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A B S T R A C T  

We compare three modern methods for calculating the aggregate claims distribu- 
tion with respect to their computation amount and accuracy" Pan ler's algorithm, 
the approximation method of Kornya and the most recent, exact procedure of 
De Pril. They are compared numerically in the case of actual Life portfolios. The 
computauon amount of De Prll's method is much greater than that of the two 
others, which do not differ substantially in this respect. The accuracy of Kornya's 
and Panjer's methods is remarkably high in the examples considered. However, 
as the accuracy of  Kornya's approximation method can be determined easily 
m advance, this procedure turns out to be the most useful one for the problems 
arising from practical work. 
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1. INTRODUCTION 

In the years since 1980 a remarkably large number of methods have been made 
available to insurance mathematicians for calculating the aggregate claims 
distribution of a portfolio numerically. In the monograph of GERBER (1979) one 
can find those methods which were used up to 1980 and above all the models to 
be examined in pracuce and theory, namely the so-called individual and (due to 
LUNDBERG (1909)) the collective model of risk theory. Among the methods 
developed after 1980, of which there is no summarizing description in the interna- 
uonal literature, we would like to quote as new ideas or applications the recurswe 
formula of PANJER (1981), the method of Fast Fourier Transform (FFT) of 
BERTRAM (1981), the approximation method of KORNYA (1983) and the method 
of DE PRIL (1986). For practitioners and theoreticians, the quesuon arises which 
of all these methods should be given preference in situations relevant in practice. 

With regard to BUHLMANN (1984), who compared the algorithm of Panjer 
with the FFT method, it is only necessary to analyse one of these two methods 
m more detail. We have chosen the Panjer algorithm, because our experience 
proves that most practitioners choose the Panjer method. Therefore, the aim 
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of  thts paper  Is to compa re  the methods  o f  Pan je r ,  Kornya  and De Pril f rom a 
practmal  point  o f  view. 

Such a compa r i son  ~s feasible only m the case o f  Life por t fo l ios ;  i.e. m the 
language  o f  risk theory  in such an individual  model ,  where the claim amoun t  
d i s t r ibu t ions  o f  the individual  policies are ( individual)  two point  d is t r ibut ions  
th roughou t :  

(i) The  method  o f  Panje r  first o f  all exactly de termines  under  cer tain condi t ions  
the aggregate  claims d i s t r ibu t ion  m a collective model .  For  a ca lcula t ion  o f  
an individual  model ,  one has to t r ans fo rm this s i tuat ion into a s ta table  col- 

lective model  (due to GERBER (1984) and HIPP (1985) there is an es t imate  
for the er ror  which arises f rom this t ransi t ion) .  The Pan.ler a lgor i thm,  
however ,  then enables  the ca lcula t ion  (up to a checkable  error  term) of  the 
aggregate  c la ims d i s t r ibu t ion  m any individual  model .  

(i0 The me thod  of  Kornya  evaluates  up to a prescr ibed accuracy  the aggregate  
claims d i s t r ibu t ion  in an individual  model .  The or iginal  me thod  developed 

by KORNYA (1983) took only  Life po r t fohos  into account ,  but it can be 
general ized to an a rb i t r a ry  individual  model ,  as was shown by HIep  (1986). 

(ii0 The me thod  o f  De Pril makes  possible  the exact ca lcula t ion  of  the aggregate  
c la ims d i s t r ibu t ion  m the indiv idual  model ,  but  only  in the case o f  Life por t -  
folios.  At  present ,  a genera l iza t ion  to more  general  s i tuat ions  is not within 
sight.  

It is therefore  precisely in the case o f  Life por t fo l ios  that  all three methods  can 
be c o m p a r e d  wlth one ano the r  The  fact that  in this case the methods  of  Pan je r  
and Kornya  only lead to an a p p r o x i m a t i o n  is no d i sadvan tage  f rom a pract ical  
and theoret ical  poin t  o f  view provided  that  er ror  es t imates  for the inaccuracies  
are sufficiently small .  

