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A B S T R A C T  

Using Laplace transforms and the notion of  a pseudo compound Polsson 
distribution, some risk theoretical results are revisited A well-known theorem 
by FELLER (1968) and VAN HARN (1978) on infinitely divisible distributions IS 
generalized. The result may be used for the efficient evaluation of  convolutions 
for some distributions. In the particular arithmetic case, alternate formulae to 
those recently proposed by DE PRIL (1985) are derived and shown more 
adequate in some cases. The individual model of  rlsk theory is shown to be 
pseudo compound Po~sson. It is thus computable using numerical tools from 
the theory of integral equations m the continuous case, a formula of  Panjer 
type or the Fast Fourier transform in the arithmetic case. In particular our 
results contain some of  DE PR1L'S (1986/89) recurslve formulae for the 
individual life model with one and multiple causes of  decrement. As practical 
illustration of  the continuous case we construct a new two-parametric family of  
claim size density functions whose corresponding compound Polsson distribu- 
tions are analytical fimte sum expressions. Analytical expressions for the fimte 
and infinite time ruin probabfliues are also derived. 

K E Y W O R D S  

Pseudo compound Polsson, integral equation,  infinite divisibility; multiple 
decrement model,  ruin probability. 

| .  P S E U D O  C O M P O U N D  P O I S S O N  D I S T R I B U T I O N S  

In order to investigate probability density " f u n c t i o n s "  such as 

f (x)  = exp ( - 2 )  6 ( x ) + ( l - e x p  ( - 2 ) ) / 1  exp ( - ~ x ) ,  

2, # > 0, O(x) the Dirac function, 

we need the theory of "generalized funct ions"  or "d i s t r ibu t ions"  m the sense 
of L. SCHWARTZ (1950/51/65/66). In this paper we refer to the presentation by 
DOETSCH (1976) (English translation is available) To avoid a conflict of  
terminology between Function Theory and Statistics we use the term general- 
Ized function. This is a hnear and continuous functional on the space of  
infinitely dlfferentlable functions on [R with compact  support  In this paper 
generalized functions are usually written without argument as f ,  g, Some- 
times and especially m applications we will abuse notation and write f (x)  
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instead o f f ,  e.g. we write J ( x )  for the Dlrac function instead of  6. Integrals are 
always understood in the Lebesgue sense. 

Let ',~ be the space of  all locally mtegrable functions on [0, ~ )  0.e. integrable 
xn every fimte subinterval of  [0, ~ ) ) ,  and let r/ be the space of all generahzed 
functions on [lq. F o r f ~ ' / ,  s E C, the Laplace transform o f f ( x )  Is defined to be 

Lf(s )  = exp ( - s t )  f ( t )  dt. 
0 

This mathematical  object is extended as follows to an appropriate  subspace of 
fY (see DOETSCH, § 12). Let D k, k = 1, 2 . . . . .  be the k-th derivative operator  
acting on the space 9 .  A generalized function f is said to be of finite order k if 
f = Dkh(x )  for a continuous function h ( r )  defined on ~, and k is the smallest 
integer with th~s property. For example, the Dirac function 

J = D2h(x) ,  h (x )  = I O, x < 0 
( x, x > O  

is of  order 2. Restrict now f/ to the subspace f/o of  generalized functions of  
finite order whose associated continuous functions h(x)  satisfy the con&- 
tions 

h(x)  = 0 for x < 0, 

Lh(s)  converges absolutely for Re(s) > a,  

a dependent on h. 

For  f = Dkh ( x ) ~  f/o, s e C, the Laplace transform is defined to be 

(1.1) Lf ( s )  = s k Lh(s)  

and is an analytical function for Re(s)  > a. The space ' /  is embedded in r / a s  
follows. The generalized function defined by r e ' /  is the functional 

i oo f ( x )~p (x )dx ,  ~0(x) infinitely dffferentiable on R with compact  support.  

--03 

A function f ~ ' /  with a Laplace transform in the classical sense has the same 
Laplace transform m the generalized sense (DoETSCH, Satz 12.2). Moreover  the 
inverse of  the Laplace transform is unique up to a zero (generahzed) function 
m both the classical and generalized sense (DOETSCH, Satz 5.1, and p 72) Here 
the zero function z (x )  in '/ is a function such that 

I ' z ( x ) d x  = 0, for all t > 0. 
0 

The convolution operator  on ~/o is defined as follows. I f  f =  D " h ( x ) ,  
g = D ' k ( x ) ,  then 

f , g  = Dm+"(h* k) (x ) .  
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The operahons on the classical Laplace transform extend to the generahzed 
case Some operations used m this paper  are summarized m the next Table 

( Generahzed) fum tlon Laplace transform 

f, g Of(s), Lg(s) 
af+bg, a, b ~ R aLf(~)+bLg(s) 
f * g  Lf(s)  Lg(v) 
.~f - (dido) Lf  (Q 
exp ( - a . ~ ) f ,  a ~  R Lf(.~+a) 
f '  (x) sLf(~) - f (O + ) 
d(x)  (DIrac funcuon) 1 

To dlustrate the consistency of the Table with definmon (1.1) we derive the 
formula for the Laplace transform of the n-th denvatwe f ( " )  of a function 
f e  ' / .  From the theory of  generahzed functions (e.g. DOETSCH, § 14) one knows 
that 

D " f = f ( " ) +  f c " - O ( O + ) 6  + . . + f ( 0 ~ ) O  C"-I) 

Since Ldtk) (s) = s k it follows with (1.1) that 

s" L f ( s )  = L D " f ( s )  

= L f ( " ) ( s ) + f ( "  I)(0+) + ...  + f ( O + ) s  " - I ,  

which provides after rearrangement the desired formula. The differential rule 
for a generahzed funcUon f e  ~'o looks somewhat different, namely 

LD" f ( s )  = s" LJ (s) .  

