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ABSTRACT 

A model  for the claim number  process is cons idered .  The claim number  process 
is assumed to be a weighted Poisson process with a th ree -pa ramete r  g a m m a  
d is t r ibu t ion  as the s t ructure  funct ion.  F~tting o f  this model  to several da t a  
encounte red  m the l i tera ture  is cons idered ,  and the model  is c o m p a r e d  with the 
two-pa rame te r  g a m m a  model  giving the negative b inomia l  d i s t r ibu t ion .  Some 
c red lbd l ty  theory  fo rmulae  are also presented.  
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1. INTRODUCTION 

In this note we consider  a model  for the claim number  process Our  model  i s a  

weighted Po~sson process with a t h r ee -pa rame te r  g a m m a  d i s t r ibu t ion  as a struc- 
ture funct ion.  This has been considered earl ier  by DELAPORTE (1960), see also 
KUPPER (1962). This is equivalent  to the fact that  the claim number  process con- 
s~sts o f  two independent  c o m p o n e n t  processes,  a Polsson process and a negative 
b inomia l  process The Poisson c o m p o n e n t  may be thought  o f  as the c o m m o n  
part  for all risks, and the negative b inomia l  c o m p o n e n t  as the individual  con- 

tr~button o f  a par t icu la r  risk. This means  that  we can write the number  o f  claims 
m time t, Nt as the sum of  two componen t s ,  

Nt = Nit + Nzt, 

where Ntr has a Poisson d is t r ibu t ion  with the expected value ~t, say, and Nzl has 
the negative b inomia l  d i s t r ibu t ion .  We cons ider  here the fitting o f  our  model  to 

real da t a  using the method  of  momen t s  and the max imum l ike l ihood es t imat ion .  
Unfo r tuna t e ly  the max imum l ike l ihood es t imators  for the pa rame te r s  cannot  be 
ob ta ined  in a closed form. Hence,  they are ca lcula ted  via max imiza t ion  of  the 
l ike l ihood funct ion numerical ly .  

We test the hypothesis  Ho:  ~ = 0 agains t  the one-s ided a l ternat ive  Hj  ~ > 0. 
This tests the existence o f  the Poisson c o m p o n e n t  m the model .  We derive also 
some cred lb ih ty  theory  fo rmulae  for our  model .  The  co r re spond ing  fo rmulae  for 

* Th,s paper was presented to the ASTIN Colloqumm at Schevenmgen, lhe Netherlands. September 
1987 
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the two parameter  model can be found m SEAL (1969). The flavour our model 

gwes to cred~blhty cons~derauons is the fact that even the best claim history, i.e. 
no clmms at all, does not lead to zero p remmm in the hm~t. This ~s due to the 
existence of the background  intensity which gives rise to the Po~sson process. 

2. DEFINITION OF THE MODEL 

We assume that the claim number  process Nt, t ~ 0, is a weighted Polsson 

process, i.e , if the claim intensity is A, t h e n  the condi t ional  process (Nil  A)t~>0 
is a Polsson process. If the intensity A has the dis t r ibut ion funct ion U, then 

(1) p,,(t) = P ( N t  = n )  = f v 
(xt) , ,e -xt 

o n! dU(X). 

We now assume that 

(2) dU(X) = ( X -  7 ) '~- I /3,, e-<×- ~ l,3/F(c~ ), 

when X/> 7, and zero otherwise, with pos~nve c~,/3 and 7. This amounts  to the 

fact that A has the three-parameter  gamma dis t r ibut ion F(e~,/3, 7), see JOHNSON 
and KOTZ (1969). From (2) it follows that the Intensity has a strictly posture  
lower bound  7. By subsn tu t lng  (2) into (1) we obta in  

¢3) 
~=0 r( ,~)k!  \ t  +/3]  \ t  +/31 ( ~ - - k - ~  ' 

Formula  (3) exhibits p , ( t )  as the convolu t ion  of a neganve bmomml  and a 
Po~sson d~s tnbunon .  

