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ABSTRACT 

In this paper we present algorithms to calculate the probability and severity of 
ruin in both finite and infinite time for a discrete time risk model. We show 
how the algorithms can be applied to give approximate values for the same 
quantities in the classical continuous time risk model. 
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1. INTRODUCTION 

The probability and severity of ruin for the classical continuous time risk 
model was first discussed in a paper by GERBER et al. (1987). Using their 
notation, G(u,y) represents the probability that ruin occurs given initial 
surplus u and that the deficit at the time of ruin is less than y. In that paper, 
general equations for G(u, y) are derived and explicit solutions are found for 
certain individual claim amount distributions. This work was extended by 
GERBER and DUFRESNE (1988) who found explicit solutions for G(u, y) when 
individual claim amounts were distributed as a combination of exponential 
distributions. DICKSON (1989) showed that approximate values of G(u,y) 
could be calculated by a recursive method by defining a relationship between 
survival probabilities and the density of G (u, y). 

DICKSON and WATERS (1991) present a recursive algorithm to calculate 
survival probabilities for a discrete time risk model which can be used to 
approximate to survival probabilities in the classical continuous time risk 
model. In the present paper, we show how these methods can be adapted to 
calculate approximate values of G(u,y). 

We also present a recursive algorithm for the approximate calculation of the 
probability and severity of ruin in finite time. Our algorithm is derived from an 
algorithm presented by DE VYLDER and GOOVAERTS (1988) for the approxi- 
mate calculation of finite time ruin probabilities. 
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2. PRELIMINARIES 

In this paper  we are interested in the classical continuous time risk model 
defined as follows. The claim number  process is a Poisson process and 
individual claim amounts  are identically distributed and are independent both 
of each other and of the number of  claims. It is assumed that individual claim 
amounts  are non-negative and have finite mean. Without loss of  generality we 
assume that the Poisson parameter  is 1 and that the mean individual claim 
amount  is also I. Premiums are assumed to be received continuously at a 
constant rate. Premiums are calculated using a loading factor 0 ( >  0) so that 
the premium income per unit time is (1-t-0). The stochastic process {0Z(t)},a0 
denotes the surplus at time t, given an initial surplus 0Z(0), which we denote u. 
(We use the subscript " 0 "  to indicate that we are dealing with our initial 
model.) The time until ruin for this process, denoted 0T, is defined as 
follows : 

o T = inf{ t :oZ(t)  < 0, t > 0} 

= oo if oZ(t)l>O for all t > 0  

We are particularly interested in the probability and severity of  ruin for this 
process, i.e. the probabili ty that ruin occurs and that the surplus at the time of  
ruin does not go below a given amount,  say - y ,  where y > 0. We denote this 
probabili ty oG(u,y) and define it as follows: 

oG(u,y) = P [ 0 T <  0o and -oZ(o  T ) < y ]  

We define the probabili ty and severity of  ruin in finite time, denoted 
oG (u, y, t ), as follows: 

oG(u,y , t )  = P [ o T < t  and - 0 Z ( 0  T ) < y ]  

The probabili ty of  ruin in finite time for this process is denoted 0~(u, t) and 
is defined as follows: 

o~(U, t) = P[oT_< t] 

Our objectives in this paper are to obtain numerical values for, or at least 
approximations to, oG(u, y) and 0G(u, y, t). To do this we consider a second 
risk model which is still a compound Poisson risk model and can be regarded 
as a rescaled and discretized approximation to the initial risk model. The 
characteristics of  this second model are: 

(2.1) - -  individual claim amounts  are distributed on the non-negative inte- 
gers and have mean fl, where fl ( >  1) is an integer, 

- -  the Poisson parameter  for the expected number of  claims per unit 
time is I/[(1 +0)f l ] ,  

- -  the premium income per unit time is 1. 

