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ABSTRACT 

The P a r e t o - o p u m a l  design for prof i t -shar ing is derived under  general  assump-  
t ions as to the uti l i ty funct ion o f  both the insured and the insurer.  This 
general izes the result of  Jones and Gerber  and explains  c o m m o n l y  used dividend 
fo rmulas  m terms o f  risk avers ion.  

KEYWORDS 

Prof i t -shar ing,  Pare to -op tamahty ;  op t imal  cont ro l  theory.  

I. INTRODUCTION 

Experience rat ing in group life insurance arose  because of  the threat  o f  self- 
insurance on the part  of  the " g o o d  r isks."  This anuse lec t lon  was - -  and still is 
- -  prevented  by offer ing to the po l icyho lder  a prof i t -shar ing plan in which it as 
s t ipula ted  that the Insurer will refund some part  o f  the profit  he makes  on that 
par t i cu la r  policy.  This prof i t -shar ing usage is also c o m m o n l y  used m most non- 
life insurances and in re insurance where the greater  uncer ta in ty  abou t  the total  
clmm dis t r ibu t ion  is reflected in higher safety loadmgs  and therefore  nl higher 
potent ia l  profits .  

The repayment  as defined by a d iv idend fo rmula  which expresses the refund m 
terms o f  the claam experience.  Several  fo rmulas  are conceivable ,  but there are two 
designs that are f requent ly  used and have been s tudied by BERNHARDT and 
ENDRES (1979), DRUDE and NIEDERHAUSEN (1973-1974) ,  JONES and GERBER 
(1974), SCHMUTZ (1985), STRICKLER (1982) and mOppl (1982): 

(1) W =  (caP' - S)+,  c~ ~< 1 

(2) W =  ~ ( P '  - S)+ ,  ~ ~< 1 

where W =  the refund 

P '  = P ( I  + 0 )  with P the net p r e m m m  
and 0 the safety loading 

S =  the total  claim amoun t  

and (x)+ = max(0,  x)  
In (1), the insurer  refunds that  part  o f  the profit  that  exceeds some predeter -  

mined constant  (1 - ~ ) P ' ,  whereas In (2) the profit  ( P '  - S)+ is divided accord-  
mg to some p r o p o r u o n a l  rule 
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Fur ther  restrlct~ons on the pa ramete r s  are ob ta ined  by stat ing that the expected 
result o f  the insurer  must satisfy a given solvency reqmrement .  The pa ramete r  
values ac tual ly  used are most ly  a mat te r  of  barga in ing .  

The  choice between the two designs ~s harder  to tackle m a theoret ical  context .  
One o f  the possible  ways to deal  with compet ing  preferences is using utihty func- 
tmns and looking  for a P a r e t o - o p n m a l  so lunon  0 .e  a solut ion such that  ~t can 
not be improved  for one o f  the two compeu to r s  without  ha rming  the other).  

JONES and GERBER (1974) proved that  the P a r e t o - o p u m a l  so lu tmn responds  
to fo rmula  (1), m case the insured ~s r isk-neutral  and the insurer  has a concave 
uti l i ty funct ion.  The  Pa re to -op t ima l  solut ion for the general  case, which allows 
both the insured and the insurer  to have a concave util i ty funct ion,  will be derived 
m this paper  with the aid of  op t imal  cont ro l  theory  

As was poin ted  out  by the referees, this result can also be ob ta ined  as a specml 
case o f  the theorem of  Borch. This a p p r o a c h  will be demons t r a t ed  m the 

Append ix .  