From now on our main concern ~s probabdlstic. The set of  locally integrable 
probabdlty density functions f e ' /  is denoted by ' f  P The dls tnbuhon corre- 
sponding to f ( x )  is 

l 
i t  

F ( x )  -- f ( t )  dt .  
o 

It s well-known that Panjer 's recurswe formula plays an Important  role in 
computat ional  risk theory. For  r e ' ~  P we are interested in the analogous 
integral equation 

i 
X" 

(1 2) x f ( x )  = 2 y h ( y )  f ( x - y ) d y ,  2 e N ,  
0 

where h e 7  is not necessardy posmve In applications of  risk theory the 
assumption 0 < F(O) < 1 is almost always fulfilled. We consider therefore the 
subset ~/Po of  all funchons f e  7" P with 0 < F(O) < 1 and for which there is a 
umque solutmn h e ' /  with 
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I ~ h ( x ) d x  = 1, 
0 

such that (1.2) is almost everywhere fulflled From results by STEUTEL (1970) 
and VAN HARN (1978) the set ' / P o  contains all mfimtely diwslble densities on 
(0, oo) (see Corollary 2). It has been shown m the arithmetic case that there are 
interesting non-lnfimtely divisible distributions on IN for which the arithmetic 
version of  (1.2) is fulfilled, e.g. the mdwldual model of risk theory with 
multxple causes of decrement (HORLIMANN (1989b)) Are there analogous 
continuous candidates in ' / Po  and what is exactly this set? A practical answer 
~s postponed to the end of th~s Section. From a mathematical point of  wew, the 
set ': Po, gwen that ~t contains non-infinitely dlws~ble distributions, is appeal- 
ing, since ~t leads to a natural generahzatJon of the characterization by FELLER 
(1968) and VAN HARN (1978) of infinitely davisible distributions with non- 
vanishing zero-probability. 

THEOREM 1 L e t f ( x )  be m the class ':" Po. Then m the space :1'o the following 
representation holds almost everywhere 

f ( x )  = ~ e x p ( - 2 )  2k/k! h*k(x) 
k = 0  

where h*° (x )=  6(x),  2 = - In{F(0)}  and h(x)  is almost everywhere the 
umque solution of  the integral equation 

I (1.3) x f ( x )  = 2 y h ( y )  f ( x - y )  dy. 
0 

PROOF. The integral equation (1 3) can be rewritten as 

x f ( x )  = 2 ( f *  u ) ( x )  with u(x)  = xh(x) .  

Applying the Laplace transform we get 

(d/dO Lf(s)  = 2 Lf(s)" (d/ds) (Lh(s)) 

It follows that 
Lf  (s) = c" exp (2 Lh (s)). 

By Laplace mversxon in the space ::o we get almost everywhere 

f ( x )  = c ~ 2~/k! h*k(x). 
,~=0 

In th~s formula we see that p = f - c 6 ~  :/o comes from a function p c'," 
By integration 

F(x)  = c + p( t )  dt, 
0 
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which shows that c = F(0). Put 2 = - I n  tF(0)} to get the result. 
The above result suggests the following defimtlon. 

DEFINITION. A probablhty density function f ( x )  defined on (0, c~) is said to 
be of  pseudo compound Potsson type i f f e  7 Po. We call the associated h (x) a 
pseudo density. 

INTERPRETATION In risk theory and when it is actually non-negative the 
functton h(x) plays the role of  claml size density 

The following equivalent formulation of  Theorem 1 can be more adequate 
for practical evaluations In particular it generahzes the result by 
STROTER (1985) 

COROLLARY 1. Let f ( x )  be pseudo compound Polsson with parameter  2 and 
pseudo density h(x) D e f i n e p ( x )  = f ( x ) - e x p ( - 2 ) d ( x ) .  

Then p(x)  satisfies the integral equation 

(l 4) xp (x) = 2 ex p ( - 2) xh (x) + 2 yh (y)  p (x - y) dy 
0 

PROOF. Introduce f ( x ) =  exp ( - 2 ) f i ( x ) + p ( x ) i n  the integral equation (I.3) 
to obtain immediately (1 4). 

In view of  its importance both in theory and practice (see eg .  STEUTEL 
(1979)) we recall the definition of mfimte divisibility. 

DEFINITION. A random variable X, taking values in ~, is called mfinitely 
dtvt~ble if for every n~/N there exist independent, identically distributed 
random variables Yi,,, . . . ,  Y,,., such that the following equality in distrlbuuon 
is valid • 

d 
X= YI.. + • - + Y,,,,," 

Equivalently P(z) l l '=  E[zX] I/", Lf(s)  I / '= E[exp ( - sX)]  '/'' or rp(t) ' / ' ' =  
E[exp(ttX)] '/'' is respectively a probabihty generating function, a Laplace 
transform or a characteristic function for every n e IN The associated proba- 
blhty density and distribution are also called infinitely divisible 

The special case of  Theorem I for infinitely divisible distributions on [0, co) 
has been identified in other forms by STEUTEL (1970) and VAN HARN (1978) m 
the general and KATTI (1967) and FELLER (1968) in the arithmetic case 

COROLLARY 2. Let X be a random variable defined on [0, m)  with locally 
lntegrable dens l tyf ( ,c )  such that 0 < F(0) < 1. Then the following conditions 
are eqmvalent • 
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(a) 
(b) 

(c) 

W HORLIMANN 

X Is mfimtely divisible; 
X is compound Poisson with parameter 2 and jump density h (x) and f (x)  
is soluUon of  the integral equataon (1.3); 
The solution h(x) of the integral equataon (1.3) is positive 

PROOF. In the arithmetic case the equivalence of (a) and (c) has been shown by 
KATTI (1967) (other proof  by STEUTEL (1970, p. 83)) The eqmvalence of (a) 
and (b) was shown by FELLER (1968, VOI. I, 3rd edition, p. 290) (other proof  
by GERBER and VALDERRAMA OSPINA (1987)). In the continuous case the 
equivalence of (a) and (b) as due to VAN HARN (1978, theorem I 6.6) for the 
compound Poisson representation and STEUTEL (1970) (see also VAN HARN, 
Corollary 1 6.3) for the integral equation representauon. The equivalence of (b) 
and (c) follows from Theorem 1. 