The method for constructing this second risk model and the reasons why it 
can be regarded as an approximation to the initial model are discussed fully by 
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DICKSON and WATERS (1991, Section 1). The discrete time stochastic process 
n oo {Z( )},=0 denotes the surplus at time n for the model specified by (2.1) given 

an initial surplus of Z ( 0 ) - - u ,  which we shall always assume to be a 
non-negative integer. An important feature of  this model is that the aggregate 
claims in each unit of  time are distributed on the non-negative integers so that 
in one unit of time the surplus can increase by 1 (if the aggregate claims are 0), 
stay at the same level (if the aggregate claims are l) or decrease by an integer 
amount. The (discrete) time until ruin for this model is denoted T and defined 
as follows: 

T = min {n:Z(n)  ~< 0, n = 1, 2 . . . .  } 

= oo if Z ( n ) > 0  for n = 1,2 . . . .  

Note that we regard hitting zero as being ruined. This is because we are 
approximating continuous time probabilities by discrete time probabilities. If  
the surplus in discrete time hits zero then, with probability one, it was below 
zero in continuous time immediately prior to passing through zero. DICKSON 
and WATERS (1991, Section 8) discuss this point at greater length. Note also 
that if the initial surplus is 0 then ruin does not occur at time 0 but will occur 
at time 1 unless the aggregate claims in the first time period are 0. The 
probabilities of ruin in finite time and in infinite time for this process are 
denoted ~(u, t) and ~ (u )  respectively and are defined as follows: 

~u(u, t) = P[T  <_ t] 
qJ(u) = P[T < oo] 

The probability and severity of ruin in infinite and finite time for the model 
specified by (2.1) are denoted G(u, y) and G(u, y, t), respectively, where y is a 
positive integer, and are defined as follows: 

G(u,y)  = P [ T < o v  and - Z ( T ) <  y] 

G ( u , y , t )  = P [ T < t  and - Z ( T ) <  y] 

For any choice of values of u, y, t and fl such that fl, yfl and tfl(l +0)  are 
positive integers and ufl is a non-negative integer, we regard ~'(ufl, tp(l  +0)),  
G(ufl, yfl) and G (ufl, yfl, tfl(l + 0)) as approximations to 0~ (u, t), 0G (u, y)  and 
oG(u, y, t), respectively, for the reasons given by DICKSON and WATERS (1991, 
Section 1). In general, the larger the value of  fl, the better we would expect 
this approximation to be. 

In the following section we present an algorithm which can be used to 
calculate G(u, y)  and in Section 4 we present some numerical results illustrat- 
ing the use of this algorithm. In Section 5 we present an algorithm for the 
calculation of  G(u, y, t) and finally in Section 6 we present some numerical 
results illustrating the use of  this second algorithm. 

Before doing this we need some more notation. For  k = 1, 2 . . . .  we denote 
by fk and F(k) the probabilities that the aggregate claims in a single time 
period are equal to k and are less than or equal to k, respectively. Note thatfk 
can be calculated using PANJER'S (1981) recursion formula since the aggregate 
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claims have a compound Poisson distribution with individual claim amounts 
distributed on the non-negative integers. 

3. THE PROBABILITY AND SEVERITY OF RUIN IN INFINITE TIME 

By considering aggregate claims in the first time unit we can write 
U+)' 

G(u,y) = f jG(u+l - j , y )  + E fJ for 
J = 0  J = U +  1 

• ~G(u+l - j , y )+F(u+y) -F(u)  
j=0  

Hence 

(3.1) G(u+l ,y)= fo -I 

f o r u =  1 , 2 , 3 , . . . .  

G(u,y) - 

u = 1,2, 3 , . . .  

~ fiG(u+ 1 -j ,  y)+F(u)-F(u+y))  
j = l  

Thus we can calculate values of  G(u, y) recursively from (3.1) provided that 
we can calculate G(0, y),  since 

G(0, y)  = f0 G( l ,  y) + F(y) -  F(0) 

and hence 

G (1, y) = fo-'(G (0, y)+ F(O)-F(y)) 

We can find G(0, y)  by using a method similar to that of  DUFRESNE (1988, 
Section 3). For  a fixed value of y, define 

d(0) = G(0, y)  and 

d ( u ) = G ( u , y ) - G ( u - l , y )  for u= 1 , 2 , 3 , . . .  

