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ABSTRACT 

We consider compound distributions where the counting distribution has the 
property that the ratio between successive probabilities may be written as the 
ratio of  two polynomlnals.  We derive a recurslve algorithm for the compound 
distribution, which is more efficient than the one suggested by PANJER & 
WILLMOT (1982) and WILLMOT & PANJER (1987). We also derive a recursive 
algorithm for the moments  of  the compound distribution. Finally, we present 
an apphcat ion of the recursion to the problem of calculating the probablhty of  
ruin in a pamcu la r  mixed Poisson process. 
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I.  INTRODUCTION 

Let 

N 

x=Zr; 
i=l 

denote the aggregate claims amount  where X = 0 if N = 0. It is assumed that 
the severities Yi, Y2,- - are mutually independent and dxstrlbuted on the 
non-negative integers with common probabili ty function 

( I . I )  f,, = P ( r ;  = y), y = 0, l, .. 

It is further assumed that N is stochastically independent of  1:1, Y2 . . . .  with 
probabili ty function 

P n =  P ( N = n ) ,  n = 0 ,  1 . . . .  

The compound distribution 

(1.2) gx = P . fx  , 
n=0 
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where f * "  denotes the n-th convoluhon of  f ,  can sometimes be calculated 
recursively. PANJER (1981) derived his by now famous recursive formula for the 
case where the counting probabilities p,  satisfy the recursive relation 

an+b 
(1.3) Pn - P , - i ,  n = I, 2, .. 

n 

SUNDT & JEWELL (1981) showed that (1.3) Is satisfied by the Polsson, the 
binomial, and the negative binomial &stributlons, and no other. PANJER & 
WILLMOT (1982) went on to consider the class of  counting distributions which 
satisfy a recursion 

k 

Z a,n' 
t=0 

(1.4) P , - - - P n - i ,  n =  1,2 . . . . .  k 

b,n' 
,=0  

for some k, and derived recursions for the compound distribution when k = 1 
and k = 2. These recurslons were further developed by WILLMOT & PANJER 
(1987). Recursions for a different extension of  the class (1 3) can be found m 
SCHROTER (1990) and SUNDT (1992). 

In the case of  arbitrary k, it is clearly not possible to give a complete 
characterization of  the class (1 4). OR D (1967) characterizes those &stnbut lons 
which satisfy a difference equation analogous to Pearson's &fferentlal equa- 
tion, and also derives a recurswe relation for the (factorial) moments.  Also 
GULDBERG (1931) considered recurswe calculation of moments  for certain 
members of  the class (1.4). 

Impor tan t  distributions satisfying (1.4), which are not already covered by 
(1 3), are the hypergeometnc distribution (k = 2), the Polya-Eggenberger 
distribution (k = 2), the Warmg distribution (k = 1), and the generahzed 
Waring distribution (k = 2). 

Note  that the coefficients a, and b, appearing in (1.4) are only specified up to 
a multiplicatwe constant. 

In this paper we consider the class (!.4) and derive a new recursion for the 
compound distribution (Section 2) The derivation is elementary, and is valid 
for arbitrary k. In Section 3 we derive a recurslon for the moments  of  the 
compound distribution. In Section 4 the proposed recurswe formula for the 
compound distribution is compared to that of  WILLMOT • PANJER (1987) for 
k = 1 and k = 2, and is found to be more efficient. In Section 5 we present an 
apphcatlon of  the recursion to problem of  calculating the probability of  
eventual ruin m a (particular) mixed Poisson process. 
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2.  R E C U R S I O N  FOR T H E  C O M P O U N D  D I S T R I B U T I O N  

Assume that p ,  satisfies (1.4) For  t = 0, . , k we define the auxiliary func- 
tions 

I ~t tt (2.1) at . ,  = n p , t f ,  , x = O, 1 . . . .  
n=0 

and note in particular that  90., is the c o m p o u n d  distribution (1.2). Let 

(2.2) 9,  = (90, ~, . . . ,  9k. 0 ' ,  

and let m denote the smallest integer for which f , t  > 0. Thus,  fy = 0 for 
y = 0 , . . ,  m -  1. The following result gives a recurslon for the vector 9.,, and 
hence the c o m p o u n d  distribution 90.,. 