Next we display a subclass of," Po which is big enough for our apphcauons. 
In partacular we will show by constructaon an Sectaon 4 that the class ' / P o  
contains more functions than the infinitely dtvaslble ones. 

THEOREM 2. Let / P' be the subclass of / P consisting of functaonsf(x)  which 
satisfy the following condiuons:  

0) 0 < F(0) < 1. 
(n) The associated generahzed function f - F ( O)d  ~ "/o comes from a contin- 

uous functaonf(x)-F(O)d(x) defined on [0, ~ ) .  

Then '," P' is contained m / Po. 

PROOF Let f e ' / P ' .  The function p(x) = f ( x ) - F ( O ) J ( x )  is by assumption 
continuous on [0, m) Consider the Volterra integral equation of the second 
kind 

a(x) = 2-  e x p ( 2 ) x p ( x ) - e x p ( 2 )  a( y) p ( x -  y) dy, 2 = - In{F(0)} .  
0 

Smcep(x~-y and xp (x )  are contmous on {0 _< x _< a, 0 _< y _< x} respcctwely 
{0 < x < a}, this equation can be solved umquely for a(x) (see e g JERR1 
(1985), p. 194 and p 201) Set h(x) = a(x)/x'. After algebraic mampulatlon 
one sees that h(x) is the unique solution of  the integral equation (1.4). Since 
f(,x) = F(O) J(x)+p(x),  one checks easily that h(x) is also the unique 
solution of  the integral equation (1.3). Provided that 

I ~ h(x)dx = I, 
0 

we have shown that f ~ /  Po. This point is proved as follows. Since h(x) Js 
solution of (1 3) one shows that 
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i ~o h ( x )  dx  = c < oz 

0 

Then 71(x) = h(x)/c is the umque solution of  the integral equation 

x f ( x )  = ~,c y h ( y )  f(x-),)dy. 
0 

Since It(x) dx = I one has f e  / Po. But from Theorem 1 one has then 
0 

2c = - I n  {F(0)}. 

By definition of  2 above one has indeed c = I. 

R E M A R K S  

(I) In Theorem I and Corollary 2 the condition F(0) > 0 is necessary. The 
infinitely divisible exponential d e n s i t y f ( x )  = / t  exp ( - l t x )  leads to the solution 

h(x) = exp(-i lx)/x ,  but h(x)dx = ~ .  This density is not compound 
0 

Polsson, but the weak hmlt of  the compound Polsson densities f~(x) = exp 
( - 2 )  d ( x ) + ( I - e x p  ( - 2 ) ) / t e x p  ( - p x )  as 2 ~ oo, with claim size densities 
h~ (x) = exp ( - / i x )  ( 1 - e x p  (-ax))/2x, a = (exp ( 2 ) - I ) ; u .  This result will be 
derived m Section 4. In general p(x) with P(0) = 0 is Infinitely divisible if and 
only i f f~ (x )  = exp ( - 2 ) d ( x ) + ( I - e x p  ( - 2 ) ) p ( x ) i s  mfimtely divisible with 
F(0) = e x p ( - 2 )  and p(x) is the weak limit of  the f~'s as 2 ~ oz. (FELLER 
(1968), vol 2, 2nd edition, p. 303). 

(2) In the arithmetic case the integral equation (1.3) is to be replaced by the 
well-known Panjer recurslve formula 

(1.5) k p ( / , )  = ,:o ~ sh(,s)p(k-s) 
s--I  

An independent and more elementary proof  of  the results m this mathemati-  
cally simpler case in presented m HfJRLIMANN (1989a, 1989b). Observe that 
Laplace transforms are to be replaced by the geometric transform ( =  proba- 
bility generating function m case of  arithmetic distributions, see GI~-HN (1975) 
for fundamentals)  

(3) Methods to solve integral equauons can be found m all parts of  Applied 
Mathematics.  Transform theory (see WIDOE~ (1971)), especmlly Laplace 
transforms, is a powerful tool to get closed analytical results An illustration is 
given m Section 4. Numerical methods were extenswely studied by BAKER 
(1977) and more recently equation (I 4) has been solved in the insurance 
context by STROTER (1985). It is worthwfle to mention that the Laplace 
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transform approach simplifies the derivation of  Theorem 1 1. of the latter 
author, which uses the method of  successive approximation. 

(4) Theorem 1 can be interpreted as a duality assertion. There is a duality 
between integrable densities on [0, ~ )  and pseudo densities, where the pseudo 
compound Polsson representation realizes this duality The subclass of infi- 
nitely divisible densities is just dual to the ordinary densities. 

(5) Theorem I suggests many (also difficult) applications. It can be useful for 
the computational evaluation of convolutions (see next Section), as well as for 
the study of  other properties of  exact sampling distributions. A statistical 
application is given in HORLIMANN (1989a). 

(6) With more technical refinements it should be possible to extend the results 
to arbitrary one-sided unbounded intervals [a, ~ ) ,  a > - ~ ,  (see VAN HARN 
(1978) for the case of infimtely dwlsible distributions). It would be of  great 
interest to generalize Theorem I, if possible, to the whole real hne and 
especially obtain a single characterizing functional equation vahd on ~. 
Unfortunately, even for infinitely divisible distributions, the latter requirement 
is still an open problem, as reported by VAN HARN (1978), p. 189. 

