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ABSTRACT 

The finite and infinite horizon time probability of  ruin are important parameters 
in the study of actuarial risk theory. This paper  introduces procedures for directly 
estimating these key parameters from a random sample of observations without 
assumptions as to the parametric form of the distribution from which the observa- 
tions arise. The estimators introduced apply to most of  the classical models in 
which ruin probabilities are used and also apply to a much broader  class of  
models. The procedures are based on the concept of sample reuse, an old idea 
in statistics which is becoming more popular  due to the widespread availability 
of  high speed computers. In this paper, the almost sure consistency of the 
estimators is established. Further, finite sample properties of  the estimators are 
investigated in a simulation study. 
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1. INTRODUCTION 

Let (X,, Y,) i = 1, 2, . . .  be i.i.d, random vectors with joint bivariate distribution 
function F. Use the random variable X, to represent the ith claim amount  and 
the nonnegative random variable Y, to represent the ith interarrival time between 
claims. For t > 0, define the number of claims by time t as 

N ( t ) =  ~ l(Y,+.. .+Yk<~t) 
k~ l  

where I ( .  ) is the indicator function. Premiums are assumed to arrive at a known 
steady rate, say, P per unit time. Thus, the amount  that claims exceed premiums 
by time t is 

N(O 

(1.1) U ( t ) =  E X k - P t .  
k=l  

Here we interpret the sum g..,k-I to be zero when N(t)=0. We are primarily 
interested in the probability that U(t) exceeds an initial reserve u at some time 
t prior to or at T, the horizon time. This probability can also be defined by 

(1.2) ~(u, T ) =  P( sup U ( t ) >  u). 
O~t~zT 
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We are also interested in the probability that U(t) eventually exceeds an initial 
reserve u, 

(1.3) ~(u)  = ~b(u, oo) = lim 0(u, T). 
T ~ o o  

These probabilities, ~(u, T) and ~(u) ,  are called, respectively, the finite and 
infinite horizon time probabihty of ruin. 

The probability of  ruin is a key parameter  in the collective theory of risk and 
has received considerable attention over the years. For several different types of 
introduction to this theory, see FELLER (1971), BEARD et al. (1984), GERBER 
(1979) and BOHLMANN (1970). The behavior of  the finite horizon time probability 
of  ruin has been widely investigated not only because of its practical relevance 
but also because explicit computation of $(u, T) is difficult except in the most 
trivial cases. Explicit calculations have been given for some specific forms of F, 
cf. SEAL (1978) and THORIN and WIKSTAD (1976). However, use of  these explicit 
solutions has been limited due to their complexity and their dependence on a 
specific form of F. Because of these difficulties, papers giving approximations of  
O(u, T) suggested by limit theorems (e.g., as u ~ ,  T~oo)  are abundant in the 
literature. The most successful of  these approximations seem to be the diffusion 
approximations given by SIEGMUND (1979) and applied by ASMUSSEN (1984). 
See LALLEY (1984) for a refinement of Siegmund's work. Another class of  methods 
for calculating $(u, T) is the Monte Carlo method. Surprisingly, the Monte Carlo 
method has received only limited attention tn the risk theory literature. For some 
accounts, see BEARD et al. (1984) and SEAL (1978). Note that this method does 
not depend on a specific form of F but does depend on complete knowledge 
of F. 

The approximations of  ~(u, T) and O(u) given m this paper  are different in 
nature from those sketched above and are inspired by the concept of  sample 
reuse. Sample reuse is an old idea tn statistics, popularized in the nineteen-forties 
by HOEFFDING (1948) and more recently by EFRON (cf. 1982) The idea for our 
applications is as follows. Consider the random variable, Z =  supo~ , , r  U(t). 
Since the distribution of U(t) is completely determined by F, then the distribution 
of Z is completely determined by F. Note that from (1.2), ~(u, T) = 1 - P(Z  ~ u). 
By the usual multivariate Glivenko-Cantelli Theorem, knowledge of (X,, Y,)i = 
1, 2, . . .  completely determines F and thus, for a sufficiently large sample size n, 
from {(X,, Y,)}7'~z we can build a good approximation to F, the usual (multivari- 
ate) empirical distribution function. This raises the natural question of how to 
build a reasonable estimator of ~(u, T) based on a random sample of size n, 
{(X,, Y,)}~=~. The purposes of  this paper are to argue that this is an important 
question and to develop estimators of ~(u, T) (and if(u)) that possess desirable 
properties. 

In Section 2, estimators of if(u, T) and ~(u)  are introduced. The almost sure 
(a.s.) consistency of these estimators is proved in Section 3. A small simulation 
study is given in Section 4. Because of the nature of  the approximations, the 
assumptions made in our development are different and more general than the 
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usual risk theory assumptions. In Section 5 we discuss these differences and make 
other concluding remarks. 

2. ESTIMATORS 

Let {(X,, Y,)}~'=, be a random sample from a population with distribution function 
F. Let {alj, a2p. . . ,  a, j}=Aj be the j th permutation of { 1 , 2 , . . . ,  n } , j =  1 , . . . ,  n! 
We intend to reuse the sample by considering reordered pairs {(X~,,, Y~,j)},"=~, 
j = l  . . . .  , n !  