2. NOTATIONS AND DEFINITIONS 

Denote  the ut lhty funct ion of  the pohcyho lde r  by u(x )  and assume that  the condi-  
t ions u ' ( x )  > 0 and u " ( x )  ~< 0 are satisfied. Ana logous ly ,  let v(x)  be the utihty 
funct ion of  the insurer ,  with v ' ( x )  > 0 and v"(x)  ~< O. Thus,  both  the insured and 
the insurer  are supposed  to be r isk-averse or r i sk-neutra l .  Thmr r isk-avers ion can 
be measured  by 

(3) R , ( x )  - u " ( x )  and R , (x )  - v" (x)  
u ' ( x )  v'(.v) 

Let S denote  the total  claim amount  and X = ( P '  - S ) +  the profit  in the con- 
s idered per iod.  Note that the premium P '  Js the risk p remium supplemented by 
a safety loading but wi thout  any loading  for admin i s t r a t ion  costs.  The refund 
that co r responds  to gain x will be represented by W(x) .  

Denote by f.x (.v) and f s ( s )  the p robab lh ty  densi ty funct ions of  X and S. There  
exists a close re la t ionship  between these two funetmns" 

S fx (0 )  = f s ( s )  ds and f x ( x )  = f s ( P '  - x)  for x > 0. p. 

WIth these no tanons ,  and denot ing  by w,, the mmal  capi tal  o f  the pohcyho lde r  
and by w~. the capi ta l  o f  the insurer,  ~t ~s possible  to express the c o n d m o n s  for 
a P a r e t o - o p n m a l  so lu tmn in a more  formal  way. 

DEFINITION 1 The  dividend fo rmula  W ( x )  is P a r e t o - o p n m a l  if, for every 
o ther  l e fund  fo rmula  W(x)  for which 

E [ u ( u , , , -  P'  + W ( X ) ) ]  1> E [ u ( u , , , -  P'  + W ( X ) ) ]  and 

E[v(w, .+  P'  - S -  W ( X ) ) ]  ~> E l v ( w ,  + P' - S -  W ( X ) ) ] ,  

both >/ signs can only be equahtms.  
It ~s easy to see that  this is eqmvalent  to the fol lowing def imtlon.  
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DEFINITION 2. The  solut ion to the fo l lowing op t imiza t ion  p rob lem is Pare to -  
op t ima l :  maximize  E [ u ( w , , -  P '  + W ( X ) ) ]  subject  to the cons t ra in t  
E [ v ( w ~ , + P ' - S - W ( X ) ) ]  ) c  (c an a rb i t r a ry  cons tant ) ,  over  the feasible 
set of  refund formulas .  

One natura l  cons t ra in t  on the set of  all p o s s i b l e d e s l g n s  for W ( x )  is 

0 ~< W(x )  <~ x 

as the insured wdl not pay a surplus  in case of  bad  experience and the insurer  will 
not pay more  than he gains in o rde r  to stay solvable.  

Using the no ta t ion  in t roduced above ,  the p rob lem can be s ta ted as follows: 

f" f ° u ( w , , -  P '  + W ( P '  - s ) ) f s ( s ) d s +  u ( w , , -  P ' ) f s ( s ) d s  
0 P '  

M a x  
w 

subject  to 

0 ~< W ( x )  ~< x 
m' P co o 

V(Wt + P / - S - W ( P ' - s ) ) f s ( s ) d s +  ~ v(w,,+ P'  - s ) f s ( s ) d s  >~c 
o 0 O P '  

where c must be smal ler  than or  equal  to E[v(w~,+ P'  - S ) ]  m order  to get a 
non -empty  feasible set o f  refund formulas .  

An equivalent  fo rmula t ion  o f  this p rob lem is: 

i t" + W ( x ) ) f x ( x ) d x  Max u (w , , -  P '  
~ e  0 

(4) 

subject  to 

(5) 

(6) 

and 

(7) 

where 

0 ~< W(x)  ~< x 

v(w+, + x - w C x ) ) f x ( x ) d x  i> k 

I J 

k ~< i v(w~, + P'  - s ) f s ( s ) d s  
0 

o oo 

k = c -  ~ v(w,, + P '  - s ) f s ( s ) d s  
J P 

In the fol lowing section we will derive the so lu t ion  to this p rob lem,  where the 
inax~mum is sought  over  the family  o f  all p~ecewise con t inuous  funct ions on 
[o, P ' ] .  

