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A B S T R A C T  

In an earlier paper the author derived a recursion formula which permits the 
exact computat ion of the aggregate claims d~stnbutmn m the individual hfe 
model To save computing time he also proposed an approx~mative procedure 
based on the exact recursion 

In the present contribution the exact recursion formula and the related 
approx~matlons are generalized to the mdwidual risk theory model with 
arbitrary posmve claims. Error bounds for the approximations are given and it 
~s shown that they are smaller than those of  the Kornya- type approxima- 
tions. 
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1. I N T R O D U C T I O N  

Consider a portfoho of  independent pohcies which produce at most one claim 
during a certain exposure period The claim amounts  are supposed to be 
integral multiples of  some convenient monetary unit. 

Let the portfoho be classified into a x b classes, as displayed in table 1. 

TABLE I 

CLASSIFICATION OF THE PORTFOLIO 

Claim ,tlnounl distribution 

fL(~) J2(~) ~ (~)  f . (~ )  
i i i 

Claim 
probablhty qs 
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In table I the following notation ~s used 

J,(x):  conditional dlStrlbuuon of the claim amounts for a pohcy in column i 
gwen that ac la lm has occurred, t =  1,2 . . . .  a a n d  x =  1,2, . . ,m , ;  

q/ probability that a pohcy of row / produces a claim, j = 1, 2 . . . . .  b, 
n, number of  policies in column t and row / 

Further set 

P/ = 1 - q/ 

1=[ 

h 

I1 = L I'111 
I-I 

t~vl = ~ ~ Ilql??t 
z-I I~1 

probability that a policy of row a' produces no claim; 

number of pohcles with claim probability equal to qj, 

total number of pohcles, 

maximum possible amount of aggregate claims 

Let S denote the total amount of claims m the exposure period and ps(s) the 
probability that S will be precisely s units. 

In this paper two recurs,ve procedures are proposed to compute ps(s) 
exactly. They are generahzatlons of the recurslon formula of DE PRIL (1986) 

for the individual life model. 
From a practical point of vxew a disadvantage of  these exact procedures ~s 

that they require a lot of computing time when applied to large portfolios, as 
illustrated by KtooN et al. (1987) for the individual life case For this reason It 

is shown how the exact algorithm can be used in an approxlmatlve way. The 

resulting approximations permit to calculate the aggregate claims &strlbutlon 
up to a prescribed accuracy. The error bounds are easy to calculate and it is 
shown that they are smaller than those of  the approx,mataons developed by 
KORNYA (1983) and HIPP (1986). This generalizes the results of DE PRIL (1988) 
for the individual life model. 

2. EXACT RECURSIVE PROCEDURES 

Theorems 1 and 2 contain two versions of a recursive procedure which permtts 
the exact computation of  the aggregate claims distribution. The first is based 

on a two stage recursion formula, the second contains higher order convolu- 
tions (and is thus in general also a two stage formula). 
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T H E O R E M  I 

(1 a) 

(~ .b) 

where the auxdmry funcuons wv(x ) are given by 

A two stage recurslon formula for ps(s) is 
b 

ps(O) = 1-[ (pj),l, 
3=l 

SpS(S) = ~ ~ nat ~ wt,(x)ps(s--x) 
t - I  j = l  ~=I 

s =  1,2, . . . ,m 

(2 a) w,/(l ) = q/f ,( l)  
Pj 

I ' ] (2b) ~t.q(v) = qj x £ ( x ) -  Z f ( k )  wv(x -k  ) 
p] ~ - I  

o l  I 

(2.c) w,,(x) = - q~ ~ J; (k) w,j (x - k) 
pj  / , - I  

PROOF The probabd~ty generating function of S ms 

x = 2,3 . . . .  m, 

X = m l +  1, . 

(3.a) Ps(u) = ~ ps(s)u' 
~=0 

(3 b) = H [PJ+cbG,(u)]"" 
t - [  1~ i  

with G,(u) the generating function of the f ,(x)  

m t 

(4) G,(u) = E £(x)u '  

Putting u = 0 mn (3 b) gives lmmedmtely the starting value (l.a). To prove (I.b), 
take the denvatwe of (3 b) 

(5) P~(u) = Ps(U) Z n,, W,j(u) 
t=l  /= l  

where W,j(u) denotes an auxiliary function defined as 

(6 a) W,,(u) = ~ wy(x+ 1) u' 
~,=0 

(6b) = q/G,~(u)__ 
p~ + qj G, (u) 
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Taking, according to Lelbmz's formula, the derivative of order s -  ! of (5) and 
putting u = 0 yields formula (1.b). 