Theorem ! :  Assume that  (1.4) holds true. With initial values 

t ~t (2 3) 9,,0 = p , n  Jo,  t = 0 . . . . .  k ,  
n~0  

a t ,  x ~ o r  

the c o m p o u n d  distribution g, = 9o., 
recurswely as 

9 ,  = T(-I  t , ,  

where 

(2.4) T~= 

and t.r 

(2.5) 

(2 6) 

t = 0  . . . . .  k, x =  1 . . . .  m - l ,  

may  be obtained by calculating g., 

x _ > m V  I ,  

1 - m / x  0 . . .  0 

0 I - m / x  . .  0 

+ 

0 0 

(bo-foco) (b~ -fool) 

= (to . . . . . .  t~.x)' is given by 

I ~  { m + y  
tt r - f , ,+)  - gt+l ,~-y 

' f m  y = l  X 

± i [ k , x  = f y  c t g t ,  x - ~  , 
y = m  V I t=0 

. °  . 

° .  

1 - -  m / x  

(bk-L -fock-t) (bk--foCk) 

y-x } 
9,..,_,, , t < k ,  

X 

with 
k 
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Remark  2.1. No te  that  T~ does not depend on the values of  9 .... and that  tx can 
be calculated when g~ is known for  all z < x. [] 

P roo f :  The  expression (2.3) is obta ined  f rom the de f inmon  (2 1) o f  g,,~ by 
not ing that  f0 * n = f 0  n. Also the fact that  g,,x=O for x =  l , . . . , m - I  is an 
immedia te  consequence  o f  (2.1) since f f l  n = 0 for  x = 1 . . . .  m -  1. 

F r o m  DE PRIL (1985) we have the identity, 

y-O X 

Mult ip lying (2.7) by pn n' and summing  over  n >_ 0 yields 

By o m i t t i n g  t e rms  c o r r e s p o n d i n g  to y = 0 , . .  , m - I  f r o m  the s u m m a -  
t ion and  s u b s U t u t i n g  x = x - m ,  we o b t a i n  a f t e r  a ht t le  r e a r r a n g e m e n t  tha t  

m 
(2 9) g,.~ - -  gt+l.* = t .... 

X 

where t,.~ Is given by (2.5). F rom assumpt ion  (1.4) we obtain  for n _> 1 that  

k k k 

(2.10) P" E b,n' = p._, E a,n' = p._, E c , (n-  l)', 
t=0  s=0 t=0  

where 

(2 11) 
k 

~ f f , ( n - I )  Mult iplying (2 10) byf~*"  = y=0JyJ , , -y  and summing  over  n > 1 yields 
for x ~ I the relat ion 

(2 12) E b,g,., = E f~,c,g,.x-y, x > I. 
t~0 ~-0 y = 0  

By ~solatlng terms revolving g,., on the left-hand side, we rewrite (2 12) as 

(2.13) E ( b , - f 0 c , ) g , , , =  tk, , ,  x>_ 1, 
t=O 

where t~. ~ is given by (2.6). The  hnear  equat ions  TxOx = t~, with T, given by 
(2.4), now follow f rom (2.9) for t = 0 . . . . .  k -  I and (2 13) Q E D  

Remark  2.2. It is useful to consider  separate ly  the to cases where m > 0 
(f0 = 0) and m = 0 ( f0  > 0). 
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m > O  

m = O .  

When f0 = 0 we note f rom (2.3) that  90,0 = P0 and g,,o = 0 for  i >  1 
Note  also that  the terms foe, in the last row o f  T, d i sappear  in this 
case. 

The  hnear  equat ions  Txg,  = t ,  are easily solved analyt ical ly in this 
case, and we obtain  that  

1 f y  g , + l , , : - y  + - -  g , , a - y  , i < k ,  
(2.14) 9,., f0 y=l x 

1 { .fy c , o , , , - y  + ( foc_b , )9 , ,  ~ . 
(2 .15)  9 k . x -  b k - f o c ,  y=t  ,=o ,=o 

The  initial values g,.o may  be expressed in terms o f  the derivatives ¢P(J)(f0), 
j = 0 . . . .  k, where {o(.) denotes  the probabi l i ty  generat ing funct ion of  the 
count ing  dis tr ibut ion However ,  for the class (I .4)  o f  count ing  distr ibutions,  
there is In general no simple expression for ¢(-). 