In the fo l lowing section we present  the three methods  m a un i fo rm way. In Sec- 

non  3 we then compare  these methods  by means  of  actual  por t fo l ios  and por t -  
folios der ived f rom these m orde r  to answer the quest ion of  which method  is the 
best one for numerica l  compu ta t i ons .  As prac t i t ioners ,  there is no need for us to 
look at the por t fo l ios  given h~therto in ac tuar ia l  l i terature,  which m general  are 
both theoret ica l  and small .  

2. UNIFORM DESCRIPTION OF 'THk METHODS 

For the individual  model  o f  a Life por t fo l io ,  choose  finitely many  mor t ah ty  rates 
q~ . . . . .  q j  and (up to a fixed mone ta ry  umt) fimtely many  risk sums i =  1 . . . . .  I, 
such that  each policy o f  the po r t fo l io  has a m o r t a h t y  rate qj,,, Jo ~ J, and a risk 
sum t0, to .~ I. Denote  by n,j the number  o f  all policies with mor ta l i ty  rate qj and 
risk sum t. The  d l s m b u t i o n  funct ion o f a  pohcy Y,//in a cell O,J ) ,  l =  1, . ,n,j ,  is 

l - qj, O ~ x < t  
F t j ( x ) =  1, x l> I. 
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The &str lbutlon function 

F(x)  = prob(S ~< x)  

o f  the aggregate claml S can be expressed on the (usual) assumption of  the 
independence o f  all the pohcles by the convolut ion formula  

F ( x ) =  ,~- F,*"',(x) 
t , J  

As ~s well known,  for large portfol ios  it is impossible to carry out these con- 
voluuons  numerically. Because the support  o f  S ~s contained m No, ~t ~s sufficient 
for a computa t ion  o f  F to calculate 

f ( x )  = prob(S = x ) ,  (x = 0, 1 . . . .  ). 

(0 The method o f  Panjer. To apply this method to the given s~tuanon one 
must first o f  all assign a collecnve model to the individual model.  This can be 
done in various ways, but we have chosen the most s tandard procedure.  We have 
chosen a specml compound  Polsson distribution, which is defined by the 
equations 

/ J 

k = E Z qjn,j 
t = l  3 = [  

1 i J 

G(x) = Z Z 
t = l  j = [  

where 

IO, 0 ~ < x < t  
F'~°)(x) = 1, x i> t 

is independent o f  j .  The density function g o f  the probablhty  d~strlbunon G is 
given by 

where 

g ( t )  = ~ (t = 1,2 . . . . .  I ) ,  

J 

X, = ~ q~n,j. 
3=1 

The aggregate claims S in the individual model are therefore approximated  by an 
assocmted collective model 

N 

g = Z x ,  
t = !  

where the "claim amoun t s "  X, are independent and identically distributed with 
distribution function G. The X, are also assumed to be independent o f  the "claim 
number"  N, which follows a Poisson dis t r ibuuon with parameter  X. The density 

f ( x )  = prob(S = x) 
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o f  the distribution function of  ,S can now be calculated (see PANJER, 1981): 

and then recursively by 

] ( x )  = x_ .... 
X v=l  

f (0)  = e x p ( -  k), 

v g ( v ) f ( x -  v) ( x =  1,2 . . . .  ). 

In case of  large X, f (0)  may numerically equal zero. For example, PANJER and 
WILLMOT (1986) give two different methods (decornposmon o f  the portfol io and 
exponential  scaling) to handle this problem. 

For the error 

sup l F ( x )  - F'(x)[ , 

where F, F denote the corresponding distribution functions, GERBER (1984) and 
HIPp (1985) have given error estimates. 

(n) The me thod  o f  Kornya. We assume qj ~< 1[3, j = l . . . . .  J, and define for 
any K ~ N 

- -  rl U &(K) K +  I ,=l j=l 

In view of  

A(K) --+ 0 for K--* c~ 

one can find to any given accuracy e > O.a K E N  satisfying 

e x p ( A ( K ) ) -  1 ~< e. 