2. CONVOLUTIONS OF DISTRIBUTIONS 

Let X~, X2, .  , Xn be n mutually independent random variables on [0, co) with 
a common lntegrable density f ( x )  such that 0 < F(0) < I. In probability and 
statistical theory one is interested in the exact sample distribution of  the mean. 
It is a straightforward rescahng of  the distribution of the sum 

X = X i + . . . + X , ,  

whose density is given by the n-fold convolution 

f ( x )  = f*"  (x). 

The evaluation of  this function uses the recurslve formula 

I f*(~+l)(x ) = f ( y ) f * k ( x - y ) d y ,  
0 

which is very time-consuming for large values of n, especially when / (x) is not 
a simple function 

Using Theorem I and the various methods for solving integral equations, an 
alternative general approach to this problem follows immediately. In the 
following we will often use g(x) = 2h(x) instead of h ( r )  

COROLLARY 3. Let the X, be defined on [0, m) with 0 < F(0) < I. Assume 
f e ' /  Po. Let g(x)  be the solution of the integral equation 
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i 
v 

(2.1) xf(x)  = yg(y)  f ( x - y )  dy 
0 

Then the n-fold convolution f ( x )  is solution of the integral equation 

(2 2) xf (x)  = n yg(y)  f ( x - y )  dy 
0 

PROOF. In the proof  of  theorem 1 we have seen that 

Lf(s) = F(0) exp (Lg (s)), 

and thus 

Lf(s) = r(o)" exp (nLg (s)). 

Therefore f ( x )  IS pseudo compound Polsson with parameter  n2 and pseudo 
density g(x)/2. The affirmation follows from Theorem !. 

Let us have a look to the special arithmetic case. The n-fold convolution 
fi(x) = p*"(x) can be evaluated using the recursive Panjer formula 

f ~(0) =p(0)" (2.3) k 

kfi(k) n 2 sg(s)f i (k-s)  
s = l  

where g(s) is itself computed recurslvely by 

~ - I  

(2.4) sg(s)p(O) = sp(s) - 2 ig( i)p(s- t )  
t = l  

At first sight it might appear  that this two-stage nested recursive algorithm is 
computat lonally less efficient than the recursive formula proposed by DE PRIL 
(1985), Theorem I 

t~ (0) = p (0)" 
(2 5) k 

kfi(k)p(O) = 2 [(n+ l ) s - k ] p ( s ) f i ( k - s )  

In some cases it might be that only g(k) is known and p(k) must be computed 
recursively using Pan ler's formula (1.5). Then the formula (2.3) Is simpler and 
more direct than formula (2.5) 

EXAMPLES. The choice 

p. F(a+ k -  I)c k-I  
(2.6) g(k) = F(a)k! ( l + c )  a+k-t  ' k = 1,2 . . . .  , p  > 0, c > 0, a > 0 

leads to Hoffmann/Thyr ion ' s  family proposed as claim number  d lsmbut lon by 
KESTEMONT and PARIS (1985/87). A similar choice would be the ETNB 
distribution 
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(2.7) g ( k )  . . . . . .  k =  1,2 . . . . .  - 1  < a < 0 , 0 < f l ~  1, 
r ( a ) k !  [(1 - /~ ) - " - ' ]  ' 

studied as probabili ty denslty (however) by WILLMOT (1988). In these examples 
it is more direct to apply formula (2 3) to compute exact n-fold convolutions 
than to use De Prd's formula (2.5). 

3. T H E  I N D I V I D U A L  M O D E L  OF RISK T H E O R Y  

Consider n mutually Independent random variables Xi, X2, ., X, ,  not neces- 
sarily identically distributed as in Section 2 Suppose each X, has a range 
contained in the interval [0, oo), which may be arithmetic or not. In risk theory 
the sum 

X = X i 4 - X  2 -t- . .  -k- X n ,  

called individual model, can be interpreted as the aggregate claims m a finite 
period on a portfolio of  n independent contracts. Let F ( x )  = P r ( X  < x), 
F , ( x )  = Pr(X,  < x ) ,  l =  1,2, . ,n ,  and assume that 0 < F,(0) < 1 for all i. 

THEOREM 2. Assume the probabihty densmesf ,  e / P o ,  t = 1, . , n Then thc 
individual model of  risk theory is pseudo compound Polsson with parameter  

2 =  - I n { F ( 0 ) } =  - ~ In{F,(0)}, 
t= l  

(3.1) 

and pseudo density 

(32) h ( x ) =  (f,_l g , ( x ) ) / 2 ,  

where each g , ( x )  is unique solution of the integral equation 

I (3.3) ~,Z(x) = yg , (y )  f , ( x - y )  dv 
0 

PROOF Clearly f = f j  * [2 * *.£,. In the proof  of  Theorem 1 we have seen 
that 

LJ,(s) = F,(0) exp ( L g , ( s ) ) ,  t = 1, 2, . , n 

It  follows that 
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Taking inverse Laplace transforms in the space :/o tile result follows Imme- 
diately 

For  slmphclty restrict the following d~scuss~on to the arithmetic case First of 
all formulae for g,(x)  must be obtained, or the g,(x) must be computed by 
other means, using for example Panjer's recurs~ve formula (3.3). Then the 
probablhty density function of the mdw~dual model can be computed using 
Panjer's recurslon, vahd in the generalized case 

x = o ,  

(3.4) f(x) 
(-ln{f(O)}/x) ~, yh(v) f ( x - y ) ,  x>  O. 

y = l  

Compared to the collective model of risk theory the extra cost for preparing 
h(x) may be substantml since many values o fg , (x ) ,  z = 1, 2 , . . ,  are revolved 
m the computation. A souqd procedure would be to approximate the pseudo 
density, as suggested by DE PRIL (1987/89) (see Example 1 below), by a more 
tractable function h* (x) and compute the approxmlate densfly 

t= l  

(3.5) f * ( x )  
(-ln{f(o)}/x) ~ yh*(y) f * ( x - y ) ,  x > 0 

Another possibility to reduce the computational effort is to apply the Fast 
Fourier Transform, inverting the Fourier transform of the pseudo compound 
Poisson representation according to the formula 

