysed by TAYLOR (1989) is reanalysed An indication 1s given of
the wide range of models within this class which would be suitable for insurance
data. The aim of the paper is to introduce the models and to show how they can be
utilised 1n an 1nsurance setting.

KEYWORDS

Gibbs sampler; Postcodes; Premium rating; Spatial statistics

1. INTRODUCTION

The problem of accessing risk as a function of geographical area occurs 1n a number
of fields, including surance rating and epidemiology. The aim of the statistical
analysis of the data i1s to assess the underlying variation in risk by area, usually
postcode area. Two approaches can be taken. Either the raw data can be smoothed
in order to remove as much random variation as possible, or the data can be used to
allocate each postcode area to a rating category, allowing for the inherent random
variation The example in this paper uses the first approach, although the methods
can also be used for the second approach. The authors beheve that the second
approach may be more satisfactory i1f the data are in a suitable form.

The only previous paper, of which the authors are aware, which uses mathema-
tical and statistical techmques for premium rating by postcode area is TAYLOR
(1989). That paper used two-dimensional splines on a plane linked to the map of the
region by a transformation chosen to match the features of the specific region. The
present paper uses an entirely different approach, although some of the preproces-
sing aspects of the analysis wil be the same as those used by TAYLOR (1989). The
example 1n Section 4 of this paper uses the data from TAYLOR (1989) As will
become clear, there are disadvantages in using the data in the form available from
that paper. The example 1s valid 1n that it applies a suitable model to the particular
data set given However, the present authors believe that a shghtly different model
based on data for claim numbers and claim amounts separately could provide more
informative results.

ASTIN BULLETIN Vol 24 No 1, 1994
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The methods described here are based on statistical methods for spatial data
These methods have been developed for image restoration, often using data from
satellites. However, the techniques can also be used for nisk assessment in an
insurance setting The aims of the analysis and some of the assumptions underlying
the models differ from those in other applications, but the statistical and mathema-
tical techmques are similar. The basis of the method 1s the use of a spatial
probabilistic model in a Bayesian context. The Gibbs sampler 1s used to denve the
posterior distribution from which inferences about the spatial structure of the data
can be made These inferences can be used to assess the nsk due to the geographic
area. The basic philosophy 1s that there 1s an underlying *‘true’’ nisk pattern over
the whole regton, and the data are a version of this pattern contaminated by random
noise. The aim of the model ts to reconstruct the ** true’” picture as far as possible.
The analogy with image restoration s clear

The literature on spatial methods 1s large, and we mention just a few references
which are particulary relevant to the work in this paper. The book by CRESSIE
(1991) provides a useful overview and summary of the field. BESAG et al (1991)
gives a summary of the Bayesian models and describe applications in archeology
and epidemiology. The use of the Gibbs sampler was the subject of a discussion
meeting at the Royal Statistical Society recently The papers and discussion are
contained 1n part | of the Journal of the Royal Statistical Society, 1993 We would
mention particulary GILkS et al. (1993) and SMiTH and ROBERTS (1993).

The paper is set out as follows. Section 2 contains a specification of the spatial
model. Section 3 describes the Gibbs sampler and simulation techniques which are
used to estimate the posterior densities. Section 4 contains an example using the
data from TAYLOR (1989) and the final section has the conclusions.

2. A BAYESIAN MODEL FOR SPATIAL DATA

The basis for any model for spatial data 1s that areas which are close together are
more likely to be similar (in some sense) than areas which are far apart. In the
context of image restoration, this would mean that adjacent areas would be likely to
be the same, or similar, colour. In an mnsurance context, 1L means that we expect
adjacent areas to be similar from the point of view of the underlying risk.

It 1s important to remember that we are interested in the true, underlying risk, and
the data i1s just a sample providing an estimate of this risk [n addition, we are
considering only the risk due to geographical area. We will assume that the other
factors have already been analysed, using (for example) a generalised linear
model.

We assume that the geographical areas are numbered from 1 to n. Usually, the
areas will correspond to postcode areas. Define x, to be the true nisk 1n area : and x
to be the vector of risks over the whole region {x,.r=1,...,n}. The joint prior
distribution of x 1s not specified exphcitly Instead, it 1s more useful to define the
conditional densities

(2 l) p,(x,lx,,xz,...,x,_,,,r,+1,.....\',,)

1=1,...,n.
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This conditional density is the density of the risk at one location, given the nisk at
all the other locations. In reality, this will not depend on the risk at most of the
other locations. This means that we can replace (2 1) by the conditional density of
x,, given the nsk values 1n the neighbourhood of area 1.