Then 
u--] 

d(u)= ~ f jd(u+l- j )+f ,G( l ,y )+f ,+y- f ,  for u =  1 , 2 , 3 , . .  
j=0  

= ~ fjd(u+ I -j)+f,+.,,-f,+f,d(O) 
j=0  

Also, note that 

(3.3) a (0 ,  y)  = d(0) = f0 G(1, y)+ F(y ) -  F(O) 
= fod(l)+foa(O)+ F(y)-F(O) 

sXd(x) H(s) o~ Now define J(s) = and = sX f~:. 
x=O x=O 
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Note that both these generating functions exist for Isl ~ 1. 

Then J(s) = d(O) + ~ sXd(x) 
x = l  

= x~ ' s x d(O) + f j d ( x+ l - j )  + 
= j = 0  x = l  

s ~ ( L + y - L )  

+ f0 d(1) +f0 d(0) + F(y) -fo 

(using (3.2) and (3.3)) 

x=O j=O x=O x= l  x=O 

= ~ s x ~ f jd(x+l- j )+(d(O)- l )H(s)  + ~ sXfr+y+F(y-1) 
x=O j=O x=O 

oo 

=s-t H(s)(J(s)-d(O))+(d(O)-l)H(s) + 2 s~f~+, '+F(y-1) 
x=0 

and hence 

(3.4) J ( s ) =  

o~ 

2 
x=0  

sX fx+y + F(y - l ) - s  -I H(s) d(0)+  ( d ( 0 ) - 1 )  H(s) 

l - s  -I H(s) 

Now note that J ( l ) =  lim G(x,y)= 0, and that H ( I ) =  1. Hence we 
X~O0 

can find d(0) from (3.4) by setting s = 1. With s = 1, both the numerator and 
denominator of (3.4) are zero, so by applying L'H6spital 's  rule we find that 

x=O x=O 

y 03 y -  I 

= 2 fly +y Z fJ= Z (1-F(j)) 
j = ]  j = y + l  j=O 

(3.5) 

y - I  

i.e. G(O,y)= 2 (1-F(j)) 
j = 0  

Hence we can calculate G(0, y)  as it is expressed in terms of  the distribution 
function of aggregate claims per unit time. Note that by letting y ~ ov on the 
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right hand side of (3.5) we find the mean of the distribution, i.e. 1/(1 +0). 

As lim G(O,y) = ~u(0), we see that the limiting form of (3.5) is consistent 
y~oO 

with the expression for the survival probability from initial surplus zero given 
by DICKSON and WATERS (1991, Section 7). It is interesting to compare our 
expression for G(O,y) with that for oG(O,y). Integrating equation (4) of 
GERBER et al. (1987) we find that, using their notation 

(3.6) 0G(0, y) = -  ( l - P ( x ) ) d x  
C 0 

where 2 is the Poisson parameter, c is the premium income per unit time and 
P(x) is the distribution function of individual claim amounts. The right hand 
side of (3.6) equals the expected retained aggregate claim amount per unit time 
under excess of loss reinsurance with retention level y, divided by the premium 
income per unit time before reinsurance. The right hand side of (3.5) gives the 
expected retained aggregate claim amount per unit time under stop loss 
reinsurance with retention level y, divided by premium income per unit time 
(i.e. 1) before reinsurance. By making this comparison, it is reasonable to 
expect that, for a large value of/ l ,  G (0, y/l) will give a good approximation to 
oG(O,y). The reason for this is that for a large value of/ l ,  the probability of 
more than one claim per unit time will be very small and hence stop loss 
reinsurance will be virtually identical to excess of loss reinsurance. For 
example, i f / l  = 100 and 0 = 0.1, then the probability of more than one claim 
per unit time is 0.00004. 