From this or directly from (2) we may observe that the intensity A can be 

written as the sum A =,y + A~, where 7 is a posinve real number ,  and A~ has the 
usual two-parameter  gamma dis t r ibut ion V(ff,/3). The mte rpre tanon  of these 
components  is 

7 = background Polsson intensity which is c o m m o n  for all risks 

A~ = a d d i t i o n a l  individual  intensity that varies from one risk to another  

With this mterpte ta t ion  we can assume that the process N¢ ~tself consists of two 
mutual ly  independent  component  processes Nit and N2t, where Nit is a Po~sson 
process with intensity 7 and Nxt is a weighted Polsson process whose intensity A~ 

has the dis t r ibut ion I-'(ff,/3). Then 

(4) Nt = N i t  + Nat ,  

where N~, ~ P o ( T t )  and N2, ~ NB(o~ , /3 / ( t  +/3)). Here - stands for "obeys the 
d~s t l lbunon" ,  P o  means the Po~sson dis t r ibut ion and N B  means the negative 

binomial  d~s tnbuuon.  
The moments  of Nt may be obtmned from the theory of doubly stochasnc 

Polsson processes. The stochastic intensity A has the moments  

C~ 
EA = ~ + 7, Var(A) = edl3 z, E((A - EA) 3) = 2c~fi3 3. 
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With the help of  the moments  of A the moments  of N, can be written as 

EN~ = t E A  

Var(N¢) = t z Vat(A) + t E A  

E ( ( N ¢  - E N d )  ~) = t ~ E ( ( A  - EA) ~) + 3t 2 Var(A) + t E A ,  

(see SNYDER 1975). By subs t l tunon  we then obta in  

E N ,  = (c~]fl + V ) I  

(5) Vat(N,)  = (o~/t32)t 2 + (e~/l'3 + v ) t  

E ( ( N ,  - ENd) 3) = (2c~//33)t 3 + (3od/32)t 2 + (c~/fl + ",/)t. 

These could have also been obta ined by using the representanon (4). 

3 FITTING THE DISTRIBUTION 

We say that a parameter  vector (c~,fl, T) is feasible if all the componen ts  are 
pos~twe Analogously we say that an est tmator ~s feasible tf all three components  
a r e p o s m v e  We cons~der here three alternatlves for f i t t l n g t h e d i s t n b u t l o n ( 3 )  to 
data For conven |ence we take t = I 

M e t h o d  I 

We consider first the method of moments  Let the first three sample moments  be 
.f." (the sample mean),  s 2 (the sample variance) and .;:3 (tile third central sample 
moment) ,  the two latter calculated with weights l / (n  - 1) Equat ing these with the 

p o p u l a u o n  moments  (5) we obta in  

f i =  2(s  2 - d')/(.;~ - 3s  2 + 2A), 

(6) ~ = (s 2 - _ ; ) d  2, 

Necessary and sufficmnt condmons For the feasibility are 

s 2 > 2 ,  23 > 2 s ~ / 2 - s  2 

The first cond inon  lmphes that the sample varmnce has to be larger than the 
sample mean This ~s due to the presence of the negatwe b m o n n a l  part m the 
model. The Po~sson part g~ves equal variance and mean value. The second con- 

clmon means that the d~s tnbunon  has a larger third central sample moment  than 
a N B - d l s t n b u u o n  with the same first two moments .  

M e t h o d  2 

Because the use of the third n loment  m est imation may give undue  weight on the 
tad we consider here a val iant  of the method of moments .  The idea is to fit d', 
s 2 and Po, the relatwe frequency of the zero class. Then we have to solve the 
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system of  e q u a t i o n s  

(7) O/1,~ -k" %' "+- ~1/~2 ---- S 2 

( T ~ )  ~' e - ~  = po.  

This  leads to the so lu t ion  

( 8 )  ,~ = (.~- - ~ ) 2 / ( s Z  - 2 ) ,  

w, Jth ~ be ,ng  the so lu t ion  of  the e q u a t i o n  

= ( x ' -  ~ ) / ( s  2 - ~'), 

(9) 3' = - In Po + ( ' [ ' -  7)z  In 2 -  'y 
S 2 _ .~- S 2 _ 

The  so lu t ion  g w e n  m (8) a n d  (9) is feasible if ~ lies m the open  interval  (0, 2)  and  
s 2 > 2. Wc cons ide r  next the necessary  and  sufficmnt c o n d m o n s  for the exis tence 
o f  a u m q u e  so lu t ion  of  (9) m this in terval  For  this purpose ,  deno te  

x- 3,)2 ( s2 - "('/ 
f (3 ' )  = 3' + In P0 + (s  ~ = In 1 + - - - -  . 