For such a fixed K, consider the special polynomial  

- - ( K )  m = Om U , 
m = 0 

where 

b~ K)= ~.a ( - l ) / '  k ~ ,/,g(l q~sqs) ~ 
k = l  k ~'=1 J = l  

and 

b~ff') = ( -  1)~ n,,,/,,a , m ~< IK, 
/~ I,&lm k g=l 

denote the non-vanishing Taylor  coefficients o f  Q(K). 
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The simple recursmn fo rmula  

a~ A') = exp b~ h') 

a~A, ~ 1 ~ mahdi,, h(K) = -  ~ . . . .  n i> 1,  
n Ill = [ 

then leads to the coefficients of  the power  series o f  exp Q(K)(u) ,  i.e. 

exp Q(K)(u)= Z a~K)u ". 
n=O 

Final ly ,  ~f one defines 

F(x)(X) = ~ I aU~l, 
i / = 0  

then the result o f  KORNYA (1983) states that  

[ F(x) - F(X~(x)[ ~< exp(A(K) )  - 1 ~< e 

holds for all x ~< Z m,j. 

010 The method o f  De Prll Put t ing  

± A , k = ( - l ) ~ + J  t n,j 
J = l  

the result of  DE PRIL (1986) states that 

I J 

f (0 )  = 1-~ ~ (I - qj)"', 
t = l  J = l  

1 .... . ~  t , / , I  
f ( x )  = -  z.~ ~ A,k f ( x -  kt) 

X t = l  k = l  

holds for all x ~< ~ m,s. 

( t = l  . . . . .  l,k~> 1), 

3. NUMERICAL COMPARISON 

As all o f  the methods  will turn out  to be sufficiently precise, we only need to look 
at the c o m p u t a t i o n  amoun t  as an obvious  measure  o f  their  usefulness.  The 
a m o u n t  o f  c o m p u t a t i o n  can be quant i f ied  as the number  o f  floating point  opera-  
t~ons, counted  separa te ly  as bar  ope ra tmns  (addi t ions  and substract~ons) and dot  
opera t ions  (mult~phcations and dwls~ons), or  as the c o m p u t a t i o n  t~me (CPU 
time). We must  emphas ize  that  C P U  time depends  heavily on compu te r  type,  pro-  
g r a m m m g  language and style, and that  the t u rna ro und  ume  may be many  t~mes 
longer.  The  fol lowing measurements  have been ca rned  out  on p rog rams  w r m e n  
m VS A P L  on an IBM 4381 under  VM/CMS.  

Crucia l  for the c o m p u t a t i o n  a m o u n t  ~s not  only  the size o f  the po r t foho  but  
also the number  o f  values of  the aggregate  clmms d is t r ibu t ion  to be computed .  

Gwen  a certain step width ,6 (e.g. a fixed number  of  mone ta ry  units) the values 
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o f  F(0) ,  F ( A )  . . . . .  F(L • A)  are to be computed  for  a certain na tura l  number  L. 
In the fol lowing examples  we have chosen L so that L • A is about  the size o f  
# + 3 • o, where # and o denote  the mean and s t anda rd  devia t ion  o f  the aggregate  
c la ims d is t r ibu t ion ,  which can easily be c o m p u t e d  be fo rehand .  

In the a lgor i thms  of  Pan je r  and Kornya ,  the c o m p u t a t i o n  amoun t  depends  
on I, J, K (Kornya  only) and L, but not on the por t fo l io  size. The number  o f  
bar  and dot  opera t ions  (BO resp. DO) can be expressed explici t ly.  For  large L 
we have, in the case of  Pan j e r ' s  a lgor i thm,  app rox ima te ly  BO --- DO = I .  L; 
in the case o f  Kornya ' s  a lgor i thm,  app rox ima te ly  BO-~ DO = K .  I - L .  
De Pr l l ' s  a lgor i thm needs about  BO = L • Hi  • (0.5 • L + J -  1) + J and 
DO --- L • H i .  (0.5 • L +  J +  1 .5 )+  L • ( J +  1)+ M -  1, where 