4. N U M E R I C A L  EXAMPLES 

Tables l and 2 show exact and approximate values for oG(u,y) when the 
individual claim amount distribution is exponential. For this distribution, we 
can apply the methods of GERBER et al. (1987) to show that 

1 
oG(u, y )  = 

1+0 
exp {-Ou/(1 +0)} (I - e x p  { - y } )  

In Table 1, the premium loading factor, 0, is 10% and in Table 2 it is 20%. 
The key for these tables is as follows: 

(1) denotes the exact value of 0G(u,y),  

(2) denotes the approximation to oG(u,y), calculated using (3.5) and (3.1), 
with the parameter fl -- 50, 

(3) denotes the ratio of the value in (2) to that in (1), 

(4) as (2), but with fl = 100, 

(5) denotes the ratio of the value in (4) to that in (I). 
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TABLE I 

INDIVIDUAL CLAIM AMOUNTS ARE EXPONENTIALLY DISTRIBUTED 

AND THE PREMIUM LOADING FACTOR IS 0. l 
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u =  0 u = 20 U = 60 U = 100 

y = 1 (1) 0.57466 0.09328 0.00246 0.00006 
(2) 0.57162 0.09279 0.00245 0.00006 
(3) 0.99473 0.99480 0.99491 0.99498 
(4) 0.57314 0.09303 0.00245 0.00006 
(5) 0.99736 0.99738 0.99741 0.99743 

y = 3 (1) 0.86383 0.14022 0.00369 0.00010 
(2) 0.86259 0.14003 0.00369 0.00010 
(3) 0.99857 0.99863 0.99874 0.99883 
(4) 0.86321 0.14012 0.00369 0.00010 
(5) 0.99928 0.99930 0.99933 0.99936 

y = 5 (I) 0.90297 0.14657 0.00386 0.00010 
(2) 0.90268 0.14653 0.00386 0.00010 
(3) 0.99969 0.99975 0.99986 0.99995 
(4) 0.90283 0.14655 0.00386 0.00010 
(5) 0.99985 0.99986 0.99989 0.99990 

y = oO (I) 0.90909 0.14756 0.00389 0.00010 
(2) 0.90909 0.14757 0.00389 0.00010 
(3) 1.00000 1.00006 1.00017 1.00045 
(4) 0.90909 0.14757 0.00389 0.00010 
(5) 1.00000 1.00001 1.00004 1.00012 

TABLE 2 

INDIVIDUAL CLAIM AMOUNTS ARE EXPONENTIALLY DISTRIBUTED 

AND THE PREMIUM LOADING FACTOR IS 0.2 

u = 0 U = 20 u = 60 U = 100 

y = 1 (I) 0.52677 0.01879 0.00002 0.00000 
(2) 0.52422 0.01870 0.00002 0.00000 
(3) 0.99516 0.99528 0.99544 0.98153 
(4) 0.52549 0.01875 0.00002 0.00000 
(5) 0.99758 0.99761 0.99765 0.99357 

y = 3 (I) 0.79184 0.02825 0.00004 0.00000 
(2) 0.79080 0.02821 0.00004 0.00000 
(3) 0.99869 0.99879 0.99895 0.98162 
(4) 0.79132 0.02823 0.00004 0.00000 
(5) 0.99934 0.99937 0.99941 0.99435 

y = 5 (I) 0.82772 0.02953 0.00004 0.00000 
(2) 0.82748 0.02952 0.00004 0.00000 
(3) 0.99971 0.99981 0.99997 0.97859 
(4) 0.82760 0.02952 0.00004 0.00000 
(5) 0.99986 0.99988 0.99992 0.99370 

y = oO (1) 0.83333 0.02973 0.00004 0.00000 
(2) 0.83333 0.02973 0.00004 0.00000 
(3) 1.00000 1.00010 1.00042 1.19154 
(4) 0.83333 0.02973 0.00004 0.00000 
(5) 1.00000 1.00002 1.00011 1.05533 
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In all of  our numerical examples, the discretization of  the individual claim 
amount  distribution is the same as that given by DE VYLDER and GOOVAERTS 
(1988, Section 8). 