- x  2 -  3,/  

The  so lu t ion  o f  (9) ~s then equ iva l en t  to the so lu t i on  o f  the e q u a t i o n  f ( 7 )  = 0 
Now we have 

f (0 )  = In Po + (.('2/(s2 - - ~ ' ) ) l n ( s 2 / . ~  ") 

and  

We also have 

f(S:) = 2 + I n Po 

f ' ( 3 ' ) = l  2('~-Z) ln(l +S?zX--~ + ( l . v - 7 /  x - ? /  ' 

If we deno te  y = (s 2 - : ? ) / ( 2 -  7),h(Y) = Yf'  (V), then 

h(y) = ( 2 y +  yZ)[(I + ),) - 2 In(l  + y )  

F r o m t h ) s l t l s e a s y t o s e e t h a t h ( 0 ) = 0 a n d h ' ( y ) > 0 ,  w h e n y > 0  But this m eans  
that, l f s  2 > 2, then f ' ( 7 )  > 0 for 0 < -~ < 2. Because the c o n d m o n  s 2 > 2 , s  also 
necessary  for & > 0, we have that  the c o n d i t i o n s  

s 2 > S  ", - S ' < l n  P o <  (-22/(s2-2))ln(s2]2) 

are necessary  and  sufficient for the exis tence of  a u m q u e  feasible so lu t ion .  These  
m e a n  that  the zero class p ro b a b i l i t y  mus t  lie be tween  those of  a Po l s son  distri-  
b u t i o n  and  a negat ive  b i n o m i a l  d l s m b u t l o n  with due  first m o m e n t s .  

Method 3 

Let us a s sume  that  we have the da ta  no, n~ . . . . .  hA, where  n j l s  the n u m b e r  o f  risks 
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having had j c lmms m unit t ime. The m a x t m u m  hkehhood  method gives us the 
es t imator  (G,/~, ~) which maxmllzes  the likelihood funcuon  

L(oe,/3, y ) = I n  .17[ (p, ,( l))" '  
j=O 

= ~ na In Pa(I) 
J=O 

: k na[oeln / 5 ( ~  p ( , + ~ )  .ya-, )1  a=o I - ~ - y + l n , , , = o  P(oe) , , ! ( j - t ) ! ( l  + /3 ) '  

= n ~  In l _  n'y 
] + / 3  

* ( 2 r ( ; + a ~ )  
+ ~ n a In ya - -  

j=o ,=o P(c~) 
, ) 

H( j  - / ) ! ( y ( l  +/3)) '  ' 

where n = n() + + n, is tile total number  of  observed rtsks. To  facilitate tile 
m a x m n z a u o n  we denote ~ = y ( l  +/3),  and subsll tule ( ~ -  "y)/'y for /3 m L. Then 
tile new hkehhood  function is 

L(oe,~,-/)=nce I n ' - Y  -- 17"y + n.(" In(y) + ~ nl In 
I=" \ ,=o t ! (J  - t ) !F(c~)~l ' /  

If we put the derivative with respect to 7 equal to zero we get the equat ion 

(~0) - no(/(n - "r) - n + n 2 l y  = O,  

or equivalently 

k = v + ~I¢. 

In order  to handle the partial derivatives wllh respect to oe and ~ we denote  

w,(c~, v) = ~ FO + c~) 1 
,=l F(o~) t ! ( J - t ) ! ~ l "  

for which 

0 I 
0o~ wa ( J -  1))'q 

~ (oe + m - I) 
l- ~ P O + c e ) / = 1  . , . /  

and 

-~- wj=  j~ F O + c ~ )  ( - I )  
On ,=, F(e~) H ( j - ~ ) ! n  '÷ t "  
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With  the help o f  these we have 

L ( c r , ~ , y )  = nor In " q - Y  
~7 

and 

/, 

- ny + n.¢ In(V) + ~ nj ln(wj(u,  r/)), 
j = O  

O £ = n ~ ( ( n - y ) - ' - n - ~ ) +  Z n~ wA~,~)(wj(~,n)) -~ 
07 ,=o g 

( l l )  

a w,(~, ~)(w,(~, ~))-' a £ nln((~ y)/~)+ ~ n , ~  
~Oc' I=0 

Because o f  (10) our  th ree-d imens iona l  maximiza t ion  p rob lem has been reduced 
to a two-d imens iona l  one.  This p rob lem may be solved using an opumiza t l on  
me thod ,  which makes  use off the gradient  given in (I 1). 