I J 

M=Z Z 
t= l  J = l  

is the number  o f  policies and 

H I = ~  1-=< 1 + I n  I 
t= l  I 

is the tth ha rmonic  number .  
The  first example  derives f rom a real Life insurance  po r t foho .  It consists of  

104,652 risks aged from 15 to 74 with risk sums from DM 2,000 to DM 200,000 
in steps o f  DM 2,000 (that is I =  100, J = 60). The expected aggregate  claim 

a moun t s  to p . = D M  4 5 3 7  mflhon,  the s t andard  devia t ion  is a = D M  
0.511 mill ion.  The  aggregate  claims d is t r ibu t ion  is to be c o m p u t e d  for a value of  
L = 3,000 which cor responds  to an amoun t  o f  DM 6 mdhon  or  app rox ima te ly  
# + 3 • o and compr ises  99.6% of  its mass. 

Algorttlun BO DO CPU seconds Error estimate 

Panjer 298,049 307,150 4 200 2 10 4 
Kornya (K= 5) 1,530,560 1,378,250 9 748 3 3 10 8 
De Prd 24,121,798 24,443,487 ~ 500 0 

Owing to lack o f  compu te r  capaci ty ,  we had to omit  the actual  c o m p u t a t i o n  o f  
/~ with De Pr i l ' s  a lgor i thm and could  only count  the number  o f  opera t ions .  

To es t imate  the accuracy  o f  K o r n y a ' s  a lgor i thm,  we used the fo rmula  from 
Section 2; to es t imate  the error  o f  the d is t r ibu t ion  c o m p u t e d  accord ing  to Panje r ,  
we added  the d is tance  between the Kornya  and Pan je r  d i s t r ibu t ion  to the Kornya  
bound ,  apply ing  the t r iangle  inequal i ty .  Accord ing  to Section 2 it is possible to 
estImate the er ror  o f  the collective model  fol lowing HwP (1985), but for this 
ano the r  app l ica t ion  o f  Pan je r ' s  a lgor i thm is needed and the compu ta t Ion  amoun t  
increases cons iderab ly .  (What  is more ,  H i p p ' s  es t imate  is ra ther  pessimistic,  
especmlly in the case o f  large por t fo l ios . )  
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This example  demonst ra tes  the usefulness o f  the above given formulae  for the 

number  o f  F L O P s  of  Kornya ' s ,  Pan je r ' s  and De Prl l 's  a lgori thms.  Owing to dif- 

ferent p rogram structures,  the number  o f  FLOPs  per second differs somewhat  for 

the a lgor i thms 
A considerat ion concerning the choice o f  step width .6: halving ,5 doubles both 

L and I. F rom the formulae  given above,  it follows as a rule o f  thumb that all 

the a lgor i thms need four times the previous compu ta t ion  amount .  

We will now examine  the pe r fo rmance  o f  DePrd ' s  a lgor i thm in compar i son  

with Pan je r ' s  and Kornya ' s  if applied to smaller  por t fol ios  To  achieve this, we 

take subpor t fohos  from the example  above,  consist ing o f  the I youngest  age 

classes and the J smallest sum classes. For Kornya ' s  a lgor i thm we choose K = 5; 

L is again determined from p. and a. 

CASE I / = J =  10, 10,953 rtsks, /~=DM 137,346, o=DM 45,861, L=250, 99 99% of mass 

Algornhm BO DO CPU seconds Error es~Hnate 

Panjer 2,304 3,065 0 231 I 05 10 -~ 
Kornya (K=5) 13,060 11,525 0327 5 6 10 ~5 
De Prll 97,334 112,744 4 250 0 

CA',~II /=  J=  15, 27,687 risks, #=DM 467,757, o=DM 99,046, L=400, 99 890//0 of mass 

Algorithm BO DO CPU seconds Error estimate 

Panjer 5,719 6,935 0386 1 10 10 -4 
Kornya (K= 5) 31,215 27,625 0549 I 3 10 - i a  

De Prll 281.928 319,060 9 779 0 

CASF. Ill /=  J = 20, 46,698 risks, p. = DM 945,215, o = DM 156,920, L = 700, 99 68% of mass 

AIgornhm BO DO CPU seconds Error estimate 

Panjer 13,509 15,630 0750 1 14 I0 -a 
Kornya (K=5) 72,120 65,750 I 030 2 5 I0 14 
De Pill 923,999 991 ,I 18 22 878 0 

Our  last example  is a Life por t foho  generated from scratch. It consists o f  1,019 

risks with sums ranging from DM 2,000 to DM 50,000 (step width is 2,000, i.e. 