/7 = {f(0)/n} F F T -  (exp (FFT + (~))) 

Here F F T  +, {l/n} F F T -  denote Fast Fourier Transform, respectwely the 
reverse transform, and n is the size of  the vectors 7, g associated to the 
functions f(x),  g(x). Since one has to take into accout a relatwely long 
support of h(x), the FFT-method has been shown supenol to Panjer's 
recurslon m many cases (cf BOHLMANN (1984)), and the error bound in the 
distribution as well as in assocmted stop-loss prcmlums are controllable 
(BUHLMANN (1984), HURLIMANN (1986)) 

EXAMPLE 1. The smaplest mdwldual life model has been considered by DE 
PRIL (1986/87). Let n,i be the number of pohcles with amount  at risk i and 
mortahty rate q/, t =1 ,  . . , a , j  = 1, ,b  Let 1): = I-% the corresponding 

a 

survwal probablht~es, n j - -  Z n,/ the number of  policies with mortahty 
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rate qj, n = E nj the total number  of  policies, and m = i-n U the 
J - I  /= l  J ~ l  

maximum possible amount  of  aggregate claims. Furthermore let X,j be the 
random variable representing the claim produced by a policy with amount  at 
risk i and mortali ty rate qj. Its probablhty density function is given by 

pj, x = O  

(3.6) f , j (x)  = qj, x = t 

0, else 
Following the device given by the arithmetic version of Theorem 2 we search 
for unique functions g,j(x) such that 

xf~j(x) = ~ ygu(y) f , j ( x -y )  
y = l  

In the lemma below they are shown to be 

( -  1) k- '/k" (ql/p~) ~ , 
(3.7) gy(x)  = O, 

It follows that this individual model is 
parameter  

and pseudo density 

x = i k ,  k = 1,2 . . . .  

else 

pseudo compound Polsson with 

with 

Insert these formulae in (3.4). Then one has 

b 

f (O) = H ( P)" 
j - I  

For  x > 0 one obtains with y = tk" 
mm (a,x} [~/~1 

(3.8) xf(x)  = E E A (i, k) f ( x - , k ) ,  
t=l  k - I  

b 

h(x) = 1/2 E nvg'j(x)" 
l--I 1=1 

x = 1,2, . , m  

b 

A(i,k) = ( - - l ) k + l i  E nu(qJ/PJ )k" 
j = l  

This has been derived differently by DE PR~L (1986). For  computat ional  
reasons REIMERS (1988) has proposed to reverse the order of  summat ion '  

b 

2 = - E n j ln (p j )  = - ln{f(O)} 
j - I  
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mm (a, [~/kl) 

(3.9) x f ( x )  = Z A (t, k)  f ( x -  ik) 
k ~ l  t=¿  

To save c o m p u t e r  t ime it is adv isab le  to t runca te  the first s u m m a t m n  tak ing  
only  4-5 terms as p r o p o s e d  by DE PRIL and VANDEN~ROEK (1987). An  analysis  
o f  the m a g m t u d e  o f  e r ro r  involved m this app rox~ma uon  step is gwen by DE 
PRIL (1988). 

LEMMA The Pan je r  recurrence re la t ion equa t ions  

x f ( x )  = ~ y g ( y )  f ( x - y )  
y=l 

where 

f 
p, x = 0  

f ( x )  = q, x = t, 

0, else 

have the unique so lu t ion  

0 < q <  l, p + q =  l ,  

( -  I)k-J/k'(q/p) k, x = tk, 

g (x )  = 0,  else 

k =  1 , 2 , . .  

PROOF One uses induct ion.  F o r  this rewrite the recurrence equa t ions  in 
form (2.4): 

: - - I  

xg(x )  f(O) = x f ( x )  - Z Yg(Y)  f ( x - y ) .  
y = I 

F o r  x = I . . . . .  t - I  one o b t a i n s g ( x )  = 0 F o r  x = i t h e  e qua tmn  reads  

lg(t)p = tq. 

Hence  one has g(i)  = q/p. Let now x > t and  assume the fo rmula  for g ( y )  
correc t  for all y < x. I f  x = ik is a mul t ip le  o f  i, then the r igh t -hand  side o f  the 
equa t ion  gives a con t r i bu t i on  only  for x - y  = i, tha t  is y = ( k - 1 ) i .  The  
equa t Ion  reads 

ikg(x)p  = - ( k -  I) t g ( ( k -  I) i)q 

and the correc t  value o f  g(x)  is checked by induct ion  assumpt ion .  W h e n  x is 
not  a mul t ip le  o f  t the r igh t -hand  side vanishes and hence g(x )  = O. 

EXAMPLE 2. Cons ide r  the ind iv idua l  hfe mul t ip le  dec rement  model  which has 
a p p h c a t i o n s  in pension theory  for  example  (see BOWERS et al. (1986)). Let  m be 
the number  o f  causes o f  dec remen t  and  let the vector  s = (st, . . . ,  s,,) represent  
a m o u n t s  at  risk, sj being a sum at risk due to c a u s e j .  The  vector  s_ is assumed 
to take values m a f imte set A c 2~'". Let n~k be the number  o f  pohcles  with risk 
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sum structure s and 

j = l  . . . . .  m , k = l ,  

probablht les  o f  decrement  q(k j) due to cause, j ,  

, b  Let p ~ ) =  1 - ~  q~J) be the survival probabi l i ty  
/--I  

due to all causes of  decrement  Denote  by n~ = E n~_k the number  of  poh-  
s e A  

b 

oes  w~th survival probabi l i ty  p~) and by n = E nk the total numbe r  of  
k = l  

policies The  m a x i m u m  possible a m o u n t  o f  aggregate  claims is denoted by M 
and is equal  to 

b 

g max 
= I 2 g j s g m  - 

Moreove r  let the r andom variable X~k represent  the claim produced by a policy 
with risk sum structure s and probabih t les  o f  decrement  q~J), j = 1 . . . . .  m, 
k = 1, . , b Its probabi l i ty  density function, denoted by f s k ( x ) ,  is given by 