(22) pi(x,10)

d, 1s defined as areas in the neighbourhood of the ith area For example, 1f we had
an evenly spaced lattice, the prior distribution might be defined so that J, consisted
of adjacent points One possibihity 1s illustrated 1n the following diagram

(o] o o [+] o
o] (o] [ ] o (o]
!

o [ ] — ez, — L] o
1
o] [o] [ ] o (o]
o o} (o] o o

In the insurance setting, &, can be interpreted as postcode areas which are
adjacent to, or close, to, the ith area.

Suppose that the data observed are denoted by y with components
{y,"t=1,...,n}. We use a simplified notation here, giving only the random
variable y,, and not the other (possibly non-random) information which may be 1n
the data. The full likelihood may be found from

23) foxo =11 fix)

This assumes, as 1s reasonable, that the data are conditionally independent, given
x The posterior density of x, given y, can be found using Bayes theorem :

(24) plyy=f(ylx)px)

The usual Bayesian estimate of x 1s the value of x which maximises the posterior
density, the maximum a posteriori estimate. Of course, the most diffficult part of
this maximisation 1s to actually determine the postertor density p(x1y) Although
we have the conditional prior distributions given by (2 2), 1t 15 not straightforward
to find the unconditional prior distribution and the posterior distribution. Instead,
we exploit the conditional densities to obtain realisations from the posterior density.
After obtaining a sufficient number of realisations, we may use the empincal
density generated to find maximum «a posteriort estimates. In other words, the
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esumation 1s based on a Monte Carlo method. The mechanics of this, which are
based on a vanant of the Metropolis algornithm called the Gibbs sampler (GEMAN
and GEMAN (1984)) are given n Section 3.

x, has been defined as the true risk 1n area 1, and we now make the compounds of
x, more explicit. The nisk level is assumed to be the sum of three components.

2.5) X, =t+u +u

t,1s based on known factors. It 1s measured through covanates using, for example, a
generalised linear model We shall assume that this component of the risk has
already been removed from the data. In effect, we assume that the data have already
been “*standardised’’ to remove all variation which can be explained by the usual
covariates, other than geographic location In the rest of this paper, 1, 1s therefore
dropped from the specification of the model.

u, represents a component with signtficant spatial structure.

v, represents unexplained variation

It 1s the component 4, that 1s of interest in an analysis of the spatial structure of
the data

We must now formulate the conditional prior distribution of x,19,, (2.2), in terms
of u, and v,. Henceforth 1, 1s ignored since 1t has already been removed from the
data. It 1s reasonable to assume that u, and », are independent Also, since there are
no reasons to use any other distribution, we shall use a normal prior distnibution for
{v,:1=1, ..,nj}

(2.6) ply)xA™'? exp[— L U’z)
22

We have assumed that the risk at the sth region depends only on regions which
are 1n the neighbourhood of the sth region It 15 also assumed that the prior
conditional density of the spatial component, u,, can be factorized into components
representing the dependencies on each of the neighbouring regions and hence can be
written as

2.7 p,(u by, us, ,Ll,_,,tl,+,,...,u,,)Ocexp[— 2 d)(u,—uj))

JE 9,

for some function ¢. Note that the summation in (2 7) is only over j in &,

The function ¢ must reflect the fact that the spatial dependence will reduce as the
distance between the regions increases It must therefore favour similar values for
regions which are adjacent, and can be any even functton. [t could be preceded by a
factor to allow for the precise proximity of the regions / and 4. In this case, (2 7) 1s
replaced by

28 puduy, iy, tty_ sl ,u,,)ocexp[— 2 w,l¢(u,—uj)j

JE O,
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Possible choices for ¢ include

2 Izl

z
P(z)=— and P(z)=—.
2x ”
In this paper, we use the first of these possibilities. Thus,

1
29) pGylug,uy, ,u,_|,u,+|,...,u,,)ocexp(—— z (u,—uj)zJ

X jed,

The two scale parameters » and 1, which determine the variances of u and » must
also be given a prior distribution. A suitable chosce for this prior distribution, which
1s close to the usual uninformative distribution but which avoids technical
difficulties 1s

(2.10) prior (3, A) « exp| — £ E
2x 24

where £ 1s a small positive constant, say 0 O1. For a more detailed discussion of this
choice, see BESAG et al (1991)

The condiional prior distribution for x,16,, (2 2), can now be replaced by the
prior distributions of u, », 2 and A The posterior density of the parameters can be
found as 1n (2 4), using Bayes theorem:

@1 p v,y [T firix)e"?x
=1
1 |
x exp| - — Z (u,—uj)z)/l'”2 exp| — — o} |prior (%, 4)
2x Je o, 24

where n, 1s the cardinahity of §,.

