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A B S T R A C T  

We show how ruin probabilities for the classical continuous time compound 
Po~sson model can be approximated by rum probabilities for a compound bmomml 
model We also discuss rum related results for a compound binomial model with 
geometric claim amounts 
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1. INTRODUCTION 

GERBER (1988) presented some results for the compound binomial model which 
were analogues of results for the classical continuous time compound Poisson 
model These results were further discussed by SHIU (1989). WILLMOT (1992) 
presented some exphcit results for ultimate ruin probabilities for the compound 
binomial model. 

In this note we dertve some known re,,ults for the compound binomial model 
using very elementary methods. We also present results for a binomial clmm 
numbers/geometric claim amounts model which correspond to results for the 
classical continuous ume Polsson/exponential model Our mare purpose ts to 
consider the condiuons under which ulumate ruin probabdlties for a compound 
binomial model give good approximations to ultimate rum probabthties m the 
classical continuous time compound Po~sson rnodel 

We start by considering some basic results for a general discrete tmle risk 
model. 

2. A DISCRETE TIME RISK MODEL 

We will consider a risk model with the following charactenstlcs: 

(a) X, denotes the aggregate clatm amount in the /-th time interval; 
(b) {X,},~ I is a sequence of  independent and identically distributed random 

variables, each dtstnbuted on the non-negative integers, 
(c) the insurer's premium income per unit time is I ,  
(d) E ( g , ) <  l. 

* Part of  th~s work was completed whde  the author  was  at Henot -Wat t  Umvers~ty, Edinburgh 
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We will assume throughout that the insurer 's  initial surplus, denoted u, is an 
integer. 

The insurer 's  surplus at time t ( t=  l, 2, 3 . . . .  ) is denoted Z(t) and given by 

I 

Z ( t ) = u  + t - ~ X, 
t = l  

The ultmaate ruin probabdity for this model is defined by 

~p(u)=Pr[Z(t)<-O for some t, t = 1 , 2 , 3  . . . .  ] 

This definmon corresponds to that gwen by GERBER (1988) but differs from that 
used by SHIU (1989) and WILLMOT (1992). The reason for choosing this defimnon 
will become clear m Section 5 Note that ruin does not occur at nine 0 if the initial 
surplus is zero. The survival probabdlty is denoted 6 (u) and 6 ( u ) =  I - 'qJ (u). 

We define the severity of  ruin function G(u,y) for u = 0 , 1 , 2 , . ,  and 
y =  1,2, 3, by 

G(u,y)=Pr[T<oo and Z ( T ) >  - y ]  

where T is the discrete tmle of  rum and Is defined by 

T = m m { t  Z(t)<--O, t = 1 , 2 , 3  . . . .  ] 

=oo if Z ( t ) > 0  for t = 1 , 2 , 3  . . . .  

Thus G(u, ~,) represents the probabili ty that ruin occurs and that the deficit at the 
time of  rum is at most v -  l 

We denote by b(k) and B(k) respectively the probabili ty function and distribu- 
tion function of X,. 

3 G E N E R A L  R E S U L T S  

Resu l t  1:  For u = 1 , 2 , 3 ,  

It 

(3.1) 6(u)=6(0) + Y~ d ( k )  l l - B ( u - k ) ]  
/~=1 

P r o o f :  By consldenng the possible aggregate clam1 amounts m the first time 
period we have that 

and for u = 2 , 3 , 4 ,  . 

(3.2) 

6 ( 0 ) = b ( 0 )  b ( l )  

I I - -  ) 

6 ( u - 1 ) = b ( 0 l d ( u )  + Z d ( j ) b ( u - j )  
2=1 
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Hence, for u = 2, 3, 4 , . .  
u - I  u u ~ - I  

6(k)=b(O)  ~ b(k)+ ~ ~ 6(j)b(k-j) 
/ . = 0  ~ = l  l . = 2  J = l  

u u -  I 

=b(O) ~ d ( k ) +  ~ d(k)[B(u-k)-b(O)l 
/ . = 1  ~ = 1  

u - I  

= b (0) 6 ( . )  + ~ 6 (k) B (u - k) 

Thus 

u - I  

b(0) d ( u ) = d ( 0 )  + ~ 6 ( k ) [ l - B ( u - k ) ]  
/ . = 1  

u - I  

= 6 ( . - I ) -  ~, b(k)b(u-k) 
/ . = 1  

(by (3 2)) 

I t -  l 

so that d ( u - 1 ) = 6 ( 0 )  + ~ 6(/,') [I - B ( u -  I - k ) ]  
k = l  

for u = 2, 3, 4, , or eqmvalently, 
u 

d ( u ) = 6 ( 0 ) +  Y~ 6(k) ll-B(u-k)] for 
~.=1 

u = 1 , 2 , 3  . . . .  