[]  

Example  1: The  War ing  dis tr ibut ion arises as a mixed geometr ic  dis t r ibut ion 
with a beta mixing function. I f  P ( N =  nip) = ( 1 - p ) p " ,  and p,-~ Beta (a, fl), 
then 

B(~+n,  f l+ 1)  
pn = 

B (o~, fl) 

and 

n + ~ - I  
P, - - -  Pn- t • 

n+~x+fl 

This cor responds  to (1.4) with k = I and 

a 0  = ~ - - I  a t = 1 

b 0 = ~ + f l  b l =  1, 

C 0 = 0 ~  C I = 1 

where c, is obta ined f rom (2 I I). []  

Example  2: For  the hypergeomet r ic  distr ibution with pa ramete r s  (s, D, S),  (o) ,o) 
n s - - R  

p,  = ,) 
S 



24 OLE HESSELAGER 

it ho lds  that  

[ n - ( D +  1)] [ n - ( s +  1)] 
P ,  - Pn-  I,  

n [ n + ( S - O - s ) ]  

which c o r r e s p o n d s  to (1.4) with k = 2 and 

a0 = ( D +  1) ( s +  1) al = - ( D + s + 2 )  a2 = 1 

b o = 0  b I = S - D - s  b 2= 1. 

Co = Ds c I = - ( D + s )  c2 = I 

[] 

Example  3 :  The  Po lya -Eggenbe rge r  (Negat ive  H y p e r g e o m e t n c )  d i s t r ibu t ion  
arises as a mixed b inomia l  d i s t r ibu t ion  w~th a beta  m~xlng funct ion.  The  
p robab i l i t y  func tmn 

satisfies 

p. = 

o ~ + n - I )  f l + M - n - I  

n M - n  

( o~+fl+ M - 1 )  

M 

) 

p. = In - ( M  + I)] In + (~ - 1)] 
- - P . -  i ,  

n [ n -  ( M  +fl)]  

which c o r r e s p o n d s  to (1 4) with k = 2 and 

a 0 = - ( M +  1) ( c ~ -  1) a l  = - ( M - ~ + 2 )  a2  = 1 

b o = 0 bl = - ( M + / ] )  b2 = 1. 

c 0 =  - M ~  cl = ( o ¢ - M )  c2 = 1 

[]  

Example  4 :  The  gencrahzed W a r l n g  d i s t r ibu t ion  arises as a mixed negat ive 
b inomia l  d i s t r ibu t ion  with a beta  mixing funct ion,  

and  

F(c+.) F(~+I~) r(~+n) rq3+c) 
Pt l  ~" 

F(c)n! F(~) F(/3) F(~+/S+c+n) 

[n + ( c -  1)] [n +(~x- 1)] 
P. = - P.- l 

n [ n + ( ~ + p + c - 1 ) ]  
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This co r r e sponds  to (1.4) with k = 2 and 

ao = (oc-  1) ( c -  I) al = ( ~ z + c - 2 )  a 2  = 1 

bo = 0 bl  = o ~ + f l + c -  1 b2 = 1. 

C 0 : O~C C I : O~'q'-C C 2 = 1 

[]  

3. RECURSIVE CALCULATION OF MOMENTS 

F o r  the class (l 3) o f  count ing  d i s t r ibu t ions  It was po in ted  ou t  by DE PRIL 
(1986) that  also the m o m e n t s  m s =  EX ~, s = 0, 1 . . . . .  o f  the c o m p o u n d  
d i s t r ibu t ion  can be ca lcu la ted  recursively in a s imple  manner .  Express ions  for  
the m o m e n t s  m s are useful if one wants  to ca lcula te  the NP-  or  Edgewor th  
a p p r o x i m a t i o n  to the c o m p o u n d  d i s t r ibu t ion  as an a l te rna t ive  to the (exact)  
recursive me thod .  

Let  

/ ~ =  EYi ~ 

deno te  the s ' th  m o m e n t  a r o u n d  the origin o f  the severi ty d i s t r ibu t ion ,  and 
define 

09 

E xS , (3.1) m , . , =  . g , , ,  
a=0 

where g, , ,  is the aux lha ry  funct ion (2. I). No te  m pa r t i cu la r  that  rn s = rno. s IS the 
s ' th  m o m e n t  o f  the c o m p o u n d  d i s t r ibu t ion .  The  fo l lowing result  gives a 
recurs lon for the vec tor  (m0,~, . . ,  rnk. 0, s = 0, I . . . . .  and  hence the m o m e n t s  
m~ 

Theorem 2: Assume  that  (I 4) holds  true. Wi th  initial  values 

(3.2) m,, o = EN' = p,~n , t = O, . , k ,  
n=O 

the momen t s  ms = m o t  o f  the c o m p o u n d  d i s t r ibu t ion  may  be ob t a ined  by 
ca lcula t ing  (m0.s, . . . ,  ink . , )  recursive[y for s = 1, 2 . . . .  as 

~ - I  s - I  

(3.3) m ,  ~ = E I t s - j r n , +  I . j - -  It~ w m , . ~ ,  I < k ,  
s=0 j s=l 1 'E  k ? 