3. THE PARETO-OPTIMAL DESIGN 

THEOREM. Depending on k, the solution to the problem (4) under the con- 
s tramts (5), (6) and (7) takes one o f  two possible f o r m s  m whwh the k *, x~ and 
x2 will be defined m the proof .  
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I f k < k *  

W ( x )  = x x <<. xt 
(8) . 

0<<. W ( x )  <<. x x > x~ 

where W ( x )  ts de terrnmed by  the d t f ferentml  equat ton 

R~(w~ + x -  W ( x ) )  
(9) W'  (x)  = 

R . ( w .  - P '  + W ( x ) )  + Rv(wv + x -  W ( x ) )  

wtth the boundary  condtt ton W ( x ~ ) =  x~. 

l f k > . k *  

W ( x )  = 0 x <<. xz 
(10) , 

0<~ W(x)<~ x x >  x2 

where W ( x )  ts also de termined  by the d l f ferentml  equatton (9) but  wtth the 
boundary  condlt ton W ( x ~ )  = O. 

PROOF. The p rob lem can easily be solved via op t imal  control  theory ,  see e,g. 
KAMIEN and SCHWARTZ (1981), If we rewrite the const ra in t  (6) as: 

z ' ( x ) = v ( w ~ . + x -  W ( x ) ) f x ( x )  with z(0) = 0 and z ( P ' ) > ~ k .  

The Lagranglan  for this p rob lem is: 

L = u ( w .  - P '  + W ( x ) ) f x ( x )  + X(x)v(w~ + x - W ( x ) ) f x ( x )  
( l l )  

+ ~ ( x )  W ( x )  + & ( x ) ( x  - W ( x ) )  

where X(x) is a con t inuous  funcnon  and /3~(x) and t3z(x) are plecewise con- 
tmuous  funcnons ,  such that  for all xE [0, P '  ] where the/3, are cont inuous ,  the 
fol lowing c o n d m o n s  are sansfied:  

(12) 

(13) 

(14) 

(15) 

5L 
X ' ( x )  - 

5z 

X ( P ' )  ~> 0 and X ( P ' ) = O  if z ( P ' ) > k  

; 3 t ( x ) W ( x )  = O, ~ t ( x )  >1 0 

~ 2 ( x ) ( x -  W ( x ) )  = O, ~2(x)  >10. 

As all the concavi ty  requirements  are satisfied, the op t imal  W ( x )  is then found 
by maximiz ing  L. 

We will assume in the sequel that  f v ( x )  > 0, because the values o f  x where 
f x ( x )  = 0 are of  no interest to this p rob lem.  It fol lows f rom (11) and (12) that  
X(x) ~s a cons tant  funct ion o f  x because the Lagrang lan  does not depend on z. 

We will denote  this cons tant  by X. 
We must d i s tmgmsh two cases 

(a) i f  cons t ra in t  (6) Js not b inding,  then ~t fol lows from (13) that X = 0. The con- 
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& n o n  to maximize  L with respect  to W is then:  

(16) u'(w,,  - P '  + W ( x ) ) f v ( x )  + 13j (x)  - [32(x) = O. 

From (14) and (15) it is i m m e & a t e  that  W ( x )  = 0 can never be o p n m a l  in this case 
and that W ( x )  = x will be the op t imal  so lu t ion .  This is to be expected:  if the 
restr ic t ion that  the insurer  puts on his expected uti l i ty is not b inding,  the uti l i ty 
o f  the pohcyho lde r  will be maximized  by re funding  as much as possible.  
(b) Now consider  the more  real isnc case that  (6) is b inding,  then X is umquely  
de te rmined  by the equat ion  

p, 
P 

(17) ~ v(wv + x - W ( x ) ) f x ( x ) d x  = k 
J 0 

where the op t imal  solut ion W ( x )  is expressed in terms of  X. Then W ( x )  = x will 
be op t imal  if 

(18) H i ( x ) =  u ' ( w , -  P '  + x ) -  kv ' (wv)  >>. 0 

and W ( x ) =  0 is op t imal  if 

(19) H2(x )  = u'(w,,  - P ' ) -  Xv '(wv + x)  << O. 