Result 2: The rum probabd W from initial surplus zero is gwen by 

(3.3) "qJ (0) = E(X,) 

Proof:  For y=0 ,  1,2, define g(O,y) to be the probabdlty that ruin occurs from 
mmal surplus zero and that the defimt at the ttme of ruin is y Note that when the 
initial surplus is u ( > 0 ) ,  g(0, y) can be interpreted as the probabdlty that the 
surphls falls below tts inmal level for the first ume and by amount y When y=0 ,  
g(0, y) gives the probabdlty that the surplus returns to ~ts mltml level for the first 
ulne without prewously having been below its mmal level Using thts interpretauon 
we can write 

11 

(34) d ( u ) = d ( 0 ) +  ~ 9(0, u - y ) d ( y )  
v = l  

The first term on the nght hand side gwes the probabihty that the surplus never 
falls below its imtlal level. For a fixed value of y (<  u), g(O, u - y )  d (y) gives the 
probaNhty that the surplus falls below its mmal level for the first time to y and that 
surwval occurs from surplus level y. A smular mterpretanon applies when y =  u. 
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Summing over y gives the probability that survwal occurs and that the surplus 
process has not always been above its mmal level. 

By (3.1) we also have 

IJ 

6 ( u ) = 6 ( 0 ) +  ~ d ( v ) l I - B ( u - v ) l  
' , = l  

Since equations (31)  and (3.4) hold for u = 1 , 2 , 3  . . . . .  it follows that 
g(0,  y ) =  1 - B ( y ) .  Equation (3.3) follows since 

(o)= ~ 9(O,y) 
~.=0 

If we wnte  the premium income of I as (1 + O)E(X,),  then 

(3.5) ~ (0) = 1/( I + 0) 

as m the classtcal continuous time model. 
We can eastly obtain further ruin related results when the lmtml surplus is zero, 

starting with the joint  dlstnbution of the surplus prior to ruin and the deficit at ruin. 
We define a new function f(u,x,y) for x = 1 , 2 , 3  . . . .  and y = 0 ,  1,2, as 
fo l lows '  

f(u,x, y)=Pr[T<oz, Z(T)= -y and Z(T- I ) = x ]  

T h u s f ( u ,  x, y)  gives the probablhty that mm occurs from inmal surplus u, with a 
deficit  of  y at the time of  rum and a surplus of x one time umt pnor  to rum. When 
u = 0 ,  the function Is defined for x = 0 ,  1,2, . , and f(O,O,y) simply gwes the 
probabihty that ruin occurs at time 1 with a deficit of  y at ruin. Thus 
f(O,O,y)=b(y+ 1). 

By considering the possible aggregate claim amounts m the first time period we 
can write 

f(u,x,y)= ~ b(j)f(u+l-j ,x,y) for u = O , l , 2  . . . .  x - l , x + l ,  
j = O  

and 

u 

f(u,x,y)= ~ b(j)f(u+l-j,x,y)+b(x+y+ I) 
j=O 

Assuming that 

(3.6) ~ f(u,x, ~,) <oo 
u = 0  

when u = x  
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we have that 
zo ec U 

/ ( u , x , y ) =  ~ ~ b(j) f (u+l- j ,x ,y)+b(x+y+l)  
u=O u=O j = O  

Hence 

(3 7) 

~, f(u,x,y) 2 b(j)+b(x+y+ I) 
u =  I J=O 

f(O,x, y)=b(x + v+ l) 

As an immediate consequence of  this we have that 

~'-I  ~ v - I  

G(0, y ) =  ~ ~., b(x+j+l)= ~., [ I - B ( j ) I  
j = 0  ~=0 j = 0  

and 

Similarly 

g : (0 )=  ~ [ | - B ( j ) I  
j = O  

(38)  P r [ T < c e  and Z(t-I)-<x-Ilu=O]= ~ ~ b(j+y+l) 
J = 0  v = 0  

= ~ [ I - B ( j ) I = G ( 0 ,  v) 
3 = 0  

We have not discussed the condlnons under whmh (3.6) holds The most obvious 
sttuanon when (3.6) holds is when Lundberg's mequahty applies Formula (3 7) 
does however hold when the sum m (3 6) is mfimte 

The results presented above are m terms of  a general &strlbutton B(k) However, 
they are m fact the same as results given by GERBER (1988) and SHIU (1989). This 
follows since the distribution of  X, can be expressed as a compound binomml 
dtsmbuuon with binomial parameters 1 and l - b ( 0 )  and probabdlty function for 
indwldual clmms b ( j ) / [ I  - b ( 0 ) l  for j =  I, 2, 3 . . . .  

