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ABSTRACT

Using Laplace transforms and the notion of a pseudo compound Poisson
distribution, some risk theoretical results are revisited A well-known theorem
by FELLER (1968) and VAN HARN (1978) on infinitely divisible distributions 1s
generalized. The result may be used for the efficient evaluation of convolutions
for some distributions. In the particular arnthmetic case, alternate formulae to
those recently proposed by DE PriL (1985) are derived and shown more
adequate in some cases. The individual model of risk theory is shown to be
pseudo compound Poisson. It 1s thus computable using numerical tools from
the theory of integral equations in the continuous case, a formula of Panjer
type or the Fast Fourier transform in the anthmetic case. In particular our
results contain some of DE PriL's (1986/89) recursive formulae for the
individual life model with one and multiple causes of decrement. As practical
illustration of the continuous case we construct a new two-parametric family of
claim size density functions whose corresponding compound Poisson distribu-
tions are analytical finite sum expressions. Analytical expressions for the finite
and infimte time ruin probabilities are also derived.
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I. PSEUDO COMPOUND POISSON DISTRIBUTIONS

’

In order to investigate probability density * functions” such as

S(x) =exp(=A) d(x)+ (1 —exp (—4)) pexp (- px),
4y >0, d(x) the Dirac function,

we need the theory of ““ generalized functions” or ““ distributions” in the sense
of L. ScHwaRrTz (1950/51/65/66). In this paper we refer to the presentation by
DoEetscH (1976) (English translation 1s available) To avoid a conflict of
terminology between Function Theory and Statistics we use the term general-
1zed function. This 1s a linear and continuous functional on the space of
infinitely differentiable functions on R with compact support In this paper
generalized functions are usually written without argument as f; g, . Some-
umes and especially in applications we will abuse notation and wnte f(x)
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instead of £, e.g. we write J (x) for the Dirac function instcad of . Integrals are
always understood in the Lebesgue sense.

Let 7 be the space of all locally integrable functions on [0, o0) (1.e. integrable
in every finite subinterval of [0, «0)), and let */ be the space of all generalized
functions on R. For fe 7, s€C, the Laplace transform of f(x)1s defined to be

oC

Lf(s) = j exp(—st) f()dr.

0

This mathematical object 1s extended as follows to an appropriate subspace of
7/ (see DOETSCH, §12). Let D*, k = 1,2, ..., be the k-th derivative operator
acting on the space 7. A generalized function f is said to be of finite order k if
f = D*h(x) for a continuous function h(x) defined on R, and k 15 the smallest
integer with this property. For example, the Dirac function

0, x<0

5= D*h(x), hix) = {
X, x>0

is of order 2. Restrict now & to the subspace 7/, of generalized functions of
finite order whose associated continuous functions A(x) satisfy the condi-
tions

hix)=0 for x<0,

Lh(s) converges absolutely for Re(s) > o,

o dependent on h.
For f = D*h(x)e ,, se C, the Laplace transform 1s defined to be
(1.1 Lf(s) = s* Lh(s)

and is an analytical function for Re(s) > o. The space ¥ 1s embedded 1in 7 as
follows. The generalized function defined by fe 1s the functional

o0
j f(x)p(x) dx, (x) infinitely differentiable on R with compact support.
— o0

A function fe€# with a Laplace transform in the classical sense has the same
Laplace transform in the generalized sense (DOETSCH, Satz 12.2). Moreover the
inverse of the Laplace transform is unique up to a zero (generalized) function
1n both the classical and generalized sense (DOETSCH, Satz 5.1, and p 72) Here
the zero function z(x) in ¥ is a function such that

j z{(x)dx =0, for all 120,
0

The convolution operator on ‘7, 1s defined as follows. If f= D" h(x),
g = D" k(x), then

frg=D"""(h*k)(x).
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The operations on the classical Laplace transform extend to the generalized
case Some operations used in this paper are summarized 1n the next Table

(Generalized) function Laplace transform
fe Lf(s), Lg(s)
aft+bg, a,beR alf(s)+bLg(s)
frg Lf (s) Lg(5)

X —~(dfds) Lf (5)
exp(—axr)f, aeR Lf(s+a)

S (x) sLf(s)=f(07)
J(x) (Dirac function) 1

To ilustrate the consistency of the Table with definition (1.1) we derive the
formula for the Laplace transform of the n-th derivative £ of a function
J€7 . From the theory of generalized functions (e.g. DOETSCH, § 14) one knows
that

an=/'(n)_+_f(n—l)(0+)§ + +f(0+)5(,1—])
Since L6%) (s) = s* it follows with (1.1) that

s"Lf(s) = LD" f(s)
= Lf(")(s) +f(n*l)(0+) + +f(0+)sn—l’

which provides after rcarrangement the desired formula. The differential rule
for a generalized function fe 7/, looks somewhat different, namely

LD"f(s) = s"Lf(s).