- c, I t ~ - j m , j +  E ( c , - b , ) m , . ,  
(3 4) mk, s b ~ - c l ,  ,~o j=o j ,=o 

Remark  3.1. When  (m0 . . . . . .  ink,.) is known for u < s, one calcula tes  rn,,~ for  
t = O, . . . ,  k -  1 f rom (3.3) and  then mk,  s from (3.4). [ ]  



26 OLE HESSELAGER 

Proof:  According to (3.1) and (2.1) the initial values are given by 

m,,o= ~ 9,..,= ~ ~.~ n'p,,f~*"= ~.~ pnn'. 
~=0 ~ 0  n=O n=O 

To verify (3.3) we multiply (2.8) by x ~, s_> 1, and sum over x > 0  to 
obtain 

= L ~ y x  g,+~ , _ ~ + ( y x ' - l - x S ) g , , _ ~ } .  
x=0 y=0 

By changing the order of  summation and using the binomial formula 

(35) xS = ~ ( s ) j 

(and the simdar expression for x ~-I) it follows that 

Iy~ (s-I)ys_l_J(m,+lj+m,,j)_ ~ (s) 1 0 = fy y~-Jrn,,j 
y=0 j=0 J j ~0  J 

s 

j=o J j=o j 

Equation (3.3) now follows by extracting the term corresponding to j = s 
from the last sum and making use of  the fact that 

s - I  s - - I  

To verify (3.4), multiply (2.12) by x , s _> l, and sum over x >_ 0 to obtain 

Z b,m,,, = E xS~'g',~-y c'' 
~=0 t - 0  x ~ 0  y=0 

By changing the order of  summation and using (3 5), tt follows that 

2 2  " (3.6) b, rn,,, = . c,y "-j m,j 
t~0 t - 0  ~=0 j=0  J 

, ± ( s )  
_ _  C t fl~_jm~,j, 
t-O j~O J 

and (3.4) follows by solving (3.6) for ink, ~. QED 
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4. COMPARISON WITH THE RECURSIONS OF WILLMOT & PANJER (1987) 

In PANJER & WILLMOT (1982) It is demonst ra ted  how recursions for the 
c o m p o u n d  distribution may be obtained by use o f  generat ing funct ions;  in 
princJple for arbi t rary k when the count ing  distr ibution satisfies (1.4). Fo rmu-  
las for the cases k = I and k = 2 are found m WILLMOT ~t~ PANJER (1987). We 
cite the following recursive procedure :  

Define the auxiliary function 

(4.1) qo = m,  

( x + m ) f ~ + m  ~-~ fy+m 
- -  ~.~ ~ - q x - y ,  

q~ fm y=l A ,  

where m is the smallest integer such that f m >  O, and also 

t o = r - l ,  

( x + r ) ( x + r - l ) f ~ + r  ~ ( y + r ) f ~ + ,  
(4.2) t~ = - - -  tx-y ,  

rfr y=l rfr 

where r ~s the smallest integer such that rfr > O. 
For  k = I the class (1.4) may  be rewritten as 

fi(n-l)+,~ 
P, - P , -  t, n = 1, 2 . . . .  

o~n+ 1 

and the c o m p o u n d  distribution g~ satisfies the recursion 

p o q , +  ~ [ ( J 3 ( y - x ) + t c y ) f y - q y ] g . ~ _ y  
y =  I 

(4.3) gx = 
x (o~ - fifo) + qo 

For  k = 2 and b0 = 0 we may rewrite (1.4) as, 

f i ( n -  1) ( n -  2)+ x ( n -  l ) + g  
Pn = - -  P n - t ,  n =  1 , 2 , . . .  

n ( n -  I ) +  ~xn 

Define a new set o f  auxiliary funchons,  

(4.4) u , =  ~ yq~_y f y ,  v , =  ~ t.,_~fy, 
y=0 y~0 

and g~ can be calculated recursavely as 

Yx_yk~.,y 
y=[ 

(4.5) gx = , 
x [(x - t o - I ) ( I - fifo) + o~qo] 
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where 

(4.6) kx.y = (x -y )  {ty-Ctqv-flVy+[Ky+fl(x-y- 1)] ffy}-C-JUy. 

It is interesting to compare  the recurslons (4.1)-(4.6) to the one proposed m 
Theorem 1. 