4 .  THE B I N O M I A I J G E O M E T R I C  MODEL 

Throughout this section we assume that the distribution of  the number of claims per 
unit time is binomial with parameters 1 and p, and the individual claun amount 
distribution ~s geometric with distribution function P(x) and probabdlty function 

p ( x ) = ( I  -Ix)Ix ' - I  for x = 1 , 2 , 3 ,  . 

Then 

B (k) = I - pat t for k = 0, I, 2 . . . .  
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Since we have assumed that E(X,)< I, the parameters p and ot must be such that 
p/( 1 - ot) < 1 

We can rewrite equation (3.1) as 

l/ 

~ p ( u ) = ~ ( 0 ) -  ~., [ l - ~ p ( k ) l [ l - B ( u - k ) I  
t = l  

and inserting for ~ (0) we have 

V,(u)= ~ ~p(k)[l-8(.-~)l + ~ [I-8(~:)1 
k = l  k = u  

The continuous ume compound Polsson analogue of this equation can be found m, 
for example, GERBER (1979). 

Now insert for B(k) to fred that 

i/ 

(41) ~ ( u ) =  ~ ~(k)pot"-* 
* = 1  

and 

+ Z Pot* 

u + l  oc 

(4.2) ~' (u + 1) = ~z~ ~/: (k) pot" + ' - ~ + ~ pot* 
k = l  * = u + l  

If we multiply (4.1) by or, subtract from (4.2) and rearrange we find that 

ot 
~ ( u +  1) - - -  ~ ( u ) = 0  

l - p  

The solution to this difference equation is 

~'(u)=c \1 _p) 

from which It follows that c = ~ (0). In fact, we can write ~ (u)=  ~ (0)exp { - R u } ,  
where R is the adjustment coefficient for this process. R ~s the umque positive 
number satisfying 

E[exp {R(X, -  I )}]= 1 

and it is an elementary exercise to show that for this model exp {R} =( I  -p)/o~ 
Thus we have a complete analogy with the form of the rum probabd~ty for the 
Polsson/exponentlal model which can be written in exactly the same way (See, for 
example, GERBER (1979)). We note that this solunon matches that g~ven by 
WU,LMOT (1992) for 6 (u), allowing for different defimtions of rum/survwal 

We now extend the analogy to the seventy of  ruin. We can use the function 
g(0,  y)  to write down an equanon for G(u, y) by considering the first occasion on 
which the surplus falls below (or returns to without previously having been below) 
its initial level 
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We have 

G (u, y )  = 

u + v - I  u - I  

g(O,k) + ~ g(O,~)G(.-k,y) 
k = u  t . = O  

u + ) - I u 

9(O,k) + ~ g ( o , .  - k) C ( k  v) 
~ = u  L= 1 

Now ,nsert g(O,k)= I-B(k)=pot ~ to give 

G (u, y)  = 

and 

u + ' ~ - I  u 

pot ~ + ~ pot"-t G(k, y) 
/ , = u  k = l  

u + y  u + l  

G(u+l ,y )= ~ p ~  + ~ p~ '+t- tG(k ,y)  
k = u + l  L = I  

Using the same techmque as before we find that 

OL 
G(u + I, y) - - -  G(u, y)=O 

I - p  

G(u,y)=G(O,y) 

and hence 

v - I  ) - )  I - o r  v 
G(O,y)= ~ g(O,k)= ~ p o ~ ' = p - -  for 

k = o  ~=0 1 - o r  

Finally 

and so we can write 

G(u,y)=(I -oe") P =P(y)~O(u) 
I - , ~  t,l - p  j 

y = 1 , 2 , 3 ,  

Thus the form of  G(u, y)  ~s ~dentlcal to that for the Poisson/exponentml model. 
(See, for example,  DICKSON (1992)). However,  unlike the Polsson/exponential 
model, the distribution of the defictt at the time of rum is not identmal to the 
individual claim amount distribution. The deficit is geomemcal ly  d ismbuted with 
parameter oe, but on 0, I, 2 . . . . .  since G(u, y)/~(u) gives the probablhty that the 
deficit  is less than or equal to y -  l, gwen that ruin occurs, and so 

Pr[ -Z(T)<y lT<oo]=l -o t  y for y = 1 , 2 , 3 , . .  