From now on our main concern 1s probabilistic. The set of locally integrable
probability density functions f€” 1s denoted by ¥ P The distnbution corre-
sponding to f(x) 1s

F(x) = j‘ f@t)dr.
0

It s well-known that Panjer’s recursive formula plays an important role in
computational risk theory. For fe” P we are interested in the analogous
integral equation

X

(12) «\f(x)=ij Wh(y) f(x=p)dy, ieR,

0

where he” is not necessarily positive In applications of risk theory the
assumption 0 < F(0) < 1 is almost always fulfilled. We consider therefore the
subset ¥ P, of all functions fe~ P with 0 < F(0) < 1 and for which there is a
unique solution A€ with
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r h(x)de =1,

0

such that (1.2) 1s almost everywhere fulfilled From results by STEUTEL (1970)
and VAN HARN (1978) the set v P, contains all infinitely divisible densities on
(0, o) (see Corollary 2). It has been shown tn the arithmetic case that there are
interesting non-infinitely divisible distributions on N for which the arithmetic
version of (1.2} is fulfilled, e.g. the mndividual model of nisk theory with
multiple causes of decrement (HURLIMANN (1989b)) Are there analogous
continuous candidates 1n ¥ P, and what 1s exactly this set? A practical answer
15 postponed to the end of this Section. From a mathematical point of view, the
set v P,, given that 1t contains non-infinitely divisible distributions, 1s appeal-
ing, since 1t leads to a natural generalization of the characternization by FELLER
(1968) and VAN HARN (1978) of infinitely divisible distributions with non-
vanishing zero-probability.

THEOREM 1 Let f(x) be 1n the class ¥ P,. Then i the space ¢/, the following
representation holds almost everywhere

o0

JG) =) exp(=A) k! B (x)

k=0
where #*°(x) = 6(x), A = —In{F(0)} and A(x) 1s almost everywhere the
unique solution of the integral equation

X

(13) X (x) = j Yh(y) fCx—y) dy.

0

ProoF. The integral equation (1 3) can be rewritten as

Xf(x)=4a(f*u)(x) with u(x) = xh(x).
Applying the Laplace transform we get
(dfds) Lf (s) = A Lf (s)-(d/ds) (Lh(s))

It follows that

Lf(s) = c-exp (A Lh(s)).
By Laplace inversion 1n the space /, we get almost everywhere

SO =c ) Akt k¥ (x).
A=0

In this formula we see that p = f—cd € 7, comes from a function pe
By integration

X

F(x)=c¢+ j p(t)dte,

0
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which shows that ¢ = F(0). Put 1 = —In{F(0)} to get the result.
The above result suggests the following defimtion.

DEFINITION. A probability density function f(x) defined on (0, c0) 1s said to
be of pseudo compound Poisson type if fe'v P,. We call the associated h(x) a
pseudo density.

INTERPRETATION In nisk theory and when it is actually non-negative the
function h(x) plays the role of claim size density

The following equivalent formulation of Theorem | can be more adequate
for pracucal evaluations In particular 1t generalizes the result by
STROTER (1985)

CorOLLARY [. Let f(x) be pseudo compound Poisson with parameter 4 and
pseudo density h(x) Define p(x) = f(x)—cxp(— 1) d(x).
Then p(x) satisfies the integral equation

1

(14 xp(x) = dexp (=) xh(x)+41 j Yh(y)p(x—y)dy
0

ProoOF. Introduce f(x) = exp (— 1) 6{x)+p(x) in the integral equation (1.3)
to obtain immediately (i 4).

In view of its importance both in theory and practice (see e g. STEUTEL
(1979)) we recall the defimition of infinite divisibility,

DEerFiNITION. A random variable X, taking values in R, 1s called nfinitely
divisthle 1If for every ne N there exist independent, identically distributed
random variables Y, ,, ..., Y, , such that the following equality in distribution
15 vahd -

d
X=Y),+..+7Y,,.

Equivalently P(z)'" = E[z*1"", Lf(s)"" = Elexp (—sX)]"" or @) =
Elexp (tX)]'" 1s respectively a probability generating function, a Laplace
transform or a charactenstic function for every n e N The associated proba-
bility density and distribution are also called infinitely divisible

The spccial case of Theorem | for mfinitely divisible distributions on [0, o0)
has been 1dentified 1n other forms by STEUTEL (1970) and VAN HARN (1978) 1n
the general and KATT1 (1967) and FELLER (1968) 1n the arithmetic case

COROLLARY 2. Let X be a random vanable defined on [0, o0) with locally
integrable density f(x) such that 0 < £(0) < 1. Then the following conditions
are equivalent-
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(a) X 15 infimtely divisible;

(b) X 1s compound Poisson with parameter A and jump density 4 (x) and f(x)
is solution of the integral equation (1.3);

(c) The solution 4 (x) of the integral equation (1.3) is positive

ProoF. In the arithmetic case the equivalence of (a) and (c) has been shown by
KATTI (1967) (other proof by STEUTEL (1970, p. 83)) The equivalence of (a)
and (b) was shown by FELLER (1968, vol. 1, 3rd edition, p. 290) (other proof
by GERBER and VALDERRAMA OspiNa (1987)). In the continuous case the
equivalence of (a) and (b) 1s due to VAN HARN (1978, theorem | 6.6) for the
compound Poisson representation and STEUTEL (1970) (see also VAN HARN,
Corollary 1 6.3) for the integral equation representation. The equivalence of (b)
and (c) follows from Theorem 1.