4. TESTING THE MODEL 

Af te r  having fitted the model  using the m a x i m u m  l ikel ihood method  we can 
na tura l ly  test the goodness  o f  fit o f  the model  using a X2-test. 

If we have a good  fit, there lies the quest ion whether  7 differs from zero 
s lgmflcant ly.  The case T = 0 co r re sponds  to the pure neganve binomial  d is t r ibu-  
t ion,  l.e , the Poisson backg round  is absent  We need to test the null hypothesis  

H0: y = 0 a g a i n s t  the a l ternaf iveH~ : y > 0. Under  the null hypothesis  the number  
o f  claims has the negatwe b inomia l  d i s t r ibu t ion .  This d i s t r ibu t ion  is fitted to the 
da ta  using the max imum l ike l ihood method .  Descr ipt ion off this method  for 
negative b inomia l  d i s t r ibu t ion  can be found for example  in JOHNSON and KOTZ 
(1969) This gives us the es t imator  (&,~) .  If we denote  by/~, and //), the class t 
p robabf lmes  gwen by the e smna to r s  (&, ~, ~) and (&, ~5), respecm, ely, then we can 

form the test var iable  

(12) Y= - 2  ~ n, In (b,//5,). 
: = 0  

For the c o n d m o n s  tinder which a l ike l ihood rat io  has the x2 ( l ) -d l s t r lbu t lon  as its 
a sympto t i c  d lSt r lbuuon we refer to RAO (1973). In our  case the value y = 0 lies 
on the b o u n d a r y  o f  the pa ramete r  space.  Hence,  the a s y m p t o n c  d is t r ibut ion  is 
not x2(1) but a 5 0 : 5 0  mixture  off X2(I) and a d l s t n b u n o n  degenera te  at origin,  
as has been shown by SELI~ and LIANG (1987). This means that if we choose  the 
s lgmficance level e, the crit ical value will be the ( 1 -  2e) - f racnle  of  the x2( l )  
dKstrlbutlon. The other  condi t ions  gwen by Rao are met by our  d is t r ibut ion  but 
the poslt lVe-deflmteness of  the m f o r m a n o n  matr ix .  The verif icat ion of  this fact 
seems to be a hopeless task m general .  We have only shown that  the de te rminan t  
o f  the in fo rma t ion  matr ix  becomes zero when o~ and/3  tend to infinity with their 
~atlo cons tant .  This means that  the results o f  our  tests become unrel iable  as ce or 
~3 becomes large. We have also verified numerica l ly  that the lnfformauon matr ix 
~s pos tu re  deflmte when oe = 1 and/3  is finite The apphcab lh ty  o f  our  test is not 
r igorously  verified, and the tests to be pe r fo rmed  later are only o f  guiding nature  
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5.  C R E D I B I L I T Y  

W e  now look at wha t  s o m e  c red ib i l i ty  t h e o r y  f o r m u l a e  look like for  ou r  

m o d e l .  W e  d e n o t e  

p~l,,(sl t)  = P ( N t + s  - N,  = I I iV, = n) ,  

the  c o n d i t i o n a l  p r o b a b i l i t y  o f / c l a i m s  m t~me s a f t e r  hav ing  had  n c la ims  m t ime  
t. N o w  we have  