Because H~ is a con t inuous  decreas ing funct ion m x and H2 ~s a con t inuous  
increasing funct ion m x, and  since H ~ ( 0 ) =  H2(0), (18) and (19) can not occur  
s imul taneous ly  and one o f  these condi t ions  has to be satisfied up to some x. So 
either 

W ( x )  = x for x ~< x* where x~' IS the so lunon  o f  

(20) Hi  (x)  = 0 

o r  

W(x)  = 0 for x ~< x2 where x~ is the solut ion o f  

(21) H z ( x ) = O .  

If 0 < W ( x )  < x then the so lunon  IS de te rmined  by 

(22) u ' ( w , , -  P '  + W ( x ) ) -  Xv ' (w~+ x -  W ( x ) ) =  O. 

D~fferennatmg (22) with respect to x, the fol lowing equa t ion  is ob ta ined  

(23) u " ( w , , -  P '  + W ( x ) ) W ' ( x ) -  Xv"(wt. + x -  W ( x ) ) ( l  - W ' ( x ) ) =  O. 

By solving (22) for X and insert ing this expression for X in (23), (9) is ob ta ined .  
As W ( x )  is a decreas ing funct ion o f  X and o f  k, X is increasing with k. So we 

can t rans la te  the cond inons  for  the different  so lu t ions  in terms o f  k. Denote  by 
k* the k -bound  be longing  to the special case 

u'(w,,- P') 
(24) Hi (0) = H2 (0) = 0 or X - 

v ' (w , )  

Then the condi t ions  (18) and (19) are equivalent  with k < k* and k / >  k*, which 
proves the theorem.  
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REMARK. It may not be clear how this solut ion can be computed,  because of  the 
u n k n o w n  X. As the relationship between k and X is rather complex, the easiest 
way to obta in  the solut ion is as follows: express x~ or x2 and the solut ion of the 
differentia/ equat ion (9) in terms of X. Insert this solut ion in constraint  (6) and 
by trial and error the value of X belonging to the given /,.'-bound can be found.  

4. SPECIAL CASES 

In the special case where the insured is r isk-neutral ,  R,,(x)= 0, the solution is 
given by 

W ' ( x )  = 1 or W(x)  = x + constant  for x ~ x*. 

From W(x)  ~ x l t  follows that the constant  has to be negative. 

If k ~ k* the constant  must be zero, whereas for k > k* the boundary  condi- 
n o n  is W(x~) = 0 and thus the constant  must equal - x2 So in any case the first 
design (1) Is opt imal ,  which is the result that was found by JONES and GERBER 
(1974). 

For the more realistic case, where the insurer is assumed to be risk-neutral  and 
the insured Is risk-averse, the o p n m a l  dwldend formula  is derived from 
W ' ( x )  = 0, and thus W(x)  = constant  for x > xL So the op t imum takes the form 

of 

W(x)  = x x ~< xf 

W ( x ) =  x~ x > x~ 

with the h m m n g  case 

W ( x ) = O  for all x. 

Note that this case, which corresponds to the most mtmtive ~deas with respect to 
the utility funct ions of an insurer and an insured, has a Pa re to -opnmal  so[uuon 
that has not been considered before. 