Next we display a subclass of # P, which 1s big enough for our applications.
In particular we will show by construction i Section 4 that the class ~ P,
contains more functions than the infinitely divisible ones.

THEOREM 2. Let 7~ P’ be the subclass of # P consisting of functions f (x) which
satisfy the following conditions:

(1) 0<F@O) <.
(n) The associated generalized function f— F(0)dJ € /, comes from a contin-
uous function f(x)— F(0) J (x) defined on [0, oo).

Then 7 P’ 1s contained in 7 P,.

Proor Let fe P'. The function p(x) = f(x)—F(0) d(x) 1s by assumption
continuous on [0, o) Consider the Volterra integral equation of the second
kind

A3

a(x) = A 'exp (A) xp(x)—exp (1) J- a(yyp(x—y)dv, A= —In{F(0)}.
0

Since p(x*y) and xp(x) are continous on {0 < x < ¢, 0 < y < x} respectively
{0 < x < 4}, this equation can be solved uniquely for a(x) (see eg JERRI
(1985), p. 194 and p 201) Set /i(x) = a(x)/x. After algebraic manipulation
one sees that /1(x) is the unique solutton of the integral equation (1.4). Since
S(x) = F0)d(x)+p(x), one checks easily that £(x) 1s also the unique
solution of the integral equation (1.3). Provided that

[}

j h(x)dx =1,
0

we have shown that fe~ P,. This point 1s proved as follows. Since h(x) 1s
solution of (1 3) one shows that
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j h(x)de =c¢ < o
0

Then %(x) = h(x)/c 1s the unique solution of the intcgral equation

oC

M (x) = Ac j Vh(p) f(x=y)dy.

0

Since j h(x)dx =1 one has fe~ P,. But from Theorem | one has then
0

de = —In{F(O)}.

By definition of 1 above one has indeed ¢ =1.

REMARKS

(1) In Theorem | and Corollary 2 the condition F(0) > 0 is necessary. The

infinitely divisible exponential density f(x) = u exp (— ux) leads to the solution
o

h(x) = exp (—ux)/x, but j h(x)dx = oo. This density s not compound
0
Poisson, but the weak himit of the compound Poisson densities f;(x) = exp

(A Sx)+(I—exp (—A) peexp (—ux) as 2 — oo, with claim size densities
h;(x) = exp (—pux) (1 —exp (—ax))/ix, a = (exp () — 1) u. This result will be
derived 1n Section 4. In general p(x) with P(0) = 0 is infinitely divisible 1f and
only if fi(x) = exp (—A) d(x)+ (1 —exp (—4i) p(x)1s mfimtely divisiblc with
F(0) = exp(—4) and p(x) 1s the weak limit of the f;’s as - oo. (FELLER
(1968), vol 2, 2nd cdition, p. 303).

(2) In the anthmetic case the integral equation (1.3) 1s to be replaced by the
well-known Panjer recursive formula

A
(1.5) kptk) =4 ) sh(s)p(k—s)
s—1

An independent and more elementary proof of the results in this mathemati-
cally simpler case in presented 1n HURLIMANN (1989a, 1989b). Obscrve that
Laplace transforms are to be replaced by the geometric transform (= proba-
bility generating function in case of arithmctic distributions, see GirrIN (1975)
for fundamentals)

(3) Methods to solve integral equations can be found in all parts of Appled
Mathematics. Transform theory (see WIDDER (1971)), cspeccially Laplace
transforms, is a powerful tool to get closed analytical results An illustration is
given 1 Section 4. Numerical methods were extensively studied by BAKER
(1977) and more recently equation (1 4) has been solved in the insurance
context by STROTER (1985). It is worthwile to mention that the Laplace
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transform approach simplifies the derivation of Theorem 1 1. of the latter
author, which uses the method of successive approximation.

(4) Theorem | can be interpreted as a duality assertion. There 1s a duality
between integrable densities on [0, o0) and pseudo densities, where the pseudo
compound Poisson representation realizes this duality The subclass of 1nfi-
nitely divisible densities 1s just dual to the ordinary densities.

(5) Theorem 1 suggests many (also difficult) applications. It can be useful for
the computational evaluation of convolutions (see next Section), as well as for
the study of other properties of exact sampling distributions. A statistical
application 1s given in HURLIMANN (1989a).