I \ t + s /  \ t + s /  PlT,,(s l t ) = pt+,,(t  + s ) / p , , ( t ) ,  

(see SEAL, 1969 p. 27). For  e x a m p l e  the  p r o b a b i l i t y  o f  no c la ims  a f te r  hav ing  
had no c la ims  in t ime  t is 

p0'0(slt)  ( _ ~ _ + t ) ~  = C- '~ ~ ' 
\ / 3 + I + s  

T h e  c o n d i t i o n a l  e x p e c t a t i o n  o f  the in tens i ty  A a f t e r  n c la ims  in t ime  t is 

n +  1 p , ,+~( t )  
E ( A  In ,  t ) -  - -  

t p , ( t )  

n +  I 

r(/,, + ~)(7(/3 + t ) )"+ ~-~/( (n  + 1 - k ) ! k ! )  
n + l  A=o 

i 

~3 + t ~.~ F ( k  + c~)(7(/3 + t ) ) " - t / ( ( n  - k ) ! k ! )  
k=0  

F u r t h e r  the c o n d m o n a l  dens i ty  o f  A a f te r  n c la ims  m t ime  t can  a f te r  s o m e  
m a n i p u l a t i o n  be wr i t ten  as 

d U ( A i n , t  ) = ( / 3 +  t) '~(k - V ) " -  le  - ( x - ; ) ( ~ + ' )  ( k t ) "  po( t )  d k ,  
F(c~) n I p , , ( t )  

for  X > T- T h e  first f ac to r  here  ~s the dens i ty  func t i on  o f  the d i s t r i bu t i on  

F ( ~ , / 3  + t , 7 )  Espec ia l ly  a f te r  c l a i m - f r e e  u m e  t we have  

(A[ N, = 0) - F(e~,/3 + t, T) 

so that  

E(Nr+~ - N i l  N,  = O) = (c~]({3 + t)  + 7)s  

Var (Nr+ ,  - Nr l  N, = 0) = e~sZ](/3 + t)  z + (e¢/(/3 + t) + "y)s. 

Fu r the r ,  ~f we let t t end  to infini ty,  then  

E ( N , + ,  - N,  I N,  = O) ~ Vs 

Var(N,+~ - NI l  N,  = 0) ~ ~.s 

E q u i v a l e n t l y  we can wri te  that  

E(A[ N, = 0) = 04(/3 + t) + v --' v 

Var(A [ N, = 0) = a/( /3  + t)  z ~ O, 
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as tYoo This means that (A IN,  = 0)--*3' m probabil i ty ,  so that a clmmless risk 
will approach a risk with pure Polsson claim process. This means also that the 

cre&bili ty premium would converge to 3, and not to zero. Similar to the preceding 
results, various results concermng the bonus  class systems can be presented in a 

computab le  form m our case. 

6 F I T T I N G  T H E  M O D E L  TO R E A L  DATA 

In this secuon we consider the fitting of our model to some data that can be found 

in the actuarial  hterature.  We calculate the max imum likelihood esumates for 
and/3 m the case when 3, = 0, and for c~, B and 7 m the general case. To get started 
we solve 7 from (9) using 2,, = .'~/2 as the first guess. Then we use this .3, together 
with c~ and {3 obta ined from (8) as the initial guess for the calculat ion of the 
max imum hkehhood e s u m a u o n  These esumates were computed using the 
D a v l d o n - F l e t c h e r - P o w e l l  method,  see RAO (1978). Also (12) we compute  m 

order to perform the likelihood ratio test. 
Our  first fit is to the TROBLIGER (1961) data Trobhger  fitted to his data a 

model in which the risks were classified into two classes "the good '  and "the 
bad" .  The fit was good with x 2 ( I ) = 0 . 4 4  These data give .f~'=0.14421976, 
s z = 0 . 1 6 3 8 6 9 9 a n d  po=0 .872949  If t h e n e g a t w e  binomial  dis t r ibut ion is fitted, 
then (~ = 1.117895,/3 = 7.751332, and if our model is fitted, then ~ = 0.2766328, 
/3 = 3.7597937 and ~ = 0.07064318. The frequencies of different classes for our 
model and the negatwe binomial  d is t r ibut ion together with the observed frequen- 
cies are given in Table 1. 

If the three last classes and the class " 1>7" are jo ined together, the X2(I)-value 
for goodness of fit test of our model is 0.0042. This extremely low value Is due 
to the fact that three parameters were fitted. The likelihood ratio test has now 

the Xz(I)-value 3.93 which exceeds the critical value 2.706 at the 0,95-level. 
Hence, the hypothesis Ho ' 3.' = 0 is rejected. We now have the estimate 0 071 for 
the background intensity. This may be compared with the mean intensity 

.(-= 0.1:t4 and the "good"  intensity 0.109 in Trobhger ' s  model. The estimated 
background intensity Is 49% of the estimated mean intensity and 66% of the 
estimated "good"  value. 

