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A BSTRACT 

This article, based on a result of  BORCH and an extension of  BOHLMANN, gives 
a complete characterization of Pareto optimal risk exchanges by a system of  
differential equations hnking the denvate  of  agents contributions to their risk 
aversion coefficients. 
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1. I N T R O D U C T I O N  

This article extends a result of  BOHLMANN (1984) Starting from BORCH'S 
theorem (1960), Bf..JHLMANN found a system of  differential equations with a 
Pareto optimal risk exchange as the solution. Here we are starting from these 
differential equations and prove existence and uniqueness of  a solution without 
assuming any further condition. This solution depends on initial values which 
satisfy a certain clearing condition. It will turn out that it can be identified in a 
bijectwe way with the set of  Pareto optimal risk exchanges 

2. M O D E L  

We consider a risk pool with n participants. Participant i (1 _< i _< n) is 
characterized by 

r, : initial wealth 
X t . imtlal risk ( random variable defined on a probabihty space (£2, 9.1, P); we 

assume that the expected values E[X,] exists) 
u, : Bernoulh utility function (defined on R, increasing, strictly concave and 

twice dlfferenuable: u; < 0, u;' > 0) 
p, : absolute risk aversion (p, :=  -uT/u; .  Notice u; > 0 and R, > 0 i.e. the 

participants are risk averse; see PRATT (1964)). 

By a risk pool we mean any formal mutual agreement among the n participants 

to redistribute their total initial risk ~ X,. 
1=1 
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The lnUal risk vector X, 

x . =  ( x ~ ,  . , x , , ) ,  

is called risk vector before exchange whereas a risk vector Y, 

Y : =  (Yt,  -, Y.), 

defined on the same probablhty space (£2, ~ ,  P) and satisfying the clearing 
condition 

I = l  t - I  

is denoted as risk vector after exchange or briefly as risk exchange 
Fur thermore  a risk exchange Y* ' =  (Yi* . . . . .  Y,*) is called Pareto optimal if 

there does not exist another  risk exchange Y : =  (Y~, . , Y,) with 

E[u , ( r , -  Y,*)] < E [ u , ( r , -  Y,)] for all t 

E[u,o(r,o- Y*)] < E[u,o(r,o- Y,,)] for at least one t °. 

In the sequel we are interested in Pareto optimal risk exchanges 

REMARK The motivation of  a person for participating in a risk pool is to 
improve his initial expected utility E [ u ( r - X ) ]  Therefore a rusk exchange Y 
has to satisfy the individual rationality condition 

E[u , ( r , -X , ) ]  < E [ u , ( r , -  Y,)] for all l 

in addition to the pool condition of  Pareto optimality Unfortunately there are 
many Pareto optimal risk exchanges violating this condition. In order to 
preserve the beauty of the main result we drop the individual rationality 
condition and deal in this article with general Pareto optimal risk exchanges. 

In order to simplify our notation we introduce the sh,fted dlsutlhty functions v, 

v , ( x ) : = u , ( r , - x )  I =  1, . ,n  (v; < 0, v;' < 0) 

With W, we denote the range of  the derivative of  v, 

W , : =  { v ; ( x ) l x ~  ~} 

3. M A I N  R E S U L T  

Now we show the existence of a bqectlve mapping between the set of  Pareto 
optimal risk exchanges and the set of  solutions of  a system of differential 
equations sahsfylng a constrained boundary condition. 



PARETO OPTIMAL RISK EXCHANGES 
THEOREM 

Let w, w ' =  (wl, . ,w . )~ IR" ,  be a vector with ~ w, = 0 

(0 Let (A) be the system of  differential equations 
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( l l )  

p, (r, - Y, (z)) 
(A) Y, ' ( z )  = t = 1, . , n  

,= ,  p, (r, - Y, (z))  

There exists a uniquely defined soluuon Y ( z )  = (YR (z)  . . . .  Y , ( z ) )  of (A) 
satisfying the boundary condition Y,(0) = w,, i = l , . . ,  n 

If  Y ( z )  = (Y i  (z)  . . . .  Y , ( z ) )  is the solution of  (A) with boundary con&- 
tlon Y,(0) = w , , t  = 1, ,n,  then 

is a Pareto optimal risk exchange. 

(iii) If  Y* ' =  (Yl* . . . .  Y*) is a Pareto optimal risk exchange then there exists 
a solution Y ( z )  = (Y i  (z )  . . . .  Y , ( z ) )  of (A) satisfying a umquely defined 

boundary condition Y,(O) = iv,, i = 1, . . . , n ,  2 w, = O, wlth 

almost surely. 