(6) With more technical refinements 1t should be possible to extend the results
to arbitrary one-sided unbounded intervals [a, o), a > — o0, (see VAN HARN
(1978) for the case of infinitely divisible distributions). It would be of great
interest to generalize Theorem 1, if possible, to the whole real line and
especially obtan a single charactenzing functional equation valid on R.
Unfortunately, even for infinitely divisible distributions, the latter requirement
1s still an open problem, as reported by VAN HARN (1978), p. 189.

2. CONVOLUTIONS OF DISTRIBUTIONS

Let X,, X,,. , X, be n mutually independent random variables on [0, c0) with
a common niegrable density f(x) such that 0 < F(0) < 1. In probability and
statistical theory one 1s interested in the exact sample distribution of the mean.
1t 1s a straightforward rescaling of the distribution of the sum

X=X +..+tX,
whose density 1s given by the n-fold convolution
Jx) =/*"(x).

The evaluation of this function uses the recursive formula
SHE () = j SN (=) dy
0

which 1s very time-consuming for large values of n, especially when f(x) 1s not
a simple function

Using Theorem 1 and the various methods for solving integral equations, an
alternative general approach to this problem follows immediately. In the
following we will often use g(x) = Ah(x) instead of A (x)

CoROLLARY 3. Let the X, be defined on [0, c0) with 0 < F(0) < 1. Assume
fer P,. Let g(x) be the solution of the integral equation
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X

@.1) A (x) = j yg(y) fx=y) dy

0

Then the n-fold convolution f(x) 1s solution of the integral equation

1

@2) () = j ye(y) Fx—y)dy

0

ProoOF. In the proof of theorem 1 we have seen that
Lf(s) = F(0)exp (Lg(s)),
and thus

Lf (s) = F(0)" exp (nLg(s)).
Therefore f(x) 1s pseudo compound Poisson with parameter ni and pseudo
density g(x)/A. The affirmation follows from Theorem 1.
Let us have a look to the special anthmetic case. The n-fold convolution
p(x) = p*"(x) can be evaluated using the recursive Panjer formula

5(0) = p(0y
2.3) k
kp(ky=n Y sg(s)plk—s)

s=1
where g(s) is 1tself computed recursively by
=1
(24) sg($)p(0) = sp(s) = ). gD pls—1)
1=
At first sight it might appear that this two-stage nested recursive algorithm is

computationally less efficient than the recursive formula proposed by DE PriL
(1985), Theorem 1

A(0) = p(0)'
25)

k
KBk p(©) = ), [+ D)s—kIp(s) jlk—s)

s=
In some cases 1t might be that only g (k) 1s known and p (k) must be computed

recursively using Panjer’s formula (1.5). Then the formula (2.3) 1s simpler and
more direct than formula (2.5)

ExampLES. The choice

“r(a+k—=1)c!
26 gk =_F 10 ) k=1,2...p>0c>0, a0
I'(@a)k! (1+¢) !

leads to Hoffmann/Thyrion’s family proposed as claim number distribution by
KESTEMONT and Paris (1985/87). A similar choice would be the ETNB
distribution



66 W HURLIMANN

I'k+a) g
en gk = ¢r9F k=12, —1<a<00<f<1,

r@k! [(1=-p="1"
studied as probability density (however) by WiLLmoT (1988). In these examples

1t 1s more direct to apply formula (2 3) to compute exact n-fold convolutions
than to usec De Pril’s formula (2.5).

3. THE INDIVIDUAL MODEL OF RISK THEORY

Consider » mutually independent random variables X, X,, ., X,, not neces-
sarily 1dentically distributed as in Section 2 Suppose each X, has a range
contained 1n the interval [0, c0), which may be anithmetic or not. In risk theory
the sum

X=X +X,+ ..+ X,

called individual model, can be interpreted as the aggregate claims n a finite
period on a portfolo of » independent contracts. Let F(x) = Pr(X < x),
F(x)=Pr{X,<x),:=1,2, .,n, and assume that 0 < F,(0) < 1 for all +.

THEOREM 2. Assume the probability densities f,e ~ P,, t = 1, . ,n Then the
individual model of risk theory 1s pseudo compound Poisson with parameter

(3.1) A= —In{FO)} = = ), In{FO)},
=1

and pseudo density

n

(32) hx) = ( > g,<x))/a,
— 1
where each g,(x) is unique solution of the integral equation

1

(3.3) X (x) = j y&r(3) fix=y) dy

0

ProoF Clearly f = f,*f,* *f,. In the proof of Theorem 1 we have seen
that

Lf,(s) = F,(0) exp (Lg,(s)), =12, . ,n
It follows that

n n

Lf(s)= Y Lfs) =[] F.0) exp( Y Lg,(s>)
=1

=1 1=1
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Taking inverse Laplace transforms in the space 7, the result follows imme-
diately