WILLMOT (1988) has fitted an extended negative bmomml  dis t r ibut ion to this 
data Tile ,y2 value was 0.0282 which indicates a very good fit. 

TABLL I 

No of  c la ims Observed  Our  model  NB 

0 20592 20591 87 20596 76 
I 2651 2651 45 2631 03 
2 297 296 42 318 37 
3 41 41 12 37 81 
4 7 6 70 4 45 
5 0 I 18 O52 
6 I 021  0 0 6  
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We look also at ano ther  example  a little closer.  THYRION (1960) fitted also a 
th ree -pa ramete r  model  o f  weighted Polsson type.  This model  has a reasonable  fit. 
The  e s t imauon  was not  max imum l ike l ihood,  and so no xZ-test is avai lable .  The 
csumated  pa ramete r s  a r e . i = 0 2 1 4 3 5 3 7 ,  s z=0 .2889314  and p o = 0 8 2 8 6 6 5 0 5 .  
The  c sumated  negatwe b inomia l  pa ramete r s  are & = 0 . 7 0 1 5 1 2 2  and ~ =  
3.2726858 The  es t imated  pa ramete r s  o f  our  model  are &=0 .2006137 ,  ~ =  
1.6665135 and ~ = 0 . 0 9 3 9 7 4 3 9 .  The ca lcula ted  and observed frequencies are 
collected m Table  2. 

If the three last classes and the class "~>8" are jo ined  together ,  the goodness  
ol fit test for our  model  has the x2(2) value 4.12. Th~s is below the 90%-va lue  
4 605 so that  our  model  cannot  be rejected.  The hkehhood  rauo  test has the test- 
value 9 53, which exceeds even the 0.995-level The hypothes is  Ho : 7 = 0 ~s then 
le jected.  The es t ima tor  for the backg round  intensi ty ~ = 0.094 is about  44°70 o f  
the es t imated mean intensi ty ~'. 

We have considered several o ther  da ta  from traffic insurance.  We shall review 
them here only briefly to save space.  LEMAIRE (1979) gwes da ta  to which a l ready  
the negatwe b inomial  d l s t n b u u o n  fits well. Hence the hypothes is  Ho : ~ = 0 is not 
~ejected. In sp~tc of  this the max imum l ikehhood  e s u m a t o r  for the ba c kg round  
intensi ty is 40070 o f  the e sumated  mean intensi ty ~'. DELAPORTE (1962) gwes 
data ,  which has the tad shor ter  than the fitted negative bmom| a l  d i s t r ibu t ion  has. 

Hence,  our  model  leads to a negative value for the backg round  intensi ty,  and can- 
not be htted to thts da ta .  P E S O N E N  (1962) has da ta  to which a l ready  the negatwe 
bmormal  model  fits well, and the hypothes~s of  zero ba c kg round  intensi ty ~s not  
rejected Again ,  however ,  the e sumated  backg round  intensity is a large percent-  
age, 60%,  of  the e sumated  mean intensi ty .~'. MUII- (1972) gwes two sets ot" da ta ,  
A and B. The da ta  A lead to a s imilar  s i tuat ion as that  o f  Dclapor te ,  and the 

da ta  B s~mflar to those of  Pesonen and Lemaire .  Final ly BUHLMANN (1970) gwes 
da ta  for which the null hypothesis  o f  zero backg round  intensi ty is rejected w~th 
a high X2-value. On the o ther  hand ~ IS as low as 0.37.7('. GOSSIEUX and LEMAIRE 
(1981) have also constdered the same da ta  and they have found that  the best fit 
among  four d~strlbut~ons was given by a m~xturc o f  two Poisson d is t r ibut ions .  