The recurslon formula (2) for the w,j(x) is obtained by taking the denvauve 
of order x -  I of 

qj G,'(u) = [pj+qj G,(u)] Wv(u ) 

and putting u = 0. This completes the proof 

THEOREM 2. A recurslon formula for ps(s) is 
b 

(7.a) ps(O) = 1-I (PYJ 
j= l  

mm (~, kin,) 

sps s  A i,k  2 = i f ,  ( x ) p s ( s - x )  
t = l  k = l  x ~ k  

where the coeffioents A (i, k) are gwen by 

(8) A(i,k) ( -1 )k+ '  b ( ) k -  2 n,j qj 
k j=t pj 

and where f, *~ (x) denotes the k-fold convolution off ,( ,c)  

s-- 1,2, . . , m  

PROOF Expansion of the denominator of (6.b) gives 

W,j(u) qJ G,'(u) ~ ( - l ) k ( q J )  k = _ _  ( G , ( u ) )  ~ 

pj k=0 pj 

Taking now the denvatwe of order x -  1 of both sides leads to an exphot 
representation of the w,j(x) 

= --  x f ,*k(x)  x = 1, 2 . . . .  
A =1,/0,,1 k pj 

where Ix~m,[ denotes the smallest integer greater than or equal to x/m,. 
The theorem is proved by inserting (9) in (1 b) and interchanging the order 

of the summanons over x and k 

REMARK 1. The k-fold convolution of t h e f ( x )  in (7.b) can be computed by 
the usual recurslve defimtmn of convolutions or by the recursmn formula 
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described m DE PRIL (1985). In some special cases an exphclt expression for 
this convolut ion  can be given, so that  ps(s) can be computed  by a one stage 
recurslon formula  

REMARK 2. Nonce  that the general results also hold for infinite m,'s. I f  one 
takes m, = ~ for all 1 several summat ion  limits look simpler and formula  (2.c) 
can be dropped Nevertheless the formulas are presented for finite m,'s since m 
practical applications the claim amounts  wdl be bounded and in p rogramming  
the algori thms it will be necessary to know the exact limits o f  the summa-  
tions. 

3. APPLICATIONS AND SPECIAL CASES 

First consider the following special cases. 

SPECIAL CASE 1. The individual hfe model is obtained by put tmg./~(x)  = d,~, 
where i represents a risk sum and d,, denotes the Kronecker  delta. 

Since f,*~(x) = 6k .... the recurslon (7) reduces to 

(10 a) 

b 

?s(0) = IF[ (pJ: '  
j ~ l  

rain (a. 3) [~/t] 

(10b)  sps(s) = ~ L a( t , k )ps(s -k i )  s = 1,2 . . . .  , m  
t=l  k= l  

with 

(11) a ( i , k )  = ( - - l ) k + l t  ~ n~j qJ 
3 =1 P /  

and where [s/t] denotes the greatest integer less than or  equal to s/t This 
formula  is theorem 1 o f  DE PRIL (1986). 

SPECIAL CASE 2 A recurslon formula  for the number  o f  claims can be obtained 
by putt ing a = I a n d f l ( x )  = dr , .  Then fl*k(X) = dk, and (7) reduces to 

b 

(12.a) ps(O) = IF[ (p:)., 
J=l  



14 NELSON DE PRIL 

(12 b) 

with 

(13) 

sps(s  ) = ~ a ( k ) p s ( s - k )  
h - I  

s = 1,2, ,m 

a(k) = ( - 1 ) 1 ' + 1 Z  nj 
j -  t pj 

This formula can be found in WHITE and GREVILLE (1959). 
More general illustrations of the model considered in this paper, in which the 

amount  of  a claim is a random variable in the proper sense, are presented in 
the following examples. Some insplratxon for these apphcatlons was found in 
the textbook of BOWERS et al. (1986). 