PROOF 

(1) Existence of a solut ion '  

Let f~ be the func t ion  h ( x )  = 
t= l  

- 1  
k l  . m  _ _  

Vt' (W,) 
on W 

> O. fk is a str,ctly decreasing and &fferentiable function defined 

W = ~ {xk,tx~W,} 
t = ]  

with range N (see Lemma I, Appendix). F u r t h e r m o r e f k ( - l )  = 0. (see Proof  
of  Lemma 1, Appendix) We have 

Y(z) =(Y~(z), , Y . ( z ) ) w l t h  y , ( z )=(v , )_~[  1 ( fk )_~(z ) ] , t=  I \ I, . , n ,  
I l k ,  
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- 1  
and k , ' -  - - ,  i =  1 . . . . .  n, l s a  solution o f ( A )  

v,' (w,) 

Umqueness of  the solution : 

Let ~'(z) = (:Yi (z) . . . .  Y , ( z ) )  be another  solution of  (A) satisfying the same 
boundary condition. We define differentmble functions g , ( z ) ,  i = 2 . . . . .  n: 

g,(z):= k,v~(?,(z))-k ,v , ' (? ,(z)) ,  z e ~  
We have g,(O) = 0 for all t and for the derivatives g[ ( z ) ,  i = 2 . . . .  , n, we get 

g : ( z )  = k,  v ( ' ( Y ' , ( z ) )  Y ( ( z ) - k , v , " ( ~ ' , ( z ) )  Y , ' ( z )  

k l V l " ( Y | ( z ) )  k , v , " ( ? , ( z ) )  

= p , ( r , -  :Yl(Z)) p , ( r , -  Y,(z)) (w,th (A)) 

j=l pj (r j - -  Y j ( z ) )  

g,(z) 
= , ZGG~. 

± l 
j=, pj(r~- ?,(z)) 

Because the homogeneous linear differential equations 

g,(z) t g , ( z ) =  , z e ~ ,  1 = 2 , .  ,n  
g l 
~=, p~(rj- ?j(z)) 

have only solutions of  the form 

g,(z)  = c, exp dt , c, e N ,  l =  2 , . . . , n  

we get together with g,(0) = 0: c, = 0 and therefore g,(z)  = 0 for all z ~ E and 
l =  2 , . . . , n .  

Th,s means 

k , v , ' ( f , ( z ) ) = k , v , ' ( Y , ( z ) )  fo ra l l  z e N  and l = 2  . . . . .  n. 

Because ~ Y,'(z) = 1 for all z e  R it follows together with the boundary 
t = l  

condition that ~ Y , ( z )  = z for a l l z e N  
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Because lP(z) and Y(z) satisfy both  the equat ions  (**) o f  L e m m a  2 (see 
A p p e n & x )  we conclude by uniqueness o f  the so luuon  that  

~(z) = Y(z)  for all z e ~ . 

(ii) Y(z ) :=  (Yt(z) . . . . .  Yn(z)) w,th Y,(z)=(v,')-' ( ~ ( f k ) - t ( z ) ) ,  , = l , . .  9 n 9 

- 1  
and k , : -  - -  , i =  1, . .  , n, is the umque  solution o f  (A) 

v,'(w,) 

satisfying the b o u n d a r y  condi t ion Y,(0) = w,, i = 1 . . . . .  n. Because this solu- 
uon  satisfies (**) o f  L e m m a  2, (see Appen&x) ,  it follows f rom BORCH'S 
theorem (see BORCH, (1960))that  Y(Z X',) is a Pare to  op t imal  risk exchange 

(ili) It follows f rom BORCH'S theorem (see BORCH, ( 1 9 6 0 ) )  that  there are 
strictly posit ive cons tan ts  k, ,  t -- I . . . .  , n, with 

k,v,'(Y,*) = klv((Yl*)  a lmost  surely for i = 2, . , n .  

Let 09 e .(2 be an e lement  of  ~ for  which the con&t ion  o f  BORCH is satisfied, k 
the vector  k . =  (k l ,  . . . ,  k ,)  a n d f k  the funct ion as defined above.  Becausefk  (x)  
Is defined for  x " =  k I v[ (Yl*(og)) 

(con&t ion  of  BORCH) 

~t follows ana logous ly  to L e m m a  1, (see Appen&x) ,  t h a t f k  is defined on some 
interval (a, b) with range JR. There fore  ( f k ) - I ( 0 )  exists. We define the vector  
w = (wl,  . , w , )  by 

( 1  ( f , ) - ' ( 0 ) ) i =  1, n w,'=  (v,')-I k, 

The  unique solut ion Y(z) = (Yi (z), . . . ,  Y,(z))  of  (A) with bounda ry  condi-  
t ion Y,(0) = w,, t = I . . . . .  n, satisfies the equat ions  (**) o f  L e m m a  2, i.e. 

Y,(z) = z for all z ~ Ilq 
t = l  

k , v ; ( Y , ( z ) ) = k l v ( ( Y l ( z ) )  for  t = 2  . . . . .  n and all z e ~ .  