I =  25) and ages ranging from 15 to 64 years ( J =  50). The mor tah ty  is 50°7o of  

the German  morta l i ty  table ADSt  60/62 mod.  To avoid a vo luminous  table, the 

class sizes n,j are defined by the somewhat  artificial formula  

n u = [0.5 + max[O, 1.7 • e x p ( -  0 .0005.(4l  2 +,22)) + 0 .5 .cos( t  + , j ) ] ]  

1 ~< i~< 25, 1 ~<j ~ 50. 

( I x ]  denotes the largest integer less than or equal  to x).  The  aggregate claims 

dis t r ibut ion was computed  for L = 100 (approximate ly  # + 3 • o, 99.5O7o of  mass). 
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Algoruhm BO DO CPU seconds Error esumate 

Panjer 3,349 3,675 0 104 6 7 10 '~ 
Kornya (K=3) 11,375 4,825 0 158 2 3 10 -6 
Kornya (h = 5) 16,525 5,150 0 174 3 4 10- io 
Dc Prfl 36,504 43,470 3 180 0 

4. CONCLUSIONS 

De P1fl 's  a l g o r i t h m ,  which  gives exact  results ,  is a r e m a r k a b l e  p rog res s  in theory ,  

but  invo lves  m u c h  grea te r  c o m p u t a u o n  a m o u n t  than  the two o t h e r  m e t h o d s .  

P a n j e r ' s  a l g o r i t h m  gives an a p p r o x i m a t i o n  to the agg rega t e  c l a ims  d l s t r l b u u o n  

m m i n i m a l  t ime.  Its a c c u r a c y  is suff ic ient  for  m o s t  p rac t ica l  pu rposes ,  but  it can 
on ly  be e s t ima ted  at s o m e  add~uona l  expense .  

K o r n y a ' s  a l g o r i t h m  needs  m o r e  c o m p u t a t i o n s  than  P a n j e r ' s ,  bu t  it a l lows  us, 

g w e n  K, to e s t i m a t e  its accu racy ,  or ,  ~f we ask for a specific a c c u r a c y ,  to c o m p u t e  

K. In each e x a m p l e  the ac tua l  C P U  u m e  was on ly  s l ight ly  h igher  than  that  for  

P a n j e r ' s  a l g o r i t h m .  The  a c c u r a c y  o f  K o r n y a ' s  a l g o r i t h m ,  ff a p p h e d  to smal l  por t -  

f ohos ,  is so high that  it c o m p u t e s  p rac t i ca l ly  the exac t  d i s t r ibu t ion .  
K o r n y a ' s  a l g o r t t h m  turns  ou t  to be a m e t h o d  for  c o m p u t i n g  aggrega te  clam~s 

d lS t r l buuons  which  is well s tu ted for  bo th  smal l  and  large Li fe  p o r t f o h o s .  

AUTHORS' NOTE 

M. V a n d e b r o e k  and  N. De Prll  r e f o r m e d  us at p r o o f - s t a g e  that  they  have  d r a w n  
a sunt lar  conc lu s ton ,  whcre  the exac t  m e t h o d  o f  De Pril  is t aken  as a basis for  

a new a p p r o x i m a t i o n  p r o c e d u r e .  Th is  pape r  will be pub l i shed  in a specml issue 

o f  the Bul le t in  o f  the R o y a l  A s s o c t a t t o n  o f  Belgtan A c t u a t t e s ,  ded ica t ed  to the 

80th b i r t h d a y  o f  P r o f e s s o r  E. F r a n c k x .  
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