For simplicity restrict the following discussion to the arithmetic case First of
all formulae for g,(x) must be obtained, or the g,(x) must be computed by
other means, using for example Panjer’s recursive formula (3.3). Then the
probability density function of the individual model can be computed using
Panjer’s recursion, valid in the generalized case

H 0, x=0,

(3.4) f(x) = \
(—In{fOx) Y, yh(v) f(x=p), x>0.

v=1
Compared to the collective model of rnisk theory the extra cost for preparing
h(x) may be substantial since many values of g,(x), t = 1, 2,. ., are involved
in the computation. A sound procedure would be Lo approximate the pscudo
density, as suggested by De PriL (1987/89) (see Example 1 below), by a more
tractable function #2* (x) and compute the approximmate density

[T1/£0. x=o0,
=1

(BS5)  Srx) = \
(=In{fO}x) D, yh*(») f*(x=y), x>0
p=1

Another possibility to reduce the computational effort 1s to apply the Fast
Fourier Transform, inverting the Fourier transform of the pseudo compound
Poisson representation according to the formula

f = {/(0)/n} FFT " (exp (FET" (g)))

Here FFT™, {1/n} FFT~ denote Fast Fourier Transform, respectively the
inverse transform, and » 1s the size of the vectors /—, g associated to the
functions f(x), g(x). Since one has to take into accout a relatively long
support of h(x), the FFT-method has been shown superior to Panjer’s
recursion 1n many cases (cf BUHLMANN (1984)), and the error bound in the
distribution as well as 1n associated stop-loss precmiums are controllable
(BUHLMANN (1984), HURLIMANN (1986))

ExampLE 1. The simplest individual life model has been considered by DE
PriL (1986/87). Let n, be the number of policies with amount at nisk ¢ and
mortality rate q4,1=1, ..,a,y=1, ,b Let p, = 1 —gq, the corresponding

[
survival probabilitics, n, = Z n, the number of policies with mortality

=1
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b a [
rate q,, n = Z n, the total number of policies, and m = Z Z i-n, the
Py =1 =1
maximum possible amount of aggregate claims. Furthermore let X, be the
random variable representing the claim produced by a policy with amount at
nisk i/ and mortality rate g,. Its probability density function 1s given by

P x=0
(3.6) Jy(x) =+ 4, x =1
0, else

Following the device given by the arithmetic version of Theorem 2 we search
for unique functions g, (x) such that

xfy(x) = Z yg,(y) f,(x—y)
y=1

In the lemma below they are shown to be
(=D Yk (q,/p)", x=ik, k=12, ...
; else

(3.7 g,(x) =

It follows that this individual model 1s pseudo compound Poisson with
parameter

b
A== nln(p)=—In{f(O)
=1
and pseudo density

a b
hx)=1/A Y, Y ng,(x).
1—1 =1

I

Insert these formulae in (3.4). Then one has
b

r@ =TI (py
J—=1

For x > 0 one obtains with y = k-

min (a, x) [vi)

(B8) ()= Y Y, AGK) fx—ik), x=12 .,m

=1 k—1
with
b
AG k) = (=D Y (g, /p)t
7=1

This has been derived differently by DE PriL (1986). For computational
reasons REIMERS (1988) has proposed to reverse the order of summation:
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x  mn(a, [\/k])

(B9 =) D) AWk) f(x—ik)
k=1 =1

To save computer time it is advisable to truncate the first summation taking
only 4-5 terms as proposed by DE Prii. and VANDENBROEK (1987). An analysis
of the magnitude of error involved 1n this approximation step is given by DE
PrIL (1988).

LEMMA The Panjer recurrence relation equations

A

() =Y ye(p) f(x—p)

where

P x=20
fxy=+< g x =1 0<g<lI, ptqg=1,

0, else

have the unique solution
(=D k- (alp), x=1k, k=12,..

glx) =
5 else

ProoF One uses induction. For this rewrite the recurrence equations in
form (2.4):
v—1
xg(x) f(O) = x/(x) = 2, yg(y) S(x=»).
r=1

For x = 1,...,1—1 one obtains g(x) = 0 For x = i the equation reads

g()p = 1q.
Hence one has g(i) = g/p. Let now x > : and assume the formula for g( y)
correct for all y < x. If x = ik 1s a multiple of i, then the right-hand side of the
equation gives a contribution only for x—y = i, that 1s y = (k—1)i. The
cquation reads

tkg(x)p = —(k=1)1g((k—1)i)q
and the correct value of g(x) is checked by induction assumption. When x 1s
not a multiple of : the rnght-hand side vanishes and hence g(x) = 0.