Note that the joint prior distribution of ¥ has been obtained from the conditional
prior densities, (2.9), using the derivation given in Section 2 of BESAG (1974)
Various forms for f(y,lx,) are appropriate for insurance data. In the example in
Section 4, we use a normal distribution For data on claim numbers a Poisson
distmbution would be appropriate In the case of Poisson data, 1t 15 usual to assume
that the mean of this distribution 1s ¢, ", where ¢, 1 the expected number of claims
in region ¢ ignoring the spaual effect. Then

exp(—ce")(ce""

(212) fnlx)=
v
A normal distribution for f(y,la,) 1s also useful 1n practice. The mean and
variance of this distribution will depend on the application, and an example of this
case 1s given n Section 4.
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3. THE GIBBS SAMPLER

Having defined the Bayesian model, the remaing problem 1s to obtain maximum a
posteriori estimates for the parameters The complexity, high dimensionality and
multimodality of the problem rules out any normal optimization routines. However,
it 1s possible to set up a Markov chain whose stationary distribution 1s consistent
with the posterior distribution. One approach which produces such a Markov chain
1s called the Gibbs sampler. The principle of the Gibbs sampler 1s as follows

At each step tn the chain the current value of each parameter is replaced by a new
one which 1s chosen randomly from its distribution given all the other parameter
values and the observed data Thus, in the terminology of Section 2, a value for x, 15
sampled at random from the density

G p(x10,,¥)

The values of the risk parameters 1n all regions other than 1, including in §,, are
assumed fixed at their current values in this step. This step involves sampling from
each of the distributions subsumed into x,: i.e. for u,, »,, »# and A. Initial values of
the parameters must be supplied.

Typically, the chain must be allowed to run for 1,000 steps before 1t will have
converged to its stationary distribution, which can be used to find the maximum a
posteriort estimates for the parameters. Once convergence has been obtained, a
sample of every 10th step over the next 10,000 steps usually provides a reasonable
estimate of the stationary distribution. This can be treated as a an empirical
distnbution from which the required estimates can be obtained 1n the usual way.

Note that the conditional postertor distributions which are required by the Gibbs
sampler can be obtained n a straightforward manner. For example,

(3.2) pulu v, 4 y) < f(ylx)p@lu_,,x)

where u _, denotes all values in u except u,.
For example, when the data have Poisson distributions and the posterior density

is given by (2.11) and (2.12), then the margmal posterior of u, 1s given by

3.3) plutu_, v, %A y)xexp (—c,e"‘+"'+ uy, - S (u, — ﬁ,)z]
2x

where &, is the mean value of u, over 6, Details of the marginal distributions of the
other parameters 1n the case of Poisson data can be found in BESAG et al
(1991)

Once the marginal densities have been found and nitial values of all the
parameters supplied, the Gibbs sampler can be used to generate values of the
parameters from the required postertor distribution. In effect, the procedure exploits
the simpler conditional distributions to simulate the posterior distribution.

In some cases the random sampling does not present any problems. For example,
when the data are normally distributed, the posterior distnbutions are also normal
and the sampling procedure described above 1s fairly straightforward In other cases,
the posterior distributions are more complicated and samples cannot be obtained by



PREMIUM RATING BY GEOGRAPHIC AREA USING SPATIAL MODELS 137

a direct method. Instead, a method such as adaptive rejection sampling must be
used. It 1s very important that the sampling procedure and the computational
approach are highly efficient 1n order to produce results reasonably fast. A
particularly efficient from of rejection sampling 1s described by GiLKS and WILD
(1992). This form of sampling has to be used, for example, in the case of Poisson
data. We now summanse the sampling process as described in greater detail 1n
GiLks and WiLp (1992).