EXAMPLE I A hfe coverage w~th a double Indemnity provision provides the 
death benefit to be doubled when death is caused by accxdental means Let the 
probabili ty of  an accIdental death, given that there is a death, be constant and 
denoted by a¢. Then, the conditional claim amount  distribution wdl be defined 
by 

f , ( x )  = 

l--,:2" X : l 

cz x = 2 i  

0 elsewhere 

The k-fold convolution of  the £ ( x )  may be written as 

( k ) ( 1 - a 0 2 ' - " c z " - ~  x = h ,  wxth 

l , ,~ (x )  = h - k  

0 elsewhere 

h = k, k +  l, . ., 2k 

Substituting this expression into (7), and reversing the role of  k and h, leads to 
the following recurslon formula 

b 

(14.a)  p s ( O )  = I - I  (pj)"s 
j=l  
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mm (a, s) Is[t] 

(148)  sps(s) = Z Z b(t'k)ps(s-kO s =  1,2, . , m  
i= l  /~=1 

w~th 

(15) b(i,k) = ik 
h = I~/Z[ h k - h j =  1 pj  

It is c lear  that  in the l imit ing case ~z = 0 (15) reduces to (I I) and  thus (14) to 
(lo). 

EXAMPLE 2 A hospi ta l  Insurance provides  a flat da i ly  benefit  dur ing  hospi ta l -  

izat~on. Let the member s  o f  the covered g roup  be classified into a x b classes 

accord ing  to the fol lowing two cri ter ia  : the a m o u n t  t o f  the benefit  per  day  and 

the p robab i l i t y  qj to enter  a hospi ta l  dur ing  the reference per iod  Assume  that  

the d i s t r ibu t ion  o f  the length o f  stay in the hospi ta l  is the same for each 

m e m b e r  Deno te  by c the m a x i m u m  number  o f  days  for which benefits  are  prod 

and by f l ( t )  the p robab i l i t y  o f  con t inuance  o f  a hospi ta l  c la im for t days ,  

t = 1,2 . . . .  c In this case the model  can be appl ied  by set t ing 

f l ( t )  x = tt with t = 1,2 . . . .  c 

f ( x ) =  0 elsewhere 

A s imilar  app l i ca t ion  is that  o f  shor t - t e rm d isab i l i ty  insurance  F o r  c = 2 this 

example  reduces o f  course  to example  1. 

EXAMPLE 3. A fire insurance  c o m p a n y  covers  n s t ructures  agains t  fire d a m a g e  

up to an a m o u n t  s ta ted in the cont rac t .  Assume  tha t  fires are  mutua l ly  

independen t  events and  that  the p r o b a b l h t y  o f  more  than one clmm per 

s t ruc ture  is zero. The  con t rac t s  are  classif ied into a x b classes accord ing  to the 

fol lowing two c r i t e r i a '  the con t r ac t  a m o u n t  m, and the p robab i l i t y  q / o f  a fire 

within a given t ime per iod.  In fire insurance the claim a m o u n t  has a wide 

va rmblh ty  Therefore ,  assume that  the cond i t iona l  d l s tNbut ion  o f  the claim 

amoun t s ,  glven that  a c laim has occur red ,  ~s un i fo rmly  d i s t r ibu ted  over  the 
interval  from 1 to the con t rac t  a m o u n t ,  that  is 

I 
f ~ ( x ) -  for x = 1 , 2 , .  ,m ,  

D1 t 

It can be shown that  an explici t  express ion for the k- fo ld  convo lu t i on  o f  the 
f , ( x )  is given by 
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~ - k  

y=O m~ y k -  1 
x = k , k+ l  . . . . .  km, 

See e.g. problem 18 on page 284 of FELLER (1968). The probabJhtles ps(s) can 
thus, in principle, be computed by a one stage recurslon formula. It should 

however be noticed that several consecutwe values o f f , * ~ ( x )  are needed, so 

that it would presumably be much faster to use a two stage formula and 

compute the convolutions recurswely 

4 A P P R O X I M A T I O N S  D E R I V E D  F R O M  T H E  E X A C T  P R O C E D U R E  

It is clear that a rigorous computat ion of (7) necessistates a lot of  computer  

time, especially if a is large and If the f , ( x )  are defined for more than a few 
values. In practical applications however the qj will be small, so that the 

coefficients A0,  k) will tend to zero (very) fast if k increases. The exact 
formula (7) can thus be used in an approximanve way by truncating the 

summation over k. If  the coefficients A (~, k) are neglected for k > r, the 

following r-th order approximations p~°(s) of ps(s) are obtained 

b 

(16.a) p~')(0) = H (PYJ 
)=1  

mm (.~, kin,) 

A(t,k) E xf,*k(x)p~O(s-x) s=l ,2  . . . .  m 
v = k  

these approximations are exact for the first 

a m m ( r , s )  

(168) sp~'(s)= H E 
t = l  /,=1 

I t  is immediately seen that 
values 

(17) p~O(s) = ps(s) for s = 0, 1 . . . . .  r. 