ExaMpPLE 2. Consider the individual life multiple decrement model which has
applications in pension theory for example (sce BOWERS et al. (1986)). Let m be
the number of causes of decrement and let the vector s = (sy, ..., s,,) represent
amounts at risk, 5, being a sum at risk due to cause . "The vector s 1s assumed
to take values 1n a ﬁmte set A = Z". Let n be the number of policies with risk
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sum structure s and probabilities of decrement g due to cause, J,
m

J=1,...,m k=1, b Let p=1- z g’ be the survival probability

=1

due to all causes of decrement Denote by n, = Z ng, the number of pol-
sS€A -
b

cies with survival probability p{” and by n = z n, the total number of
eyl

pohcies The maximum possible amount of aggregate claims 1s denoted by M
and is equal to

b
M= Z Z max (s,) ng.
k=1

- sed 1<ygsm

Moreover let the random variable X, represent the claim produced by a policy

with nisk sum structure s and probabilities of decrement g =1,...,m,
k =1, . ,b Its probabihty density function, denoted by fy (x), 1s given by
P x=0
(3.10)  Sfu(x)= ), x=s. Jy=1,..m,
0, else

Evaluate now the probability density function of aggregate claims using
Panjer’s recursive formula (3.4). We have clearly

b
f@ =11 (.
k=1

For x > 01t is necessary to evaluate first 1n a recursive manner the functions
£, (x) such that

G ulx) = Y veu(¥) fulx=p), se€d k=1, b
r—1

Then
(3.12) hy =12 3, T nugs),
sed k=l
A= —In{f(O)},

is introduced n the recursive formula (3.4). Tt 1s important to note that the
proposed algorithm requires a two-stage nested recursive computation. Up to
the maximum possible amount of aggregate claims M prepare for cach
y = 1,2, . , M the finite number of elements g, ( y) recursively solving (3.11)
such that B
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y—-1

(B13)  gu(y)= [.Vfgk(y) - Y 24(2) .fgk(y—Z)J/(ypi”)

Then apply Panjer’s recursive formula (34) computing A(y) using for-
mula (3.12) As many of the values f,,( y) indeed vamish the summation n
(3.13) extends over at most m terms. To illustrate consider the double-
decrement model with m = 2, for example death and withdrawal or death and
disability as causes of decrement. Use for brevity the notation s = (7,7) with
A={l <1, ;< a} Assuming i < (the other cases; = jand ¢ > ; are similar)
the elements g, (x) are computed more efficiently by the recursive formulae
s

0, if xef{l, .,i—1} or
xe{t+1,...,7— 1| x not multiple of 1}
07 @Opy. f x =iy,
refl, .,[JB

(B14)  gu(x) =1 g2, if  x =j1s not multiple of
g p+ (=1 e gipy,if
xX=)=nr for relN,
— (= g (x—y) gf? +

o D) g (=) ¢ ixpl?),  of x>y
An alternative derivation and additional formulae concerning the individual
model of risk theory can be found in DE PriL (1989)

4 PARAMETRIC AGGREGATE CLAIMS MODELS

It 1s well-known that the compound Poisson gamma and the compound
negative binomial exponential distributions can be expressed as analytical
series, the latter one as a finite sum. Other cases are less well-known. For many
practical purposes it is most desirable to have tractable parametric functions
modeling aggregate claims. The classical approach to this problem uses
asymptotic approximate formulae as Normal, Normal-Power, Wilson-Hilferty,
three-parameter gamma, Haldane, Esscher transforms and others These
approximations are attached with approximation errors which are usually
difficult to control Furthermore the structure of the claim size density has been
lost 1n these models Since 1t 1s often necessary to study claims frequency and
claim size separately, parametric aggregate claims models with explicit struc-
ture of claim number and claim size distribution are of interest This can be
achieved solving analytically integral equations of the form (I 4). The method
15 llustrated at a simple new case, namely a modified two parameter gamma
aggregate claims model.

Let f(x) be an aggregate claims density such that 0 < F(0) = exp(—4) < I.
This assumption 1s 1n particular fulfilled for a Poisson claim number model
with parameter 4 and when there are no claims of amount < 0 Morc generally
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this can be assumed for infinitely divisible aggregate claims distrnibutions
defined on [0, o) (see Corollary 1). Rewrite the density as

(4.1 SGx) =exp(=4)d(x)+g(x)

The derivative (d/ds) Lf(s) of a Laplace transform 1s denoted for short by
L’ f(s) Solving the integral equation (1 4) is equivalent to solving a differential
equation in the Laplace space and taking inverse Laplace transforms The
differential equation reads

42 L'g(s)=ALg)L h(s)+Aexp(—2) L h(s)
Given the function A(x) its general solution 1s
(4.3) Lg(s) = c-exp (ALAh(s))—exp (—4).

where ¢ is a constant. We have gained nothing since this 1s equivalent to the
pseudo compound Poisson representation and is difficult to handle analytically.
However specifying the function g (x) it might be easier to find 4 (x) according
to the formula

(4.4) L'h(s) = exp (1) L' g (s)/[A(1 +exp () Lg(5))]

For the modified two-parameter gamma aggregate claims model, the task 1s to
find the pseudo density A{x) which corresponds to