{ p~, x = o 
(3.10) f~k(x)  = q~'), x = sj, j = I . . . .  m, 

0, else 

Evalua te  now the probabi l i ty  density function of  aggregate  claims using 
Panjer ' s  recurslve formula  (3.4). We have clearly 

b 

/ ( 0 )  = H (P~'))"'" 
k = l  

For x > 0 it is necessary to evaluate first in a recurslve manner the functions 
g~ (x)  such that 

Y g , k ( Y )  g k ( x - Y ) ,  s e A ,  k = 1 . . . .  b.  
y - - I  

( 3 . 1 1 )  xf,~(x) = 

Then 

(3.12) 
s ~ - A  k = l  

= - In { f ( 0 ) } ,  

is in t roduced in the recurs~ve fo rmula  (3.4). It is impor t an t  to note that  the 
p roposed  a lgor i thm requires a two-stage nested recurslve computa t ion .  Up  to 
the m a x i m u m  possible a m o u n t  of  aggregate  claims M prepare  for each 
y = 1, 2, . , M the finite number  of  elements  g~k(Y)  recursively solving (3.11) 
such that  
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v - I  

Then apply Panjer 's  recursive formula  (34)  comput ing  h ( y )  using for- 
mula (3.12) As many  of  the values f~k(Y) indeed vamsh the summat ion  m 
(3.13) extends over at most  m terrr~s. To illustrate consider the double-  
decrement  model with m = 2, for example death and withdrawal or  death and 
&sablhty  as causes o f  decrement.  Use for brevity the notat ion s = ( l , j )  with 
A = {1 < t, j _< a} Assuming i < j (the other  cases t = j and t > j are similar) 
the elements gs~(x) are computed  more efficiently by the recurslve formulae 

0, If  x ~ { 1 ,  . , t - l }  or  

x E { t +  1 . . . . .  j - 1  Ix not multiple o f  l} 

( _  i ) r - I / r .  (q(O/p~¢))r If x = ri =f j, 

r ~ {1, . ,  [ j / t ] )  

(3 14) q~k(x) = <| g(Z)/p~T), If x = j Is not  multiple o f  t 

q(Z)/p~¢)+(_ i)r-i /r .  (q~,)/p(¢))~, if 

x = j  = rl for r e i N ,  

- [ ( x - j )  g ~ k ( x - j )  q~2) + 

+ (X--t)g~k(X--l)q~l)]/(xp(k~)), If X > J  

An alternative derivation and a d d m o n a l  formulae concerning the indivIdual 
model o f  risk theory can be found m DE PRIL (1989) 

4 PARAMETRIC AGGR E GAT E  CLAIMS MODELS 

It is well-known that the c o m p o u n d  Polsson g a m m a  and the c o m p o u n d  
negative binomial exponential  distr ibutions can be expressed as analytical 
series, the latter one as a fimte sum. Other  cases are less well-known. For  many  
practical purposes It is most  desirable to have tractable parametr ic  functions 
model ing aggregate claims. The classical approach  to this problem uses 
asymptot ic  approximate  formulae as Normal ,  Normal -Power ,  Wflson-Hflferty,  
three-parameter  gamma,  Haldane,  Esscher t ransforms and others These 
a p p r o x l m a h o n s  are at tached with approximat ion  errors which are usually 
dltfficult to control  Fur the rmore  the structure o f  the claim size density has been 
lost m these models Since it ~s often necessary to study claims frequency and 
claim size separately, parametr ic  aggregate claims models with explicit struc- 
ture o f  claim number  and claim size dls t r lbuhon are o f  interest This can be 
achieved solving analytically integral equat ions o f  the form (14).  The method 
is illustrated at a simple new case, namely a modified two parameter  g a m m a  
aggregate claims model. 

L e t f ( x )  be an aggregate claims density such that 0 < F(0) = exp ( - 2 )  < 1. 
This assumpt ion  is m particular fulfilled for a Polsson claim number  model 
with parameter  2 and when there are no claims o f  a m o u n t  ~ 0 More  generally 
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this can be assumed for infinitely divisible aggregate claims distributions 
defined on [0, oo) (see Corollary I). Rewrite the density as 

(4.1) f ( x )  = exp ( - 2 )  J (x )+g(x )  

The derivative (d/ds)Lf(s) of  a Laplace transform is denoted for short by 
L' f (s)  Solving the integral equation (1 4) is equivalent to solving a &fferential 
equation in the Laplace space and taking reverse Laplace transforms The 
differential equation reads 

(4 2) L'g(s) = 2Lg(s) L'h(s)+ 2 exp ( - 2 )  L'h(s) 

Given the function h(x) its general solution is 

(4.3) Lg (s) = c. exp (2Lh (s)) - exp ( - 2). 

where c is a constant. We have gained nothing since this ~s eqmvalent to the 
pseudo compound Poisson representation and is difficult to handle analytically. 
However  specifying the function g(x) it might be easier to find h(x) according 
to the formula 

(4.4) L'h(s) = exp (2) L'g(s)/[2(l + e x p  (2) Lg(s))] 

For  the mo&fied two-parameter  gamma aggregate claims model, the task is to 
find the pseudo density h(x) which corresponds to 

(4 .5 )g(x)  = ( l - e x p ( - 2 ) ) l l c ' x a - l  exp(-i~x)/F(a),  a > 1, I1 > 0 

Setting oJ = 1 - e x p  ( - 2 )  one gets 

(4.6) Lg(s) = co(l +s/tl) -~, L'g(s) = - ( aeJ /p )  (1 +silo -'~- t 

After straightforward calculation ~t follows that 

(4.7) L' h (s) = - aa"/[2 (s + p) ((s + It)" + a~)], 

where a is the positive a-th root defined by 

(4.8) a ~ = (exp ( 2 ) -  I ) p  ~ 

Inverse Laplace transformation yields 

5 (4.9) h(x) = exp( - t l x ) /2x  L-I[aa~/(a~+s")](y)dy 
0 

We show now that for integer values a -- n = 1, 2, 3, . the function h(x) has 
a finite closed form. Using properties of  the Laplace transform it suffices to 
invert the functions 

(4.10) L'~(s) = - l /[s( l+s")]  = s"-~/(l+s")-I /s ,  n = 1,2 . . . .  