For  future reference the generating function of  the p~)(s) is denoted by 

= p r (s)uS 
s - -O 

(18) 

Set also 

(19) 

oo 

= E 
s=O 

where p~;r)(s) is defined for s > m by extending the range of formula (16 b) to 
all posmve integers. 
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ERROR BOUNDS FOR THE A P P R O X I M A T I O N S  p~r)(s) 5. 

Our derivation of error bounds will be based on the theory of partial ordering 
of real power series. This method was also used by KORNYA (1983) and DE 
PR1L (1988). To render this presentanon self-contained, let us first repeat some 
results 

DEFINITION. Let A (u) = £ akll k and B(u)= £ ba u k be power series. 
/,=0 /~ =0 

Then say that A (u) _<,, B(u) provided that, for any non-negative integer n, the 
sum of the first n + 1 coefficmnts satisfies 

k~O k=0 

NOTATION Let A (u)= £ ak u~ Then, denote by ] A (u)[ , the power series 
/,=0 

I A 0 , t l .  = ~ [Ok[ uk 

LEMMA Let A(u), B(u) and C(u) be power series, then 

A(u) 1~_<, ,£  [ a, ] ,f £ [ a~ ] < oo; 
~=0 k=O 

A(.I+B(.I I.-<,, I A(.I l,,+ 18(.)I,,. 

A(. /  B(./ I,,-<,, 1.4(./ I,, I B(./ I,,, 
l-expA(u) l,,-<.exp(l A(u) I.)-I; 

w) 

If ] A(u) 1 , ,< .  

then ] d(u)  1~ 

if I A (.) I,, <-,, 
then exp( ] A (u) 

B(u) ] ., 

c(.1 I,,-<o 18(./I,, I c(.1 I,,; 

B(u) l ,,, 
. ) -  1 <,,exp ( [ B(u) 1,,)- 1. 

THEOREM 3 if qj < 1/2, J = 1, 2 . . . .  b. then 

(20/ £ ] ps(sl-p~')(s) ] < e ~tr~- 1 
s--O 

with 
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(21) e(r) = - -  n u - -  --  
r+l  ,=~ j=~ & - %  & 

PROOF. From the lemma Jt follows that 

I Ps(  u ) -  P~r)(u) I" -<~ I P s ( U ) -  ff~)(u) I" 

-<. I P~(") I~ I l - exp(  In ff~r)(/'/)--h'l P s ( u ) ) 1 ~  

(22) _<~exp ( I In P}~)(u)-ln Ps tu)  [ u ) - I  

Consldenng (3.b) In Ps(u)  can be written as 

l n P s ( u )  = Inps(O) + n,jln I + qJa , (u )  
t = l  j = l  p j  

k = l  t = l  

T o  d e r i v e  an expression for In f i ~ r ) ( u )  consider the d e r i v a t i v e  

o0 

p~lr)(u) = ~ sp~r)(s) , , ' - '  
s = l  

o0 u mm ( r , s )  

- -  E 2 Z A(,,,) 
s = l  t = l  k = l  

( S - - X )  U s -  I 

mm (s kin,) 

xf,*k(x)p~ ') 
~ = k  

A(i,k) E x.~*k(x) 2 Pt')(s-x)u~-' 
k =  I I = I v = k  s =  r 

= p~r)(.) A(,,k) ~ xf,**(x).'-' 
k = l  t = l  x=k 

Integration gives 

(24) In P~°(u)= lnps(O ) + ~ ~ A ( t , k ) ( G , ( u ) )  k 
k = l  i = l  

Now (23) and (24) lead to 

[ gs(u) 
k = r + l  i l l  

L=I k = r + l  
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r+ l  ~=l j=l k=r+] pj 

= e(r) 

I Ps(U)-p~;r)(u) [" --<ueC(r)--I 

which proves the theorem. 