Let us now consider the sltuatmn when u = 0  further. We have already noted that 
the deficit at the nine of rum ~s geometrical ly distributed on 0, 1 , 2 , . . .  with 
parameter o~, and by (3 8) the d lsmbunon of the ,surplus at time T -  I t s  the same. 



4 0  DAVID C M DICKSON 

The conditional probabili ty function of  the deficit at T and of  the surplus at T -  1, 
conditzonlng on the event that ruin occurs, ~s 

g(0,  x ) = ( l -  c~)od, x = 0 ,  1.2, 

If we consider the conditional d~strlbutlon of the surplus one time umt before ruin 
and of  the deficit at ruin, conditioning on the event that ruin occurs, and again use a 
tilde to denote a condmonal  probabili ty,  then 

b ( x + v + l )  p ( l  - oe)o? +y g(0,  v) g(0,  ~,,) f (0~ ,  ,,) = " - 
p (0) p/( I - o~) 

so that, condmonally,  the surplus one time umt before ruin and the deficit at ruin 
are independent and identically distributed This situation also exists m the 
Polsson/exponentlal  model where the surplus prior to rum and deficit at rum are 
independent, identically distributed variables, and the conditional distribution of 
the claim causing ruin is Gamma(2)  

Finally, if we define the condmonal  probability function of  the claim causing ruin 
as h (0, z) for z = 1, 2, 3 . . . .  then 

: - I  z - I  

h(0, z )=  ~ / ( 0 , x , z - x - l ) =  ~ ( l - ~ ) 2 ~ : - ' = z ( I - o ~ ) ~ , ~  =-' 
~ = 0  ~=0  

The conditional distribution of the clmm causing ruin IS thus negative blnomml with 
parameters 2 and 1-o~, shifted one umt to the right 

5 .  C A L C U L A T I O N  OF RUIN PROBABILITIES 

GERBER (1988) states that the compound binomial model can be used to approxi- 
mate the continuous tmae compound Polsson model. In this section we mvestlgate 
this statelnent by considering ultimate ruin probabilities 

To calculate ruin probabilit ies for the compound binomial model, we will adapt 
the framework described by DICKSON and WATERS (1991, Sections I and 8) who 
use a dl,,crete time compound Po~sson model to approximate a classical continuous 
time compound Poisson model under whzch both the Po~sson parameter and mean 
mdivldual claim amount are I. The characteristics of this model are as follows 

(a) individual claim amounts are distributed on the non-negative integers with 
mean /3, w h e r e / 3 ( >  1) is an integer; 

(b) the Potsson parameter for the expected number of  clmms per unit time is 
I / l ( l  + 0)/31; 

(c) the premium income per unit time is 1. 

We will replace this discrete compound Polsson model by a compound binomial 
model. We simply change (b), replacing the Polsson dlsmbution by a binomial 
distribution with parameters 1 and I/[(1 + 0)/31. For reasons given by DICKSON and 
WATERS (1991) we can regard g,(/3u) as an approximation to ~, . (u) ,  the 
ultimate rum probabdlty for the continuous compound Polsson model. Note that the 
definition of  ~p(u) given in Section 2 corresponds to that used in this approxmla- 
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tlon. In effect all we are doing is approxunatlng a discrete compound Pmsson model 
(which approxmlates a continuous compound Poisson model) by a compound 
binomial model The approximation to the discrete compound Polsson model ~s 
reasonable for large values of /3, since the Polsson distribution with parameter 
I/[(I +0)/31 is then very close to the approximating bmomml distribution. For 
example,  l f f l =  100 and 0 = 0  I, then the probabdlty of  more than one clam1 per unit 
time under the compound Polsson model is 0.00004. Note that there is one small 
difference between this formulation of the compound binomial model and that used 
by previous authors In this formulation, mdivtdual claim amounts are distributed 
on the non-negatwe integers rather than the posl twe integers The reason for this ~s 
sunply that in order to approxtmate ruin probabdmes  in the classical continuous 
ume compound Po~sson model, we have to dlscretlze the continuous individual 
claim amount distribution in that model In our first two exarnples, we will use the 
dlscretlzatJon proposed by DE VYLDER and GOOVAERTS (1988), which dlscretlzes 
the distribution on the non-negatwe integers If we bad chosen a discretizatlon on 
the positive integers then our model would correspond to that used by previous 
authors 

We wdl calculate rum probabdmes  recurswely from the formulae 

(5.1) 7 J ( 1 ) = b ( 0 ) - '  [ q J ( O ) - I  +B(O) 

and for u = 2 ,  3, 4, .. 