As a conclusion we must admit  that  the model  presented here ~s not a general  

solut ion to the problem of  de te rmin ing  the claim number  d~str ibuuon.  If the da ta  
have a long tall thcn th~s model  is worth  conslder~ng If the tatl ls short  then the 

TABI E 2 

No o f  cIamls Ob~elved  O u r  mode l  N B  

0 7840 7837 40 7847 01 
I 1317 1326 16 1288 36 
2 239 222 76 256 53 
3 42 _~2 68 54 07 
4 14 15 08 II 71 
5 4 4 66 2 58 
6 4 1 50 0 57 
7 1 0 5 0  0 13 
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bad fit of  the negative bmomml  d i s t n b u n o n  cannot  be corrected using this model 
xvuh positive ~ However,  t he  knowledge we have ot hiring l lns  model mchcates 
that iil l]lOS[ OI the cases the b, tckg)ound intensity is somewhele a round Ihe hall 
of  tile nlean,  approxmaately between 0.4x and 0 6x AddH]onally this model can 
be used Io build up a b o n u s - m a h t s  system X~lltl some defimte Iox~el bound tuy  for 
the premmm 

7 ADDITIONAl_ TOPICS 

S e v e r a l  Y e c u s '  D a t a  

l.et the same p o n f o h o  be observed during a period of seve)al years. Let us 

assume that our model ~s the true one. Let the ~,, /3, and y, be the parameters 
cY, [3 and % )f t is selected to be the time unit.  Equat ing the first three moments  
lot  the number  of clmms in tm~e t calculated using lime urals I a n d / ,  rcpectlvely, 
we obta in  

o~, = eel, B, = B i / t ,  ~, = t w  

This means that if our model ~s the true one, then the observed values of e~,,tl3, 

and y , / t  should be fa,rly constant  dur ing the observat ion period. 

T w o  P o r r f o h o s  

Let us jo in  two por t fohos  which have the dis t r ibut ion (3) for the number  of 

claims with parameters u,,B, and 7 - 1 =  1,2, respectively. Let the sizes of the 
portfolios be m rano  p / ( I  - p ) .  Let, further,  

I, if the risk ~s from the por t foho 1 
X = 0, if the risk is from the por t foho 2. 

Then for a randomly  chosen risk we have 

N t  = N I t x  + N z t ( 1  - ?() = ( N l l o (  + N2Et(I - X)) 

+ (NI2tX + Nzz t ( I  - X)) = ~/It + /Q2t .  

~hewe Nut Is the number  of clmms m ume t in portfol io t due to the component  
! as m (4). Then N, is divided into two components  the first of which is a mixture 
ot two Poisson dis t r ibut ions and the second a mixture of two neganve binomial  

dis t r ibut ions Hence, the combined por t foho no longer has the claim number  
dis t r ibut ion (3). In spite of this we tried th~s model for two composite data. We 
pooled B u h l m a n n ' s  data with Trobhger ' s  data,  I, and then with Lemalre 's  data,  
II. The fit was excellent m both cases, and the null hypothesis of zero background 
intensity was rejected with great sLgmficance. The interesting feature is that the 
parameters  obtained are close to those of Buh lmann ' s ,  and are not near the hnear 

c o m b m a n o n s  of the original parameters.  This can be seen m Table 3. For 
example the hnear  c o m b m a n o n  of the y-parameters  m the Buhlmann-Lemmre  
case would give 0.04887 against the obtained 0.05708. 
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TABI I 3 

DdI,I ¢, S "~ ':~ lJ ~ "~1~. 

Buhhn,mn 15514 17932 40015 4 {168 05679 0 37 
T~obhge~ 14422 16387 27663 3 760 07064 0 49 
mxxtule I 15334 17679 37838 4 018 05918 0 39 
1 cmm~e 10108 10745 58881 9 641 04001 0 40 
mixture  II 12965 14615 31966 4 405 05708 0 44 

As a last example we joined together the data o f  Lerna~re, Thyt ion, Pesonen,  
T~obltgm and Buhlmann  and constdered how our model fits with these 

hetetogencou,, data The fitted NB-chstl tbutlon had a k 2 (3)-value 61 14, whtch 

means poor fit. When our model was fitted, the X 2 (2)-value was 5.18, wl-uch 
means a moderate fit. The hkehhood ratio test value was 47, 55 which is a highly 
s~gnlficant value. The estimated background tntenstty was ~ = 0 0654328,  whtch 
~s 49% of  the esmnated mean.  

A mote  detmled exposttton o f  methods and resuhs o f  this paper ~s found in a 
tcchmcal report RUOHONEN (1983). 
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