19 

6. COMPARISON WITH KORNYA'S APPROXIMATIONS 

The method of KORNYA (1983) was originally written for a life portfolio and 
generalized by HIPP (1986) to the individual model with arbitrary positive 
claims 

To derive the Kornya approximations write the logarithm of (3.b) as 

lnPs(u)  = ~ n,j In I + G,(u) - In 1 + 
,=, j=, Pj Pj 

(25) = .~ ((G, ( . ) )*-  1) 
t=l  /= l  k=l  k 

Further, denote the generating function of Kornya's r-th order approximation 
k~;r)(s) of ps(s) by 

(26) X~')(u) = £ k~r)(s)u s 
~:0 

Then, In K~r)(u), and thus the k{sr)(s), are defined by neglecting in (25) 

the terms in ( q ~ ) k f o r k > r  

£ b £ ( _ 1 / + , (  /~ 
(27) In g~ r) (U) = E lltJ q3 

,=, j=, ko, k , ~ ,  ( ( a ' ( " ) )~ - l )  

The approx~mauons can be calculated recursively as 

(28 a) k~;r)(o) = exp c(r)(0) 
mm (s, r max m,) 

( 2 8 . b )  sk~r)(s)= E xC(r ) (x )k~r ) ( s -x )  S = 1 , 2 , . . .  
v=l 
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where the CIr)(x) denote the Taylor  coefficients o f  In K~sr)(u) 

that is 

(29 a) 

(29 b) 

r m a x  m, 

In K(sr)(u) = E c(r)(x) u' 
~ . = 0  

C (') (0) = n,j - 

, = l  /=]  t,=l k Pz 

CIr)(x)= n,~ ~ -- f,*~(x) 
,-I /- I  ~- I ,/,,,,l k pj 

x = 1 , 2 , . . , r m a x m ,  

Notice that the k~sr~(~) are In p r inc ip le - -def ined  for all non-negat ive integers 
s, whde the p~sr)(s) are defined over the correct  range s = 0, 1, , m. An error 

bound  for the k~r)(s) as given In the following theorem 

THEOREM 4 If q/ < 1/2, J = 1 ,2 , .  , b, then 

(30) ~ ]Ps(~)-lc~'r)(s) I <- e'S(~)--I 
~ - - 0  

with  

(31) 5 ( r )  = ' ~  ( )(--) n,/ Pj + PJ qj '+ 
r+ l ,-i t-I p j -qj  Pj 

PROOF The p roo f  follows immediately from 

[ P~(u)-K.~r)(u) ] . _ < . e x p ( l l n  K~ . ° (u ) - InPs(u )  ] . ) - I  

and 

l ln Ks(')(u)- In Ps(u) l,, 

~-"~ ~ (~')~1 nq 
k r+ l  k t -1  l - I  P! 

t = l  /--1 Pj 
+ 

( _  1) ~+l 

/~ = r - l -  I k 

_< ,, 

(C , ( . ) )  ~ ] 

, ~ ( )r~ E .  q r + l  , - ~  j ~ l  p~ 

q,) ~(~, k-0 

u 

(;~)k] 
= o ~ ( , )  
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An immediate consequence of the theorem IS that the approximations are 
asymptotically correct 

I p s ( s )  s = O, 1 . . . .  m (32) hm k~) (s) 
~-~ ( 0  s = m + l , m + 2 , . .  

Note that the bound given here is smaller than the one originally given by 
KORNYA (1983). Further details can be found in DE PRIL (1988). 

REMARK 3. From (24) and (27) one has that 

In fi~rl(u) -- In K~rJ(u)- In k~r)(0) + In ps(O) 

so that the following relationship exists 

ps (O)  i . ~ l ( s )  s = O, I . . . .  m.  
(33) p~:)(s)- k(s,)(O--- ~ , 

A consequence of  (33) is that the p~)(s) can be computed m an alternauve way 
by using the recurslon (28), but then starting with the exact value ps(O) in 
(28.a). This can also be seen by inserting (9) m (7) and neglecting the terms m 
(qj/pj)~ for k > r Clearly this imphes that both approximations can be 
computed with about  the same effort. 

REIMERS (1988) made a numerical comparison in the case of  life portfohos 
which seems to indicate that it is faster to use the algorithm (28) than (16). This 
must be due to the computer  language, the programming s ty le  and the 
implementation of the algorithms. Indeed, both algorithms are in fact two 
versions of  the same procedure. They can be obtained from each other by 
reversing the summations over x and k. 