(5.2) ~ ( u ) = b ( 0 )  - I  ~ p ( u - l ) - I + B ( u - I ) -  Z b ( j ) ~ p ( u - j )  
j =  

These formulae correspond to GERBER'S (1988) formulae (5) and (6) In each of the 
following examples the prem|um loading factor, 0, is 10% 

Example 1:  Let the individual clam1 amount d~stnbut|on in the continuous time 
model be exponential with mean I. Then it is well known (see, for example,  
GERBER (1979)) that 

1 
V), (u) = - -  exp ( - Rc u ) where R,. = 0/( I + O) 

1 + 0  

Table I shows exact and approximate values of  We(u) The approximate values 
are calculated from (3.5), (5 I) and (5 2). The legend for this table is as 
follows 

(1) denotes the exact value of  "q:, (u) ;  
(2) denotes the approximate value when f l = 5 0 ,  
(3) denotes the ratio of the value in (2) to that m (1); 
(4) denotes the approximate value when f l=  100, 
(5) denotes the ratio of the value m (4) to that m (1); 
(6) denotes the approximate value when /3=200;  
(7) denotes the ratio of  the value m (6) to that m (I) .  
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TABLE 1 

(SEE EXAMPLE I FOR DE'IAiLS) 

u=O 
u=2  
u = 4  
u=6  
14~8 
u= 10 
u=20 
u=40  
u = 80 

(I) (2) (3) (4) (5) (6) (7) 

0 9091 0 9091 I 0000 0 9091 I 0000 0 9091 1 0000 
0 7580 0 7567 0 9983 0 7573 0 9992 0 7576 0 9996 
0 6319 0 6299 0 9967 0 6309 0 9983 0 6314 0 9992 
0 5269 0 5243 0 9950 0 5256 0 9975 0 5262 0 9988 
0 4393 0 4364 0 9934 0 4378 0 9967 0 4386 0 9983 
0 3663 0 3632 0 9917 0 3647 0 9959 0 3655 0 9979 
0 1476 0 1451 09835 0 1463 09917 0 1470 09959 
0 0240 0 0232 0 9673 0 0236 0 9836 0 0238 0 9918 
0 0006 0 0006 0 9357 0 0006 0 9674 0 0006 0 9836 

We note the following points about Table 1' 

(a) When u > 0, the approximate values are less than the exact ones. This is to be 
expected since the compound binomial model excludes the posslbdlty of  
mult,ple claims per unit nine. 

(b) As the value o f f l  increases, the approximate values become closer to the exact 
ones. This is as expected for reasons gwen by DICKSON and WATERS (1991, 
Section 2) 

(c) The larger the value of  u, the poorer the approximation becomes. 
(d) Even with a large value of  fl, the approximate values do not always agree with 

the exact values to four decimal places 

Example 2: Let the individual claim amount d~strlbutton in the contmuous time 
model be Pareto with parameters 2 and 1. Table 2 shows exact and approximate 
values of ~ ,  (u) (The exact values have been calculated using DICKSON and 
WATERS' (1991) algorithm and are " e x a c t "  at least to three decimal places) The 
legend for Table 2 ts the same as for Table 1 The only additional comment that we 
would make about Table 2 is that, for the same magmtude of  rum probability, the 
approximate values are shghtly closer to the exact values than m Example 1 

TABLE 2 

(SEE EXAMPLE 2 fOR DETAILS) 

u=O 
u=2  
u=4  
14=6 

u= 10 
u = 20 
u = 4 0  

u=80  

(I) (2) (3) (4) (5) (6) (7) 

0 9091 0 9091 ! 0000 0 9091 [ 0000 0 9091 I 0000 
08102 08097 09994 08100 09997 08101 09998 
0 7498 0 7491 0 9991 0 7494 0 9996 0 7496 0 9998 
07021 07014 09990 07018 09995 07020 09997 
06620 06613 09989 06617 09994 06619 09997 
0 6271 0 6264 0 9988 0 6267 0 9994 0 6269 0 9997 
0 4981 0 4974 0 9985 0 4978 0 9992 0 4980 0 9996 
0 3479 0 3473 0 9982 0 3476 0 9991 0 3477 0 9995 
0 2040 0 2036 0 9981 0 2038 0 9990 0 2039 0 9995 
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In Section 4 we discussed the bmonual /geometnc model as the discrete analogue 
of the Poisson/exponent|al model. In Example 3 we illustrate how ruin probabilities 
for the binomial/geometric model can be used to approximate those for the 
Polsson/exponenUal model. We have included this example purely for interest as 
the approach does not generahse to other compound Polsson models. 