We note the following points about Tables 1 and 2: 

(i) For all combinations of  u and y, we get a better approximation to 0G (u, y)  
when fl = 100. We commented in Section 2 that this is what we expected. 
The approximate values are less than the exact values for finite values of  y, 
but in most cases are very close to the exact ones. For a given value of  u, 
the approximations generally improve (i.e. the ratio becomes closer to one) 
as y increases. 

(ii) For a given value of  y, the ratios do not always increase as u increases. An 
example is when y = 3 in Table 2. This, however, seems unimportant, 
particularly in Table 2 where the values of oG(u, y )  are so small for the 
larger values of  u. The approximate values in Table 2 agree to five decimal 
places with the exact ones when u _> 40 and fl = 100. 

(iii) For each value of u, oG(u, 5) is fairly close to the ultimate ruin 
probability. 

Tables 3 and 4 show values for 0G(0, y) when individual claims amounts 
follow a Pareto distribution with distribution function 

(4.1) B ( x )  = 1 - ( l + x )  -2 

For this distribution, we can calculate exact values for 0G(u, y)  only when 
u = 0, and by integrating equation (3.6) we find that 

1 y 
0G(0, y)  - 

1 + 0  l + y  

In Table 3 the premium loading factor is 10% and in Table 4 it is 20%. The 
key to these tables is the same as for Tables 1 and 2, and the same method as 
above has been used to discretize the individual claim amount  distribution. 

TABLE 3 
INDIVIDUAL CLAIM AMOUNTS HAVE A PARETO DISTRIBUTION~ 

THE PREMIUM LOADING FACTOR IS 0.1 AND TIlE INITIAL SURPLUS IS 0 

y =  1 y =  5 y =  I0 y =  oo 

(I) 0.45455 0.75758 0.82645 0.90909 
(2) 0.45278 0.75712 0.82630 0.90909 
(3) 0.99612 0.99940 0.99982 1.00000 
(4) 0.45366 0.75735 0.82637 0.90909 
(5) 0.99806 0.99970 0.99991 1.00000 
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T A B L E  4 

INDIVIDUAL CLAIM AMOUNTS HAVE A PARETO DISTRIBUTION, 
THE PREMIUM LOADING FACTOR IS 0.2 AND THE INITIAL SURPLUS IS 0 
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y =  1 y =  5 y =  I0 y =  oo 

(I)  0 .41667 0 .69444  0 .75758  0 .83333 
(2) 0 .41518 0 .69406  0 .75745 0 .83333 
(3) 0 .99644 0 .99945 0 .99983  1.00000 
(4) 0 .41593 0 .69425 0.75751 0 .83333 
(5) 0 .99822 0 .99973 0 .99992 1.00000 

We note the following points about Tables 3 and 4: 

(i) The approximations are better when fl = 100. Also, for a given value offl,  
the ratios become closer to one as y increases. 

(ii) As in Tables 1 and 2, the approximate values are less than the exact values 
for finite values o f y  and are closer to the exact values when fl = 100. The 
difference between exact and approximate values is small in most cases. 

Tables 5 and 6 show approximate values of  oG(u, y) when individual claims 
have the Pareto distribution given by (4.1) and when u > 0. In this situation, 
we cannot calculate exact values of  oG(u, y). In Table 5 the premium loading 
factor is 0.1 and in Table 6 it is 0.2. The key to Tables (5) and (6) is as 
follows : 

(1) denotes the approximation to oG(u,y), calculated using (3.5) and (3.1), 
with the parameter fl = 50, 

(2) as (1), but with fl = 100. 