We conclude by uniqueness of  the solut ion that  

a lmos t  sure ly .  
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REMARK' Because - l / k ,  is poss ib ly  not  in the range o f  v,' we canno t  

w, by w, ' ( - ' ) )  k: Q E D  

4 EXAMPLE 

W e  assume that  the pa r t i c ipan t s  are  using exponen t ia l  Utdlty funct ions,  l e. 
p , ( x )  = a ,  for all x ~ ~ and i = 1, .. , n, where p, denotes  the abso lu te  risk 
avers ion  o f  pa r t i c ipan t  t In this case the system o f  dif ferent ia l  equa t ions  (A) 
becomes  very s imple  

1 

(A) Y , ' ( z )  - - -  , ; = 1, . ,  n 

J~ l  a./ 

We therefore  have 

I 

( l  t 
Y , ( z )  - - -  z + E ,  

/=1 12.1 

where the fl,'s satisfy the c lear ing  cond i t ion  

~ ~,--0. 

i =  l , . . . , n ,  

F o r  fur ther  examples ,  e.g. for u t lh ty  funct ions  o f  the H A R A - t y p e ,  see 
LIENHARD, (1986). 

A P P E N D I X  

To conc lude  the two techmcal  Icmmas a l r eady  used In the p r o o f  o f  the main 
T h e o r e m  are  discussed.  

LEMMA 1 

Let w, w . =  (wl ,  . ,  w,) ~ ~n, be a vector  with ~ w, = 0 
t=l  

and k ,  k " =  ( k l  , 
- 1  

, k , , )  E R" the vector  with k, = > 0 
v,' (w,) 
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Then f~ (x)  .=  
t = l  

 vl)(x) ~, is a strictly decreasing and dffferenUable 

funct ion defined on W 

w~th range IR. 

W ' =  (~ {xk, l x e W , }  
t--I 

PROOF 

Obwously  W is an open interval W ~s not empty  because it contains - 1  

f k ( - I )  = ( v [ ) - '  - 1  (v,'l-I (v, (w,)) = w, 0 
t = l  t : l  t = l  

We denote  by (a,, b,) the open interval W, and by (a, b) that  o f  W We have 

a = a,k, 

and therefore 

hm f k ( x ) = h m  ~"~ ,~,, ,=, 

Ana loguous ly  we get 

for at least one 

l(X) 
~,~,~. k I 

= hm ( v ' ) - I  ( y ) =  oo. 
y ~ aj 

> a  I 

hm f k ( x ) =  - o o .  
x ~ b  

It follows that  the cont inuous  function )c k has range 
dlfferentlable on W with derivat ive 

A ' ( x )  = < o .  

v," (v, ' )-  1 

R Obvious ly  fk Is 

Q E D  

LEMMA 2 

Let w,w = (w I . . . . .  w,,)EIR", b e a  vector  with ~ w , =  0 
t = l  

and k, k . =  (kl . . . .  k ,)  e JR" the vector  with k, . -  
- 1  

v,'(w,) 
> 0 .  

Fu r the rmore  let (*) and (**) respccuvely denote  the system of  equauons  (m 
Y, (z) . . . . .  Y. (z)) 
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(*) z =fk(k,v,'(Y,(z))) i= i .... ,n.  

Y,(z) = z for all z~ lR  

k , v , ' (V , ( z ) )  = ~, v , ' (v , (~))  for 
(**) 

l ~ 2 ,  

Then Y(z):= (Yl(z) ..... Yn(z))with Yt(z) = (V;)-I ( ~(fk)-I(z) ) ,l 

. . , n .  

= !  n 

Is the umque  so luhon  of  (*) resp. (**). The functions Y,(z), i = 1 . . . . .  n, are 
strictly increasing and dlfferentiable They satisfy Y,(0) = w, for i = 1 . . . .  n 

PROOF 

F r o m  Lemma 1 it follows that  ( fk) -a  exists and is defined on ~. Therefore 
Y(z) is well defined, strictly increasing and &fferentiable. By reverting 
equat ion (*) we see that Y(z) is a solution and even the unique solution o f  (*) 
Obviously  Y(z) is also a solution o f  (**). 

Note  that  

Y,(z)  = A ( ( A ) - ' ( z ) )  = z 

k,v/(Y,(z)) = ( f k ) - '  (z) = k,v((Yt(z)) for t = 2 . . . . .  n .  

Fur the rmore  

Y,(O)=(v,')-11~7(-1)) = w ,  (see p r o o f  o f  Lemma I) 

Let Y ( z ) ' =  (Yl (z ) ,  . . . ,  Y,(z))  be another  solution o f  (**) Then we have 

,=l ,=, ~, v , ' (? ,  (z)) 

= A (k, v,' (? ,  (~))) = A (k, v / (? ,  (z))) 

But the solution o f  (*) is unique, so we have P(z )  = Y(z) for all z ~ [R. This 
completes the p roo f  

Q E D  
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