Example  3 :  We will use the same framework as in Examples 1 and 2, but will 
dtscret~ze the exponentml mdwldual clmm amount distribution as a geometric 
distribution with mean/3. This dlscretlzatlon is a reasonable one for large values of  
/3 since when/5 is large 

P ( x ) =  1 - ( 1  - / 3 - 1 ) ' = 1 - e x p {  -x//3} for x = 0 ,  1,2, 

As noted in Secuon 4, for the geometric individual claim amount distribution, 

( (1+0)/3-1)  
7;(/3u)= I+01 e x p ( - R / 3 u )  where R = l o g e ( . ( ] + 0 - ~ - / )  

It ~s easy to show that 

0 
lim [JR = -  
t~--,~ 1 + 0 

so that for large values of /3, ~ '(f lu)  should gwe a good approxlmauon to 
~pc(u). 

0 0955 

0.095 

0 0945 

0.094 

0 0935 

0 093 

0092S 

0.092 

O.091S 

0091 

00905 

o 1oo 200 3oo ,~o 5oo f~o 700 8oo 900 tooo 

FIGURE. I fiR a s  a function ot/5 when 0 ~s 10% 

Figure 1 shows the function fir (when 0 is 10%) and Table 3 shows exact and 
approximate values of ~Pc(u). The legend for Table 3 is as follows" 

(1) denotes the exact value of  ~0~(u); 
(2) denotes the approximate value when f l= 100; 
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(3) denotes the ratio of  the value m (2) to that in (1), 
(4) denotes the approximate value when f l= 1,000; 
(5) denotes the ratio of the value m (4) to that m (1), 
(6) denotes the approximate value when /3= 10,000, 
(7) denotes the ratio of  the value in (6) to that in ( I )  

TABLE 3 

(SEE EXAMPLE 3 fOR DETAIl.S) 

u=O 
11=2 
u=4  
u=6  
it=8 
u=10 
u=20 
It = 40 
u = 80 

(t)  (2) (3) (4) (5) (6) (7) 

09091 09091 I 0000 09091 I 0000 09091 I 0000 
0 7580 0 7566 0 9982 0 7578 0 9998 0 7579 I 0000 
0 6319 0 6297 0 9965 0 6317 0 9997 0 6319 I 0000 
0 5269 0 5241 0 9948 0 5266 0 9995 0 5269 0 9999 
0 4393 0 4362 0 9930 0 4390 0 9993 0 4393 0 9999 
0 3663 0 3631 0 9913 0 3659 0 9991 0 3662 0 9999 
0 1476 0 1450 09826 0 1473 09983 0 1475 09998 
0 0240 0 0231 0 9656 0 0239 0 9965 0 0239 0 9997 
0 0006 0 0006 0 9323 0 0006 0 9931 0 0006 0 9993 

Table 3 shows the same features as Tables I and 2 The great advantage of  using 
the geometric dlscretlzatJon ~s that approxmlate values for ~,  (u) can be calculated 
from a formula This allows us to use very large values for/3, and shows that even 
with a large value of /3  0.e 10,000) the approximate values do not all match the 
exact ones to four decimal places By contrast, if b(x) and B(x) m (5 1) and (5.2) 
are values from a COlnpound Polsson distribution, then a relanvely small value of/3 
produces the same degree of  accuracy. (See, for example, DICKSON and WAT- 
I:RS (1991, Table 5)). 

We conclude that ~t is possible to successfully approximate rum probabilities for 
the classical continuous time compound Polsson model by those for a compound 
binomial model The mare advantage m using the compound binomial model ~s that 
it is not necessary to perform recurslve calculations to find the probablhty functmn 
b (x) to use formulae (5.1) and (5.2). However, this advantage is outweighed by the 
fact that a large value of/3 is required when using the compound binomial model in 
order to obtain a good approxlmatmn to V), (u). 
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