SHORT CONTRIBUTIONS

RUIN PROBABILITY FOR TRANSLATED COMBINATION OF EXPONENTIAL CLAIMS

BY BEDA CHAN

University of Toronto, Canada

Abstract

An alternative expression for the coefficients in the ruin probability for the classical ruin model with translated combination of exponential claims is derived

Keywords

Probability of ruin; translated combination of exponentials

In a compound Poisson claim process with claim amounts distributed as a mixture of exponentials

$$p(x) = \sum_{i=1}^{n} A_i \beta_i e^{-\beta_i x}$$

for x > 0 where all $A_i > 0$ and $\sum_{i=1}^{n} A_i = 1$, it is well known that the run

probability is also a linear combination of exponentials

$$\psi(u) = \sum_{i=1}^{n} C_i e^{-r_i u}$$

where $\{r_1, \ldots, r_n\}$ are solutions to the adjustment coefficient equation

$$(1+\theta) p_1 = \frac{M_X(r) - 1}{r}$$

and $\{C_1, \ldots, C_n\}$ are determined by the partial fractions of

$$\sum_{i=1}^{n} \frac{C_{i}r_{i}}{r_{i}-r} = \frac{\theta}{1+\theta} \cdot \frac{\frac{M_{X}(r)-1}{r}}{(1+\theta)p_{1}-\frac{M_{X}(r)-1}{r}}.$$

See BOWERS et al. (1986), § 12 6 for details. This result was later extended by DUFRESNE and GERBER (1989) to the case when the claim distribution is a ASTIN BULLETIN. Vol 20, No 1

translated (density function moved by τ to the left) combination of exponentials. (Note that the A_i 's need not be positive) They found that the coefficients C_i 's are the solution to the system:

(1)
$$\sum_{k=1}^{n} \frac{\beta_{i}}{\beta_{i} - r_{k}} C_{k} = 1, \quad i = 1, ..., n.$$

and gave C_k explicitly. In this note we give an alternative expression for the solution for (1):

(2)
$$C_{k} = \prod_{\substack{i \neq k \\ i=1}}^{n} \frac{r_{i}}{r_{i} - r_{k}} \prod_{i=1}^{n} \frac{\beta_{i} - r_{k}}{\beta_{i}}.$$

To verify (2), consider

$$\sum_{i=1}^{n} \frac{x}{x-r_{i}} C_{i} = 1 - \prod_{i=1}^{n} \frac{r_{i}(x-\beta_{i})}{\beta_{i}(x-r_{i})}$$

where the two sides are different expressions for the same rational function of (degree *n*/degree *n*) which has simple poles $\{r_1, \ldots, r_n\}$ and takes the value 1 at $x = \beta_1, \ldots, \beta_n$ and the value 0 at x = 0. Multiply by $x - r_k$ and let $x = r_k$ to obtain (2).

Two different expressions for C_k , (49) and (54) in DUFRESNE and GERBER (1989), arise naturally when a more detailed problem including the severity of ruin is studied. These two expressions can be obtained from summing (9) and (22) in DUFRESNE and GERBER (1988) over j respectively.

ACKNOWLEDGEMENT

The author gratefully acknowledges these contributions of colleagues \cdot Professor FUNG-YEE CHAN solved (1) for n = 2, 3, and 4 using MAPLE, a language for symbolic computing. Professor HANS U GERBER offered (2) as an exercise. Professor ELIAS S.W. SHIU arranged for a visit to friendly Manitoba during the tenure of Professor GERBER as the inaugural Dr. L.A.H. WARREN, Professor in Actuarial Science, Faculty of Management, the University of Manitoba

REFERENCES

BOWERS, N L JR, GERBER, H U, HICKMAN, J C, JONES, D A and NESBITT, C J (1986) Actuarial Mathematics Society of Actuaries, Schaumburg, Illinois

DUFRESNE, F and GERBER, H U (1988) The Probability and Severity of Ruin for Combination of Exponential Claim Amount Distributions and Their Translations Insurance Mathematics and Economics 7, 75-80

DUFRESNE, F and GERBER, H U (1989) Three Methods to Calculate the Probability of Ruin, ASTIN Bulletin 19, 71-90

BEDA CHAN

Department of Statistics, University of Toronto, Toronto, Canada M5S 1A1.