Set 7~(x)= ~l(x)+~z(x)  with L '~ l ( s )= - I / s ,  L'~-,(s)= s"-I/(l+s"). It 
follows that 7~j (x) = I/x, x > 0, and hz(x) = - ( I / x ) ' L  -I[s" I/(I +s")] (x), 
x > 0. To find the latter reverse Laplace transform expand the rational 
function as a partml fraction (e.g. DOETSCH (1976), p. 89): 
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n - I  

(4.11) s"-'/(l+s") = l/n ~ l/(s-exp(t(2k+l)lr/n)) 
k=0  

and re-group the complex conjugate terms. As n Is odd or not one obtains two 
different formulae  summarized as follows: 

(4.12) s"-l/(l +s")  = ( l / n )  I(1 - - ( - 1 ) " ) / [ 2 ( 1  +s ) ]  + 

[n/2l- t 

+ 2 2(s--ak,,,)/(sZ--Zak,,,S+ 1)] 
k=0  J 

where ak., = COS [ ( 2 k +  l)z~/n]. For  later use set ilk.,, = I sin [ ( 2 k +  l)zr/n]l. 
F rom a table o f  Laplace t ransforms (e.g. DOETSCH (1976)) one has 

L -I  [ l / ( s 2 -  2 a s +  I)] (x)  = (l/fl) exp (a_~) sm (fix).  

It follows that 

(4.13) L-1[(2s-2a)/(sZ-2as+l)](x) = 2 e x p ( a x ) c o s ( f l x )  

whenever az+fl 2= 1. Using these results one gets after some algebraic 
mampula t ion  the pseudo density m form of  a fimte sum" 

(4.14) h(x) = (exp (-/ix)/2x) I n - ( I  - ( -  l)")  exp (-ax)/2 - 

[n/2]- I " 3  

- ~[] 2 exp (ae.,ax) cos (flk,,,ax)l 
k=0  J 

with a = ( e x p ( 2 ) - l ) l / " / l .  In partJcular for lower dnmensions one has the 
pseudo densities 

n = 1: h(x) = exp ( - / i x )  ( I - e x p  (-ax))/(2x), 
a = /i (exp ( 2 ) -  I), 

(4 15) n = 2: h (x )  = 2 exp ( - / i x )  ( l - c o s  (ax))/(2x), 

a = /i ~exp  ( 2 ) -  1, 

n = 3: h(x) = [exp (-/ix)/(2x)] [ 3 - e x p  ( -ax )  - 

- 2 exp (ax/2) cos {(x /3 /2)ax  }], 

a = /i ~exp ( 2 ) -  1 

We apply now Corol lary  2. For  n - - 1 , 2  we have h(x)> 0 and the 
corresponding model  (4.1) is mfimtely divisible and thus compound  Poisson 
For  n = 3 one may have h(x) < 0. Hence (4.1) ls not infinitely divisible and 
thus only pseudo compound  Poisson In part icular  we have shown that the 
classe '~ P'  is bigger than the class o f  infinitely divisible probabdl ty  denszty 
functions defined on (0, oo) As known to the au thor  the present model n = 1 
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is among the few examples of compound Polsson models allowing f imte 
analytical sum expresswns for the mare risk theoreucal quantities of interest. In 
particular at as comparable  to the Poisson exponential aggregate claams model 
concerning mathematical  samphctty. 

Fur thermore analytical expressaons for the finite and lnfimte time ruin 
probabilities can be derived. We have computed the simple case n = 1 (details 
of  calculation m appendax). Assume a s tauonary evoluuon of the portfoho. In 
thas context P = (1 + 0)2rn represents the premmms recewed continuously per 
unit of  time, wath 0 the security loading, m the expected claim size, and 2 
measures the expected number of  claims per umt of  time Then the probabdaty 
of  rum ~(x ,  t) before tame t given the initial reserves x is 

(4.16) ~(0,  t) = 1/(1 + 0 ) - ( I  - e x p  ( - 2 t ) )  exp ( - I I P t ) / ~ P t ) ,  

and for x > 0, 

(4.17) ~u(x,t) = ( I - e x p ( - 2 t ) )  e x p ( - / l ( x + P t ) )  + 

+ 0/(1 + 0)- exp ( -  ~x)-  [4/(4 + PlO - 

- exp ( -  ~P t ) .  {1 - exp ( - 2t)" PIt~(2 + P~)}] + 

k - I  

+ e x p ( - ~ ( x + P t ) )  ( - 2 0 k / k !  ~ l/j. 
k=2 / - I  

Taking hmits as t ~ oo it follows that the infimte time ruin probabdmes are 

(4.18) ¢(0)  = 1/(1+0), 

~,(x) = O / ( l+O) . e x p ( - i t x ) . 2 / ( 2+P#) ,  ~ > O. 

The obtained results wall practacally be more useful ff one fits the claam size 
density by a linear combination of  densities as follows: 

(4 19) h(x)  = ~ c,h,(x), el + . . .  + c, = 1, 

h,(x) = exp ( - I t ,  x)" {1 - e x p  ( - a , x ) } / 2 x ,  

a, = (exp ( 4 ) -  1) lz,. 