We note that the pattern of  results in Tables 5 and 6 is the same as that in 
Tables 1 and 2. In particular, for finite values of  y, the approximations are 

T A B L E  5 

INDIVIDUAL CLAIM AMOUNTS HAVE A PARETO DISTRIBUTION 
AND THE PREMIUM LOADING FACTOR IS 0.1 

U =  20 u =  100 U =  200 

y = 1 (1) 0 .07966  0 .01289  0 .00359  
(2) 0 .07982  0 .01292 0 .00359  

y = 5 (1) 0 .21114  0.03591 0 .01013 
(2) 0 .21124  0 .03593 0 .01014  

y = 10 (I)  0 .28207  0 .05068  0 .01455 
(2) 0 .28213 0 .05069  0 .01455 

y = cO (1) 0 .49815 0 .16486 0 .07633 
(2) 0 .49814  0 .16486  0 .07632  
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T A B L E  6 

INDIVIDUAL CLAIM AMOUNTS HAVE A PARETO DISTRIBUTION 
AND TIlE PREMIUM LOADING FACTOR IS 0.2 

u = 20 u = 100 u = 200 

y = I (1) 0 .04170  0 .00343 0 .00079 
(2) 0 .04178 0 .00344 0 .00080 

y = 5 (1) 0 .11546  0 .01027 0 .00242 
(2) 0.11551 0 .01027 0 .00242 

y = 10 (1) 0 .15818 0 .01528 0 .00370  
(2) 0.15821 0 .01528 0 .00370  

y = ~ (1) 0 .30054  0 .06915 0 .03114  
(2) 0 .30054  0 .06915 0 .03114 

larger when ,B = 100, but are very close to each other for most combinations of 
u and y. One interesting point about Tables 5 and 6 is that values of oG(u, 10) 
are not at all close to the values of 0G(u, ~ ) .  

Unfortunately, for larger values of u than those tabulated, this algorithm 
appears to be unstable, giving probabilities outside the interval [0, 1] for both 
distributions. DICKSON and WATERS (1991, Sections 5 and 7) present a 
pragmatic approach to the problem of instability which can also be adopted for 
this algorithm. 

In terms of numerical accuracy, there is little to choose between this 
algorithm to calculate oG(u, y) and the one presented by DICKSON (1989). A 
major difference between the algorithms is that the algorithm in Section 3 is for 
a fixed value o f y  whereas DICKSON'S (1989) algorithm is for a fixed value of u. 
A second difference is that to apply DICKSON'S (1989) algorithm, calculated 
values for ultimate survival probabilities in our initial model are required to 
calculate oG(u, y). The above algorithm works in the opposite way in the sense 
that the ultimate ruin probability is just the limiting value of oG(u,y). A 
similarity between the algorithms is that to perform the recursive calculations 
in each case values from a compound distribution have to be calculated: for 
the algorithm in Section 3, values from a compound Poisson distribution are 
required; in DICKSON'S (1989) paper, values of the ultimate survival probability 
were required and were approximated using values from a compound geomet- 
ric distribution (see PANJER (1986)). Despite these similarities, we have found 
that the algorithm in Section 3 generally requires less computer time. 

5.  T H E  P R O B A B I L I T Y  A N D  S E V E R I T Y  O F  R U I N  IN F I N I T E  T I M E  

In this section we present a recursive algorithm for the calculation of G(u, y, t), 
where u is a non-negative integer and y and t are positive integers. Our 
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algorithm is based on an algorithm presented by DE VYLDER and GOOVAERTS 
(1988) for the calculation of  finite time ruin probabilities. (See DICKSON and 
WATERS (1991, Section 2) for comments on this algorithm.) 

Our algorithm, which is derived by considering the aggregate claims at the 
end of the first time unit, is as follows: 

(5.1) G(u, y, 1) = F(u+y)-F(u)  

G(u,y,t) = ~ f jG(u+l - j , y , t -1 )+G(u ,y , l )  
j=0 

for u - - 0 , 1 , 2  . . . .  

y = 1 ,2 ,3  . . . .  

t = 2, 3 , . . .  