(4.5)g(x) = (1—exp (=) p*x" exp (—ux)/T (@), a=1, u>0
Setting w = 1—exp (—4) one gets
(46)  Lg(s) = w(l+s/m)™%  Lg(s)= —(aw/p) (1+s/m)™"""

After straightforward calculation 1t follows that

I

4.7) L'h(s) = —aa/[A(s+u) ((s+p)*+a")],
where a is the positive a-th root defined by
(4.8) a® = (exp (W)= 1)u*

Inverse Laplace transformation yields

1

(4.9) h(x) = exp (—ux)/Ax j L™ [aa®/(a*+sD](y) dy
0

We show now that for integer values a = n = 1,2, 3, . the function h(x) has
a finite closed form. Using properties of the Laplace transform it suffices to
invert the functions

(4.10) L'h(s)= —1[s(1+sN =51 +s~1/s, n=12, ..

Set h(x) = b, (x)+hy(x) with L'h(s) = —1/s, L'hy(s) = s"" /(1 +5"). Tt

follows that },(x) = 1/x, x > 0, and hy(x) = —(1/x)- L™'[s"'/(1 +5] (x),
x > 0. To find the latter inverse Laplace transform expand the rational
function as a parual fracuon (e.g. DOETscH (1976), p. 89):
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n—1

@.11) ST+ = 1n Y, 1(s—exp 12k +1)n/n))

k=0

and re-group the complex conjugate terms. As # 1s odd or not one obtains two
different formulae summarized as follows:

(4.12) s +sT) = (1/n) [(] (=201 +s5)] +

[n/2}=1
+ Z 2(5—(1;(‘,,)/(5'2“2&/(‘"5‘*'I)J
£=0

where a, , = cos[(2k+1)n/n]. For later use set f8,, = Isin{(2k+ 1) m/n]l.

From a table of Laplace transforms (e.g. DOETSCH (1976)) one has
L7'1/(s*=2as+ D] (x) = (1/B) exp (ax) s (fx).

It follows that

(4.13) L™'[(25—2a)/(s*—2as+ 1)] (x) = 2 exp (ax) cos (fx)

whenever a?+ 2 = 1. Using these results one gets after some algebraic

manipulation the pseudo density in form of a finite sum*

@.14)  h(x) = (exp (— ux)/ix) [n—(l —(—1)") exp (—ax)/2 —

[#/2]—1
— D 2exp (ax.qax) cos (B, ,ax)
k=0
with a = (exp (A)—= 1)"" . In particular for lower dimensions one has the
pseudo densities

n=1: h(x) = exp (—px) (I —exp (—ax))/(4x),
a= p(exp()—1),
(415 n=2: h(x)=2exp(—ux)(1-cos (ax))/(Ax),

= pyfexp(A)—1,

n=73: h(x) = [exp (—ux)/(Ax))[3—exp (—ax) —
— 2 exp (ax/2) cos {(\/3/2) ax}],

a = pJdexp -1

We apply now Corollary 2. For n = 1,2 we have h(x) >0 and the
corresponding model (4.1) 15 infinitely divisible and thus compound Poisson
For n = 3 one may have A(x) < 0. Hence (4.1) 1s not infinitely divisible and
thus only pseudo compound Poisson In particular we have shown that the
classe # P is bigger than the class of infinitely divisible probability density
functions defined on (0, c0) As known to the author the present model n = |



74 W HURLIMANN

1s among the few examples of compound Poisson models allowing frure
analytical sum expressions for the main nisk theoretical quantities of interest. In
particular 1t 1s comparable to the Poisson exponential aggregate claims model
concerning mathematical simphcity.

Furthermore analytical expressions for the finite and infinite time ruin
probabilities can be derived. We have computed the simple case n = | (details
of calculation 1n appendix). Assume a stationary evolution of the portfolio. In
this context P = (1 +0) Am represents the premiums received continuously per
unit of time, with 8 the security loading, m the expected claim size, and A
measures the expected number of claims per unit of time Then the probability
of ruin y(x, t) before time ¢ given the ninhal reserves x 1s

(4.16) w(0,1) = 1/(1+0)— (I —exp (—4t)) exp (—uPt)/(uPt),
and for x > 0,
4.17) w(x,t) = (1—exp(—4it)) exp (—pu(x+Pt)) +

+ 0/(1 +0)-exp (—ux)-[A/(A+ Pr) —

— exp (—pPr)-{l —exp (= At)- Pul/(A+ Pu)}] +

k=1

+exp(—p(x+P0) Y. (—Ak! Y 17
k=2

=1
Taking hmits as ¢ — oo 1t follows that the infinite ime ruin probabilities are
(4.18)  w(0) = 1/(1+0),
w(x) = 0/(14+8)-exp (—pux)- A/(A+ Pu), v > 0.

The obtained results will practically be more useful if one fits the claim size
density by a linear combination of densities as follows:

4 19) hx) = Y coh(x), o+ .. +c =1,
h(x) = exp (= p,x) {1 —exp (—a,x)}/Ax,
.= (exp (D= Dp,.