From the proof  of  Theorem 1 we know that the aggregate claams densaty 
f ( x ,  t) up to tame t satisfies the Laplace representataon 

(Lf)  (s) = exp ( -  2t) exp (2tLh (s)) = ILl exp ( -  2c, t)-  exp (2c, tLh, (.s)). 
t --I  

D e f i n e r ( x ,  t) as solutmn of  the Laplace equation 

(L[~) (s) = exp ( - 2 c ,  t ) .  exp (Zc, tLh, (s)). 

As we have shown, one obtains by reversion 

(4.20) f , ( x , t )  = e x p ( - 2 c , )  J ( x )  + ( l - e x p ( - 2 G t ) ) . a ,  e x p ( - , u , x ) .  
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The direct calculation of the convolutmns 

f ( x ,  t) = fl  (x, t) * 

yields the formula (use induction): 

• . .  * L ( x ,  t )  

r 

(4.21) f ( x , t )  = e x p ( - 2 t ) ~ ( x )  + E ( I - e x p ( - 2 c ,  t)) x 
t = l  

x ~u, exp ( -~u,x)  

In this model the net stop-loss premiums to the priority M can be expressed as 
finite analytical sums, namely 

I ± (4.22) SL(F, M) = ( x - M )  f ( x ,  t ) d x =  ( 1 - e x p  ( - 2 c ,  t)) x 
M t = l  

x exp (-~u,M)/~,  

Analytical formulae for the finite and infinite time ruin probablhtles can also 
be derived 

A P P E N D I X  ' 

C A L C U L A T I O N  O F  R U I N  P R O B A B I L I T I E S  

Assume an aggregate claims distribution function up to time t of  the form 

F(x, t) = 1 - ( 1  - e x p  ( - 2 t ) ) . e x p  ( - / 2 x ) .  

Then the probability of survival to time t, denoted by U(x, t) = l -~u (x ,  t), 
can be calculated using Seal's formulae (e.g GERBER (1979)). 

S g(0, t) = 0/(I +O)+(1/Pt) ( I - F ( z ,  t)) dz 
Pt 

I' g(x ,  t) = F(~c+Pt, I ) - P  g ( o , t - w )  f ( x + P w ,  w)dw 
0 

One obtains 

U(O, t) = 0/(1 + O) + (1 - exp ( - 2t))- exp ( - lzPt)/(l~Pt). 

Further calculate 
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V(x, t) -- 1 - ( l - e x p  ( - 2 t ) ) - e x p  ( - l u ( x + e t ) )  - 

I' - P [ 0 / ( l + 0 ) + ( l - e x p ( - 2 ( t - w ) )  x 
0 

x exp ( - / I P ( t -  w)) / ( l lP( t -  w))] x 

x [exp ( -  2w) 6 (x + Pw) + (1 - exp ( -  2w)) x 

x exp ( - / ~ ( x +  Pw))] dw. 

Since x+  Pw > 0 for w e (0, t) the term in 6 ( x +  Pw) does not contr ibute  to the 
integral. For  clearness write 

U (x, t) = 1 - ( I - exp ( - 2 t ) ) .  exp ( - I~ (x + P¢)) + II + h ,  

with 

S' 
I l = - P  0/(1 +0)'(1--exp(--2w)) x 

0 

x /1 exp ( - - F l ( x +  Pw)) dw, 

I' h = - P  ( 1 - e x p ( - 2 ( t - w ) ) ) - ( l - e x p ( - 2 w ) )  x 
0 

x exp ( - - l l ( x +  P t ) ) / ( P ( t -  w)) .dw 

The evaluat ion o f  the first integral gives 

I I' Ii = O/(l + O ) ' e x p ( - I t x ) "  -PI2 e x p ( - t 2 P w ) d w  + 
o 

I' 1 + P u e x p ( - ( 2 + P u ) w ) d w  
o 

= 0 / ( 1 + 0 )  e x p ( - ~ u x )  [ e x p ( - / i P t )  - 

- 1 + PI1/(2 + P ~ )  (1 - exp ( - (2 + P/i) t))] 

= 0/(1 + 0 )  e x p ( - , u x ) . [ e x p ( - / ~ P t )  x 

x { 1 - exp ( - At)- P u/(2 + P~)} - 2/(2 + PIO] 

To evaluate the second integral expand the first exponential  function m a 
Taylor  series to get 

12 = - e x p ( - / l ( x + P t ) )  ~" ( - - l ) k 2 k + l / ( k + l ) !  
/ , - 0  

j " ( l - e x p ( - 2 w ) )  ( t - -w)kdw 
o 
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By induction one shows the recursive relation 

I ' e x p ( - 2 w )  ( t -w )  k dw 
0 

I' = tk/2-k/2 e x p ( - 2 w )  X ( t -w)~-ldw,  k > O, 
0 

with starting value 

i t exp ( - 2 w )  dw = (1 - e x p  ( - 2 t ) ) / 2 .  
0 

It follows that 

I ' (1 - e x p  ( - 2 w ) ) . ( t -  w) k dw = tk+t/(k+ 1 ) - k !  
0 

k 

[ e x p ( - ~ / ) / ( - 2 ) k + l  - j=02 l)/J'(--'~)k+l-J l 

Introduced above one obtains 

77 

12 = exp ( - / t  (x + Pt))" [Si + $2 + $3] 

wtth 

But one has 

S~ = ~ {I/(k+l)}'(-At)k+I/(k"l -I)!, 
k=O 

S2 ; - ~ l / (k+ I) ( -Xt)J / j  w, 
k = 0  j = 0  

2 ' $3 = l / ( k + l )  2 ( -2 ty / j ! .  
k=O j=O 

s,+s2+s3--- ~ ~/¢k+l) ~ ¢-~,)J/j, 
k = 0  j = k + 2  

(-2t)J/J! 2 l/k, 
J = 2  k = l  

the last equality being obtained by interchanging the order of  summation 
Therefore formula (4.17) is shown. 
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