5, EXAMPLE 

We assume that both the insured and the insurer have exponential ut i l i ty 
functions:  

u (x )  = 1 - exp( - ax) and v(x) = 1 - e x p ( -  bx) 
a b 

In this case the risk aversion coefficients are constant :  

R,,(x) = a and R~,(x) = b 

It follows from the theorem that a Pare to -opnmal  refund formula  is either of the 
type 

x x ~ x ~  
W ( x )  = 

• x~ + b ( x -  x~) x > xl 
a + b  
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X 

or of  the type 

0 
W ( x )  = 

b ( x -  x f )  
a + b  

These results are i l lus t ra ted m Figure 1. 

X ~ X2' 

c 
A ' ~  A 2 .  
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APPENDIX 

We will demons t r a t e  how the same result can be derived by apply ing  Theorem 
2 o[ BUHLMANN and JEWELL (1979) whmh general izes Borch ' s  theorem to 
exchange funct ions that  are subjec t  to cons t ra in ts .  

Denote  by X~(x) and Xz(x) the amoun t s  the pohcyho lde r  and the insurer  get 
m case the gain is x and there is no profit  shar ing.  Ana logous ly ,  denote  by Yj (x)  
and Y2(x) the amoun t s  af ter  the profi t  shar ing (cfr risk exchange)  Remark  that  
we have to consider  only  the cases where there is profit  and thus can denote  
everything m terms o f  x. Table  1 gives an overview of  the s i tua t ion .  Denote  by 
t~(Yl(x)) = u ( w , -  P' + Yl(x)) and by O(Yz(x))= v(wu+ Y2(x)). 

For  the uncons t ra ined  case, Borch ' s  theorem provides  us with the o p t i m u m  as 
the solut ion o f  

kll~'(Yl) = k2v' (Y2) 
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TABLE I 

X,(x) Y,(x) Constraints on Y,(x) 

Pohcyholder 0 W(x) 0 <~ Yl(x) <~ x 
Insurer x x -  W(v) 0 ~< Y2(x) ~< x 

where k~ and k2 are positive constants  Differentiating this equat ion,  we obta in  

k t W ' ( x ) u " ( w . -  P '  + W ( x ) ) = k 2 ( l -  W ' ( x ) ) v " ( w v +  x -  W ( x ) ) .  

If we divide this equa tmn  by the former,  we get 

w '  (x )  = RL,(w~, + x -  W ( x ) )  
R , , (w .  - P '  + W ( x ) )  + Ru(wu + x -  W ( x ) ) "  

For the constra ined case Theorem 2 of BUHLMANN and JEWELL (1979), page 
249, states that W ( x )  is an opt imal  solution ff and only if there exists a posmve 
funct ion A(x) such that 

k t t T ' ( Y t ( x ) )  = A(x) 

k 2 0 ' ( Y 2 ( x ) )  = A(x)  

k d ~ ' ( Y l ( x ) )  ~< A ( x )  

k2O' (Y2(x) )  ~< A(x) 

k l ~ ' ( Y t ( x ) )  >1 A(x)  

k 2 u ' ( Y z ( x ) )  ~ A(x)  

i f 0 <  Y ~ ( x ) < x  

x f 0 <  Y 2 ( x ) < x  

if Yl(x) = 0 

if Y2(x)  = 0 

If Y,(x) = x 

if Y2(x) = x. 

Remark that some signs are reversed compared with their theorem because we are 
dealing with utility funct ions instead of disutility functions.  

Let ff '(x) be a solut ion of the differential equat ion in the uncons t ra ined  case 
and let 

0 if l,~'(x) < 0 
W ( x )  = l ~ ( x )  ~f 0 <~ ~ ( x )  <~ x 

x if x < IT'(x). 

It is easy to see that W ( x )  fulfills the above theorem with A ( x ) = k j ~ ' ( f f ' ( x ) ) .  
Hence W ( x )  is an opt imal  solution.  

Note that 0 < if" (x) < I and that therefore ff '(x) will at tain either the bound-  

ary f ( x )  = x or else the bounda ry  f ( x )  = 0 at some point .  Thus the solutions are 
of  the same type as described by our theorem. 
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