From the proof of Theorem 1 we know that the aggregate claims density
f(x, ) up to time ¢ satisfies the Laplace representation

a

r

(L) (s) = exp (— A1) exp (AtLh(s)) = l—[ exp (—Ac, t)-exp (A, tLh,(3)).

=1
Define f,(x, t) as solution of the Laplace equation
(Lf) (s) = exp (—Ac, t)-exp (Ac, tLA,(s)).
As we have shown, one obtains by inversion
4200 filx,t) =exp(—Ac)d(x) + (1 —exp (—Ac, 1)) -, exp (—p, x).
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The direct calculation of the convolutions

S, ) =filx,)*...xf(x 1)

yields the formula (use induction):

@21)  f(x, ) =exp(—A) o) + Y. (I—exp(—A¢1)) x

x [H (,—n, CXP(—JCJI))/(;!,—#.)} x

I
X p,exp(—pu,x)

In this model the net stop-loss premiums to the priority M can be expressed as
fintte analytical sums, namely

4.22) SL(F, M) = jw (x—M) f(x, t)dx= Zr: (1—exp(—4c, 1))
1=1

M
x [H (= 1 exp (—ACJ’))/(IIJ—/Q)} x
J#i
x exp (= M)k,

Analytical formulae for the finite and infinite time ruin probabilities can also
be derived

APPENDIX "
CALCULATION OF RUIN PROBABILITIES

Assume an aggregale claims distnibution function up to time ¢ of the form
F(x,) = 1—(1—exp (—An)-exp (—ux).

Then the probability of survival to time 1, denoted by U{x,t) = | —w(x, 1),
can be calculated using Scal’s formulae (e.g GERBER (1979)).

U, 1) = 0)(1 +0)+(1/Pr) r (1= F(z, 1)) dz

1
F(x+P1,1)—P j U, 1=w) f(x+ Pw,w) dw
0

U(x, t)

One obtains

U(o, )

O/(1+ )+ (1 —exp (— At)) - exp (— pPr)/(uPt).

Further calculate
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U(x,t) = 1—(1—exp(—A0)-exp (—u(x+ Pt)) —

P Ju [6/(1+8)+ (1 ~exp(—A(t—w)) x

0

X

exp (—uP(t—w))/(uP(t—w))] x
[exp (— Aw) 8 (x+ Pw)+ (1 —exp (— Aw)) X
exp (—u(x+ Pw))] dw.

Since x+ Pw > 0 for w e (0, ) the term in d(x+ Pw) does not contribute to the
integral. For clearness write

Ux, 1) = 1=(1 — exp (—41) -exp (—p(x+ Pr) + I +1y,

X

x

with

I=—=P) 6/(1+6)-(1—exp(—Aw)) x
Jo

X pexp (—u(x+ Pw))dw,

n!

L=-P (1=exp(—A(—w)))-(1—exp (— Aw)) x
v o

X exp (—pu(x+PO)/(P(t~w)) dw
The evaluation of the first integral gives

I

Iy =6/(1+0)-exp(—px)- {-Py j exp (—uPw)dw +
0

+ Pu J-’ exp (—(A+ P,u)w)dw:I
0

= 0/(1+0) exp(—ux) [exp (—uPt) —

= 1+ Pu/(A+ Pu)-(1—exp (= (A+ Pu) 1))]
= 0/(1 +0) exp (—px)-[exp (—uPt) %

x {l—exp (= A4r)- Pu/(A+ Pu)} — /(A + Pu))

To evaluate the second integral expand the first exponential function 1n a
Taylor series to get

o0

L= —exp(—u(x+P0)) D (= DA k+1)!

]

jﬂ (1—exp (—Aw)) (t—w)* dw
0
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By induction one shows the recursive relation
1
j exp (—Aw) (1—w)* aw
0
1

= */)—k/A j‘ exp (—Aw) X (t—w)* ! dw, k>0,
0

with starting value
t
j exp (—Aw)dw = (1 —exp (—A0))/4.
0
It follows that

j' (1—exp (= Aw))-(1—w)* dw = 7' J(k+ 1) —k!

0

k
[exp(—lt)/(—l)kﬂ _ Z [}/j!(—},)k"'l—-’:l

=0

Introduced above one obtains

I, = exp (—pu{x+P1))-[S,+S,+ 8]

with
Si= ) Uk D} (= A0k + 1)L,
k=0
Sy== Y lk+1) Y (i),
k=0 =0
o k
Sy= Y Lk+1) ). (—Aeyppr.
k=0 =0
But one has
Si+Sy+Ss == 3 Hk+1)- Y (=)
k=0 J=k+2

j—1

=Y (—ayt YV,
1=2

k=1

77

the last equality being obtained by interchanging the order of summation

Therefore formula (4.17) is shown.
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