Suppose a sample is required from the distribution whose density function 1s
f(x). For example, this density might take the form given 1n (3.3). The density,
f(x), need only be known up to a constant of integration. t.e. instead of knowing
f(x), we may only know g(x) where
(3.4) g(x)=cf (x)
and ¢ 1s an unknown constant.

It 1s necessary to define an envelope function g, (x) such that g,(x) = g(x) for
all x, and a squeezing function g,(x) such that g,{x) = g(x) for all x. The procedure
to obtain a sample from f(x) is then as follows

Take a sample x* from g,(r) and a sample w from U(0, 1). Now use the
squeezing function to test the value

= g1 (x*)

if then accept x*; 1f not then test
9. (x*)
gx*) ,
if w=____ then accept x*; otherwise reject x
gu (x*)

Fioure: |

After each rejection of a sample value, the envelope and squeezing functions are
redefined so as to reduce the probability of further rejection If the log density,
h(x)=log (g(x)) 1s considered, 1t can be seen that for the density (3.3), and for
many others, A"(x) <0, ¥ x. It 1s therefore possible to define an envelope
h,(x)=1log (g, (x)) where h,(x) 1s a piecewise linear function such that each
line segment 1S a tangent to A(x). Similarly, a piecewise linear function
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h;(x)=log (g;(x)) can be defined by chords meeting 4 (x) at the same points as
h, (x).

After each rejection of a value of x*, this value 1s added to the set of points at
which i;(x) and A, (x) meet h(x) GiLkS and WILD (1992) show that this provides
an efficient method of generating samples for the Gibbs sampler

4. EXAMPLE

In order to illustrate the methods and to give an indication of the nature of the
results, the data from TayLOR (1989) are reanalysed in this section We would
emphasise that this 1s really an illustration and does not represent a definitive rating
conclusion. In particular, we would prefer to analyse claim numbers and claim
amounts separately * see Section 5 for a more detailled discussion However, this
example does enable the results to be compared with the method used by Taylor,
which imposed a much greater degree of smoothness onto the results

The data relates to Household Contents Insurance in and around Sydney,
Australia This region 1s divided into approximately 200 postcode areas The data
have already been processed to remove the effects of all factors which can be
modelled using generalised linear modelling techniques. All factors corresponding
to 1, in (2.5) have been controlled out in order to make the data suitable for
investigating the spatial effects Taylor also included a ‘“‘rough fit of the
‘geographic area effect’’” n order to 1mprove the fit of the other factors but this
effect was, of course, not controlled out The final data used in this example
consists of adjusted loss ratios. '

The adjusted loss ratios are assumed to be normally distributed :

24
.yl |'rl ~ N xn -
€,

where ¢, 1s the earned exposure in postcode area i,

and « 15 a constant, chosen as indicated below.

As noted 1n TALOR (1989), this normal approximation may be poor where e, 1s
small. However, 1n the model considered here, areas with low values of ¢, will have
a hmited effect on the overall results. The constant « controls the amount of
smoothing applied, as can be seen from the following maps. The maps show the
values of the adjusted loss ratios divided into six bandes as follows-

Less than 0.5
051007
071009
091011
11t 1.3
Greater than 1.3

mTmgonOm >

Map 1 shows the adjusted loss ratios of the raw data before the fitting of the
spatial model. Maps 2 to 5 show those of the fits for vartous values of a. A value of
100 appears to be produce a similar level of smoothing to that achieved by Taylor
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and the overall pattern 1s very similar with areas of low nisk in the south-east and
north-east corners and a band of high nsk just south of the river.

A referee has pointed out that a value of « of around 100 can be jusuified as
follows

« = variance of loss ratio for a single risk

If it 1s assumed that losses occur according to a Poisson process with rate 6 and
that the first and second moments of the distribution of the size of individual losses
are 4 and ,, then

Ou,
o= 5
Bu))
or
(1 +7r)?
o =

g

where r = coefficient of vanance of claim size.

From the data the observed value of @ is approximately 01, so that =100
corresponds to a value of r of 3 which seems reasonable. However, the choice of
value for « should be a pragmatic one based on the level of smoothing which 1s
thought to be appropriate
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5 CONCLUSIONS

This paper has described how spatial statistical models can be used to analyse the
geographic area effect 1n insurance data. The methods are applicable to all data in
which there is a geographic area effect. The authors believe that the potent:al for
these methods 1n 1nsurance applications 1s great, and that they represent the best
way of premium rating by postcode area.