7 COMPARISON WITH HIPP'S APPROXIMATIONS 

An alternatwe to the Kornya approxnnations has been proposed by 
HIPP (1986) 

His approximations have as interesting property that the first order approx- 
imation coincides with the usual compound Polsson approxlmahon m the 
collechve risk theory model. 

The starting point is to write In Ps(u) as 

In Ps(u) = ~ ,~,~ In [I + q , ( a , ( u ) -  I)] 
I = l  J~l 

. . . .  qjk (G,(u)-  l) A 
~=1 : - I  /~-=l k 
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Then, the generating function 

co 

(35) H ~ l ( u )  =" ~ h~r)(s) ld ~ 
s=O 

of  Hlpp 's  r-th order approxlmataons t:~ ~) (s) Is defined by neglecting m (34) the 
terms in q; for k > r 

(36) In nff)(u) ~ ~ n,, ~ ( -  1)k+l = _ q)(G,(u)-l)  k 
t= l  ./=1 ,~=l k 

The h~")(s) can be calculated by a recurslon formula similar to (28). An error 
bound for these approximations is given in the following theorem. 

THEOREM 5. I f  qj < I/2, / = I, 2 . . . .  , b, then 

(37) ~ I Ps(s)-h~"l(s) I 
~--0 

with 

(38) a ( r )  = 1 £ ~ n , , - -  
r + l  ,~1 j - I  

< e ° ( r ) -  1 

(2 qj)r+ t 

Pj--qj 
PROOF. One has 

I Ps(u)-H~r)(u) [,,_<,,exP(I I n H f f ) ( u ) - I n P s ( u )  I . ) - I  

with 

In H f f ) ( u ) - I n  Ps(u) [,, 
/,=r+t k ,=l /=t n'jq](G'(u)-l)~ 

_<. - -  n o qJ~ (a,(u)+ l)' 
r + l  t - I  ./=l k = r + l  u 

u trig 

r + l  t= l  J = l  L=r+l 
(2 q])~ 

= a ( r )  

which proves the theorem. 
From this theorem one has immediately that 

(39) lim h~r)(s) = l ps(s) 
r~o~ tO 

s = 0 , 1 , . . . , m  

s = m + l , m + 2 , . . .  
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The way of convergence of the different approxlmatmns can be seen by 
comparing (17), (32) and (39) 

8. CONCLUSION 

The paper has focused on two problems, the derivation of  an exact recurslon 
formula for the aggregate claims dlsmbutlon and its numerical evaluauon by 
means of approx~mauons. 

The recurslons given |n the theorems 1 and 2 are exact formulae for the 
probablhtles ps(s) These formulae are mainly of theoretical interest. 

For practxcal apphcauons a compromise between accuracy and computa- 
tional effort |s found by deriving, in a natural way, approximations p~r)(s) from 
the exact recurs~on These approx~mauons are easy to compute and even exact 
for the first values From the theorems 3, 4 and 5 it follows that 
e(r) < d(r) < a(r), so that the p~°(s) give rise to smaller error bounds than 
the approximations proposed by KORNYA (1983) and HIPP (1986). Since the 
computat |onal work ~s about the same in the three case, preference should be 
g|ven to the approx|mat |ons derived here. 

In typical apphcatJons a value of r equal to 3 or 5 will gwe very satisfactory 
results. 

In practice the computat |on of the aggregate claims distribution will proceed 
as follows 
l) Choose a value of  r for which the magmtude of error e ~(0- I, with e(r) 

given blJ (21), Is sufficiently small. 
11) Compute the convolutions f*;~(x) for t = I, 2, .. , a, k = 1, 2, . . . ,  r and 

x = k , k + l ,  ,km, 
m) Compute the coefficients ,4(t,k), defined by (8), for i =  1, 2 . . . .  a and 

k = 1,2, . , r .  
IV) Calculate the approxlmat|ons p~O(~) recurslvely by means of  (16). 

An alternatwe is to replace steps Ill) and iv) by 
ill)' Compute the coefficients C<r)(x), defined by (29.b), for 

x = 1,2, ., r max m, 
iv)' Calculate the approximations p~°(s) recurslvely by means of  (28), where 

h 

(28 a) IS replaced by p~r)(o) = H (P~)"J 
/=1 
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