Each step in the proposed  recurslon involves (k + I) summat ions  o f  the type 
Z'y=l f~.h,,y (for some function h.,.,.).. The number  o f  computa t ions  involved 
with the calculation o f  g, when g0 . . . . .  gx-~ are known is therefore propor-  
tional to x, and the number  o f  computa t ions  revolved with g,  is o f  order  x 2. In 
practice, the seventy distr ibution fy  has finite suppor t  such that fj, = 0 for 
Y > Ymax, say. In this case the sum E '  f~h involves only Ymax non-zero y = l  . ~ 

terms, and the number  o f  computa t ions  involved with g,  is of  order  x. 

TABLE I 

C O M P U T I N G  T I M E ,  mmutea seconds T O  O B T A I N  (.Jr F O R  k = 2 W H E N  fy HAS F I N I T E  S U P P O R T  

WITH )'max = 5 0  

m > 0 m = 0 Wdlmot & Panjcr 

200 
400 
600 
800 

1000 
[ 200 
1400 
1600 
1800 
2000 

0 04 
0 09 
0 14 
0 20 
0 26 
0 32 
0 39 
0 46 
0 54 
1 02 

0 04 
0 08 
0 13 
0 19 
0 24 
0 30 
0 37 
0 44 
0 51 
0 59 

0 07 
0 22 
0 45 
I 16 
I 54 
2 41 
3 37 
4 43 
5 54 
7 18 

Also the recursxons (4.3) and (4.5) o f  WILLMOT & PANJER (1987) involve 
summat ions  Z~,_ i. However ,  these sums do not  simplify in the case where f,. 
has finite support ,  and the total number  o f  computa t ions  is therefore o f  
order  x 2 

Table 1 shows for k = 2 thc total comput ing  time as a function o f  x for the 
recurslon o f  WtLLMOT & PANJER (1987) and for the proposed recurslon. For  
the latter, we have treated separately the two cases where m > 0 and m = 0 (see 
Remark  2 2). In the first case we have p rog rammed  the recurslon as presented 
in Theorem l, and the matrix T, has been inverted using STSC A P L  standard 
facilities. In the latter case we have used the formulas (2.14) and (2 15) The 
computa t ions  were done  on a 486,50 m H z  PC. The severity distribution has 
been chosen such that Ymax = 50 It should be noted that the comput ing  time 
does not depend on the actual choice o f  parameters  for the count ing 
distribution, and also not  on the actual choice o f  severity distribution (except 
for the choice o f  Ym~x) The results are also displayed in Figure 1, where the 
comput ing  t i m e s  ( in  seconds) are shown as a function o f  x It is seen that the 
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Computlng time = m>0 
Seconds - A . m = O  

W, l lmot & P a n j e r  

450 

405 

560 

515 

270 

225 

180 

1 35 

90 

45 

0 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

X 

FIGURE l C o m p u t i n g  t ime to o b t a m  ,9,, fo r  k = 2 when  fy has  fimte s u p p o r t  wi th  Yrnax = 50 

total computing time is linear in x for the proposed recurslon and quadratm for 
the recurslon of WILLMOT & PANJER (1987). 

With a hypergeometric counting distribution (k = 2) we have checked the 
recursions for numerical instabilities We consider two different severity 
distributions, 20 

fl,y = e-3Y/ ~ e-3Y, y = 0 . . . .  20. 
y ~ 0  

f2.y = 1/150, y = 0 . . . .  ,149 .  

The dlstribuuon f l  is very short-tailed with a high probabih tyf0  = 0.2837 of  
zero-claims. The second distribution f2 is more heavy-tailed with a " l a r g e "  
average claim size EY = 74.5 For  each of the severity dtstr ibutlonsfi  and f2 we 
have calculated the compound distribution using a hypergeometric counting 
distribution with parameters (s, D, S) (see Example 2), where D = S/4 and 
s =  qS, and (S, q) varies in the set {40, 100, 200} x {0.25,0.5, 0.75}. The 
corresponding average number of  claims, E N =  sD/S = qS/4 is shown in 
Table 2. For  the proposed recursion, m > 0, we have shifted the distr lbutionsfl  
and f2 one step to the right, such that m = I in this case. The check for 
numerical instabihtms was performed by simple graphical inspection. In 
Table 3 we have indicated by a * those cases where instabihtles were found. All 
computat ions were continued until the 99.5% fractlle of  the compound 
dmtnbutions was reached. 
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T A B L E  2 