We can use (5.1) to calculate G(u, y, t) by calculating successively: 

G(w,y, 1) for w = 1,2 . . . . .  u + t - I  
G(w,y, 2) for w = 1 ,2 , . . . , u+t -2  

G(w,y , t - l )  for w = 1 , 2 , . . . , u + l  

and finally G (u, y, t ). 
We can reduce the number of  calculations involved in this procedure by 

discarding very small values o f fk .  This was a device used by DE VYLDER and 
GOOVAERTS (1988, Section 5). Let e be some suitably small positive number. 
We define a sequence {fj"}~°= 0 as follows: 

(5.2) f f = f j  if F(j)<_ l - e  
f f  = 0 if f ( j ) >  l - e  

It follows immediately from (5.2) that for any j _> 0 : 

J J J 

2 I; s:-< Z 
k=O k=O k=O 

We now define G"(u,y, t) as follows' 

(5.4) G~(u,y,l) = F(u+y)-F(u) if F(u)_< l - e  
= 0 i f  F(u)> l - e  

and for t -- 2, 3, 4 , . . .  

(5.5) G"(u,y,t) = ~ f jeG"(u+l- j ,y , t - I )+Ge(u,y ,  1) 
j=O 

The advantage of using (5.4) and (5.5) rather than (5.1) is that the 
summation in (5.5) is restricted to those values o f j  for which fj" is not zero. 
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The error introduced by using (5.4) and (5.5) can be bounded as shown by the 
following Result (see DE VVLDER and GOOVAERTS (1988, Section 5)): 

Result: 

(5.6) G(u,y, I ) - e_<  G~(u,y, 1) <_ G(u,y, 1) 

and for t = 2,3 . . . .  

(5.7) G(u, y, t ) -  2te < G~(u, y, t) _< G(u, y, t) 

Proof: The second inequality in (5.6) follows from the definition of G'(u, y, I); 
the second inequality in (5.7) follows by induction from (5.6) and from noting 
that f j  ' <J} for al l j .  

To prove the first inequality in (5.6) note that G(u, y, I) equals G'(u, y, 1) 
unless F(u) is greater than (1-e ) ,  in which case the former is less than e and 
the latter is zero. 

It remains to prove that:  

(5.8) G(u, y, t ) -2 t e  _< G~(u,y, t) 

First note that (5.8) is true for t -- 1 (and for all u and y). Suppose it is true 
for a particular value of t (and for all u and y). Then: 

G(u, y, t+ l)-G~(u, y, t+ I) = 

+ 

_< 

_< 

_< 

• {~G(u+ 1 - j , y ,  t)-~r'G~(u+ 1 - j , y ,  t)} 
j=0 

G(u,y, l)-G~(u,y, 1) 

~ { f j - f j~}G(u+l - j , y , t )  
j=0 

~ f f  {G (u+ l - j ,  y, t)-G~'(u+ l - j ,  y, t)}+e 
j=0 

{ f j - f f } +  2el ~ fT+e  
j=0 j=0 

e + 2 e t + e  = 2 e ( t + l )  

and (5.8) follows by induction. 

6. NUMER|CAL EXAMPLES 

Table 7 shows approximate values of oG(u,y, t) and, for comparison, of 
oG(u, y) and 0~(u, t) for various combinations of u, y and t and two different 
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TABLE 7 

APPROXIMATE VALUES OF 0G(u,y,  t) AND, FOR COMPARISON, OF oG(u,y) AND 0~(u, t). 
THE PREMIUM LOADING FACTOR IS 0.1 
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Exponential claim amounts  Pareto claim amounts  

t u y (1) (2) (3) (4) (5) (6) 
oG(u,y, t) oG(u,y) o~(U, t) oG(u,y, t) oG(u,y) o~(u, t) 