The example has been approached from the point of view of smoothing the data
over the postcode areas, using a continuous scale for the rating results These
smoothed results have then been divided into bands for rating purposes An
alternative approach would be to use a discrete scale for the results, corresponding
to the required number of rating classes The spatial model would then be required
to allocate each postcode area to one of the rating classes The use of this type of
model 1s at present under investigation.

Unlike the method used in TAYLOR (1989) this method could easily be extended
to an entire country rather than just one metropolitan area

It would be preferable to analyse the data for claim numbers and claim amounts
separately This approach 1s already used to model claims experience with respect to
other factors c.f RENSHAW (1993) Such a separation 1s particularly important 1n
cases where claim severity has a long tailed distnbution (e g. lability) where one
large claim could domtnate the loss ratio of a small area 1t may also prove to be the
case that a simpler model using only a few of the factors s appropnate for claim
severity while a more complicated model including spatial data can be used for the
frequency. This involves more complex computations since the data would no
longer be normally distributed. Again, this 1s under mvestigation and will be the
subject of a subsequent paper.
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SHORT CONTRIBUTIONS
MARTINGALES AND TAIL PROBABILITIES

By HaNs U. GERBER

At the twenty-eighth Actuarial Research Conference of the Society of Actuar-
1es, WiLLMOT and LiN (1993) presented a paper whose central result 1s a bound
on the tail probability of a random sum. In the subsequent discussion,
Professor Bithimann raised the question, if this bound could be derived by
martingale methods. The purpose of this note 1s to show how it can be
done

We consider a random variable of the form

S=XI+ +XN'

Here the random variables N, X, X, ... are independent, and the X,’s are
assumed to be positive and identically distributed; their common distribution
function is denoted by F(x).

Let

P =Pr (N =k), k=0,1,...
We assume the existence of a number ¢, 0 < ¢ < 1, with
) Pr(N>kINz2k)<¢ for k=1,2,..

and a positive number r with
) ¢ j e"dF(x) < 1
0
(f F(x) 1s sufficiently regular, we mght choose the value of r for which

equality holds). Then the result of Willmot and Lin is that

]_
Pr(S>x) < — 0. g=n

for any x > 0.
For the following proof we introduce
Sk= X|+ +Xk
and
{ ek if N=k
YI( =
0 if N<k.

ASTIN BULLETIN, Vol 24, No t, 1994



146 HANS U GERBER

We note the recursive relationship
Yk Z/\ Yk—l’ k=],2,
with
rX, :
e if N=zk
Zk = {
if N<k.

According to (1) and (2), the conditional expectation of Z,,, (given N > k)
1s less than or equal to 1, which shows that the sequence Y|, V,,. . is a
supermartingale

If we stop 1t at time

T=min{k:S,>x or N<k}
it follows that, given N > | and X,
Y\ = E[YrIN= 1, X|]
or
e > E[eT 1 sa N> 1, X|]2e™ Pr(S=xIN=>1,X).
Then we get
Pr(S>x) = (l—py)- E[Pr(S> xIN > 1, X,)]
< (I—po)- E[e"ie™™)
< = Po e "

] 3

¢

which completes the proof.
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FACULTY POSITION IN ACTUARIAL SCIENCE

The School of Actuarial Science invites applications for two tenure-track professo-
ral appointments starting August 1994 The School 1s reponsible for teaching and
research n actuarial science and the two new professors will join the seven faculty
members currently n function.

The duties of a professor include teaching to undergraduate and graduate students.
conducting acuive research in actuanal science, counseling students, supervising
graduate students, and participating to the academic responsibilities of the
School.

For the first available position, the qualifications requested of a candidate are

Hold (or be near completion of) a Ph D. preferably in actuanal science or
related area, be well engaged in actuaral research, be a member of (or a
candidate for membership 1n) a recognized association of actuaries.

For the second vacant post, is also admissible

A Fellow of any recognized association of Actuaries or the equivalent who can
prove research producuon in actuartal science and capacity for supervising
graduate students.

Applications must be sent i writing to the following address with a recent
curriculum vitae enclosed .

Mr André Prémont, director

School of Actuarial Science

Alexandre-Vachon Building

Laval University

Sainte-Foy (Québec)

GIK 7P4
Laval University applies an equal opportunity program and dedicates half of its
openings to women applicants In accordance with Canadian immigration require-
ments, this advertisement 1s directed, in the first instance, to Canadian citizens and
permanent residents.
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