AVERAGE NUMBER OF CLAIMS, EN = qS/4 

q = 0 2 5  q = 0 5  q = 0 7 5  

S = 40 2 5  5 7 5  
S = 100 6 25 12 5 18 75 
S = 200 12 5 25 37 5 

T A B L E  3 

NUMERICAL INSTABILITIES FOR COMPOUND IIYPERGEOMETRIC DISTRIBUTIONS 
INSTABILITIES ARE INDICATED BY A * 

Seventy  d is t r ibu t ion  f t  Seventy  d~s tnbuuon  f~ 

q = 0 2 5  q = 0 5  q = 0 7 5  q = 0 2 5  q = 0 5  q = 0 7 5  

m >  0 

S =  40 

S =  100 

S =  200 

m = 0  

S = 40 

S = 1 0 0  * 

S =  200 * * * * 

I Wdlmot  & Panjer  

S= 40 

SS= 100 * * 

= 200 * * 

It is noted that no instabtlities were found for the proposed recurston in the 
case where m > 0. The recursion of  WILLMOT & PANJER (1987) was unstable 
for the severity &str ibut ionf2,  when the average number of claims exceeds 10 
(m this case). These instabilities can be attributed the accumulation of 
round-off  errors. The proposed recurslon, when m > 0, was unstable for 
" l a r g e "  values of  S and " s m a l l "  values of  q--Irrespective of which severity 
distribution was used. An explanation for this instabihty can be found by 
examining the expression for gk.x m (2 15) This expression involves subtraction 
of  terms b,g, ,x ,  i < k, and subtraction (of equally large numbers) is known to 
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increase the relative errors. For the hypergeometric distribution it holds that 
b0 = 0 and b2 = 1, whereas bt = S - O - s  (see Example 2). For  the present 
combination of  parameters it holds that b~ = S ( 0 . 7 5 - q ) ,  which assumes its 
maximum when S is " l a r g e "  and q is "smal l  ". In general, we would therefore 
expect that the proposed recursion is unstable for rn = 0 when S - D  ~ s and 
stable when S - D  ~ s. 

It should be noted that all calculations were done with single preosion,  and 
that the results could (obviously) be improved by using double precision. 

Let 

5. CALCULATION OF RUIN PROBABILITIES 

Nit) 

s(t)= ~ z,, 
t=l  

where N ( t )  denotes the number of  claims incurred during [0, t], and 
Z~, Z 2 . . . .  , denote the corresponding claim amounts.  The amounts  Z, are 
assumed to be independent of  N ( t )  and mutually independent with common 
distribution H. The average claim size is denoted by u = EZt.  

If  premiums are paid continuously at a rate B pr. time umt, the maximal loss 
incurred is 

L =  sup { S ( t ) - B t } ,  
t>O 

and the probability of  ultimate ruin is 

~ ( u )  = P(L  > u) ,  

where u denotes the initial capital. Assume that B =  ( l+0)2 /z ,  where the 
relative safety loading 0 is non-negative. It is a well known result (see e.g. 
BOWERS et al., 1986) that if {N(t)} is a t ime-homogeneous Poisson process with 
claims rate 2, then 

M 

(5.1) L ~ L,, 

where M has a geometric distribution 

I 
(5.2) P ( M = m ) = ( I - p ) p " ' ,  p - , m = O ,  1 . . . .  

1 + 0  

and L~, L2,. .  are mutually independent with common density 

(5.3) f ( y )  = (1 - n ( y ) ) / l ~ .  

PANJER (1986) suggested a discrete approximation to f ( y ) ,  and then to 
calculate ~ (u) recursively by means of  the Panjer-recursion, which is valid in 
the case of  geometric counting distributions. 
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Consider now the case where {N(t)), conditionally given A = 2, is a Poisson 
process with claims rate 2. Since, in this case, 

M 

(LIA = 2) -L-~ L,, 
~0 

with M and L, being distributed as before, it follows that 

M' 

L ~ L,, 
t=0 

where L, stdl is distributed according to (5.3), and M '  has a mixed geometric 
distribution. I f  we take a beta mixing function with parameters (~,fl) for p 
appearing in (5.2), it follows that M '  has the Waring &stribution from 
Example 1. Using the same method as suggested by PANJER (1986) for 
discrettzlng the density (5.3), we may then apply Theorem I with k = 1 to 
obtain a recurswe method for calculating ~ (u). 

Note,  that if p is beta distributed with parameters  (c~, fl), then the claims rate 
A ts distributed as (B/It)U, where U ts beta distributed with parameters 
(~, ~). 
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