10 0 

10 10 

10 20 

100 0 

100 10 

100 20 

0.4899 0.5747 0.7854 
0.7436 0.8638 0.7854 
0.7795 0.9030 0.7854 

0.0198 0.2315 0.0319 
0.0301 0.3480 0.0319 
0.0315 0.3638 0.0319 

0.0002 0.0933 0.0004 
0.0004 0.1402 0.0004 
0.0004 0.1466 0.0004 

0.5552 0.5747 0.8900 
0.8426 0.8638 0.8900 
0.8833 0.9030 0.8900 

0.1625 0.2315 0.2606 
0.2466 0.3480 0.2606 
0.2585 0.3638 0.2606 

0.0376 0.0933 0.0604 
0.0571 0.1402 0.0604 
0.0599 0.1466 0.0604 

0.3988 0.4501 0.6939 
0.5800 0.6797 0.6939 
0.6318 0.7564 0.6939 

0.0225 0.1247 0.0932 
0.0452 0.2500 0.0932 
0.0575 0.3198 0.0932 

0.0044 0.0792 0.0278 
0.0094 0.1619 0.0278 
0.0126 0.2108 0.0278 

0.4404 0.4501 0.8432 
0.6597 0.6797 0.8432 
0.7305 0.7564 0.8432 

0.0898 0.1247 0.3820 
0.1784 0.2500 0.3820 
0.2264 0.3198 0.3820 

0.0407 0.0792 0.2122 
0.0829 0.1619 0.2122 
0.1074 0.2108 0.2122 

claim amount distributions: the exponential distribution with mean 1 and the 
Pareto distribution specified by (4.1). Columns (1), (2) and (3) relate to the 
exponential claim amount distribution and columns (4), (5) and (6) give the 
corresponding information for the Pareto distribution. Throughout Table 7 the 
premium loading factor, 0, has been taken to be 0.1. The key to Table 7 is as 
follows : 

(l) & (4) denote the approximate values of oG(u, y, t). The figures in these 
columns are values of G~(ufl, yfl, tfl(l+O)) calculated using the 
algorithm in Section 5. The parameter fl has been taken to be 20 and, 
for a given value of t, the parameter e has been taken to be 
lO-3/(2tfl(1 +0)) so that from (5.6) and (5.7) it can be seen that the 
difference between G(ufl, yfl, tfl(l +0)) and G~(ufl, yfl, tfl(l +0)) is at 
most 10 -3 . 

(2)&(5) denote the approximate values of oG(u,y). The figures in these 
columns are values of G(ufl, yfl) with fl taken to be 20 and these have 
been calculated as in Tables l and 5. 

(3) & (6) denote the approximate values 0~(u, t). The figures in these columns 
are values of ~u(ufl, tfl, tfl(l +0)) and have been calculated using the 
methods in DICKSON and WATERS (1991, Sections 3, 4 and 8). 



190 DAVID C.M. DICKSON AND HOWARD R. WATERS 

There  are  two interes t ing c o m m e n t s  to be made  a b o u t  the figures in 
Tab le  7. 

The  first is tha t  for the exponen t ia l  c la im a m o u n t  d i s t r ibu t ion  the values o f  
G(u, 5, t) are  r ea sonab ly  close to the values o f  ~ (u ,  t).  This  is not  surpr is ing  
since ruin mus t  be caused  by a single c la im and  the p robab i l i t y  tha t  a single 
c la ims exceeds 5 is very small  (0.006738). However ,  these values are  not  so 
close for  the Pare to  d i s t r ibu t ion  and  this is p r e s u m a b l y  because  the p robab i l i t y  
tha t  a single c la im exceeds 5 is much  larger  in this case (0.02778). The  second 
po in t  is that ,  a p a r t  f rom the case u = 0, the values o f  G ( u , y ,  t) are  not  very 
close to the c o r r e s p o n d i n g  values o f  G ( u , y ) ,  even for the largest  value o f  t 
(t = 100) This  means  that ,  for these ranges  o f  values o f  u, y and t and for these 
claim d i s t r ibu t ions ,  it would  not  be r easonab le  to use G ( u , y )  as an approx i -  
ma t ion  to G(u, y, t). 
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