Define S, = Yt +" " • + Y,. For the j th permutation, the number  of  claims by 
time t is 

NAj( t )= ~ I ( Y ~ l , + ' ' ' +  Y~kj<~t), t<~S, 
k = l  

= n, t > S . ,  

and the amount  that claims exceeds premiums by time t is 
NAj(I) 

UA,(t)= ~ Xokj-Pt. 
k=l 

For the j th  permutation, we have ruin if 

(2.1) / ( sup  UAj(t)> u) = 1 

where the supremum is over the set {t: 0 ~  < t <~ min (S., T)}. Note that to compute 
the function in (2.1) one does not need to evaluate UAj(t) at all t e [0, min (S,, T)] 
but only at the random time points 0, Y~lj, Y~,, + Ya2,, • • •, Y~,, +" " "+ Y~.j. The 
first type of estimator we consider is the average over all permutations, 

(2.2) ~,(u,  T ) =  (n ! ) - 1 E / ( s u p  UAj(t)> u) 
P 

and 

(2.3) 6.(u)= q,.(u, S.) 

where ~p is the sum over all permutations of  { 1 , 2 , . . . ,  n}. Note that we could 
alternatively define 

~ , (u)  = 0,(u,  oo) = lrim ~ $',(u, T). 

The consistency of these estimators is provided in the following 

T H E O R E M  2 .1 .  

(2.4) 

and 

(2.5) 

Suppose that E Y >  O. Then, for each T, 

lim ~,(u, T ) =  0(u, T) a.s. 
n ~ c o  

lira O . ( u ) = O ( u )  a.s. 
n ~ e ¢  
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By the SLLN, the requirement E Y >  0 ensures that S, ~ ~ a.s. The proof, given 
in Section 3, is based on the idea that 0, can be shown to be a reverse martingale 
plus negligible terms. We remark that the estimators ~, defined in (2.2) and (2.3) 
each require the evaluation of n! indicators of ruin, an extensive amount of 
computations even for moderate sample sizes (say, n ~ 10). Because of this 
computational difficulty, we now introduce a sample reuse estimator of the 
probability of ruin. The sample reuse methodology, popularized by EFRON (of. 
1982), is also computer-intensive but does not require a prohibitive amount of  
computation. 

Let B = B(n) be a positive integer depending on n such that B ~  as n~oo.  
Based on the observed sample {(X,, Y,)},"__ ~, we draw B independent (conditional 
on {(X,, Y,)}7_~) realizations of  ~, in the following two steps. For b = 1 , . . . ,  B, 

y n Step 1. Make n draws without replacement from {(X,, ,)},=1 to get (X,  *b, y , b )  
for i =  1 , . . . , n .  

Step 2. Define 

and compute 

N*b(t) = ~ I(Y~*b+ " ' ' +  yk*b~<t) 
k - I  

\ O ~ t - ~ m l n  (Sn, T) \ k ~ l  

The sample reuse estimates are defined by 

B 

(2.6) q~,*(u, T ) =  B-' E qs,*b( u, T) 
b = l  

and 

(2.7) tp,*(u) = ~,*(u, S,). 

The consistency of these estimators is provided m the following 

THEOREM 2.2. Suppose EY>O and 

( 2 . 8 )  l o g  n = O(Bt/2). 

Then, for each T, 

(2.9) !ira @*,(u, T) = q/(u, T) 

and 

(2.10) lim O,*(u) = @(u) a.s. 
n ~ o o  

a . s .  
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The proof  of  theorem 2.2 is given in Section 3. The condition on B in (2.8) 
guarantees that B grows sufficiently quickly to achieve a.s. convergence. In Section 
4 we investigate the finite sample properties of  ~* in a small simulation study. 

3. PROOFS 

Define X~,, X2,,.  • . ,  Xn, to be the order statistics of  X~, X2, .. •, X,  and let Y,, 
be the claims time associated with X,,, i =  1 , . . . ,  n. Let G,  = c,((X,,, Y,,), i = 
1 , . . . ,  n, (X,, Y,), i> n) for n ~ l ,  a nonincreasing sequence of sub or-fields. 
Because all the arguments follow easily for the case T = 00, we only give proofs 
for the a.s. consistency of ~, = ~,(u,  T). We now define a version of ~. and show 
that it is a reverse martingale. Later we show that this version is close to ~b, in 
the appropriate  sense. 

For the j th  permutation of {1, 2 , . . . ,  n}, let 

NAb(t) = NAj(t)+ ~ l (Sk~ t) 
k > n  

be a version of the number  of  claims by time t, j =  1 , . . . ,  n! With akj=k for 
k > n, define 

( NA'/,, ) 
(3.1) 6 ' . ( u , T ) = ( n ! ) - t ~ l x o S U P r  k~=, X , , - P t > u  . 

We have the following property for this version of the probability of  ruin. 

LEMMA 3.1. For each u, T, (6'.(u, T), G.) is a reverse martingale. 

PROOF. It iS easy to see that d6~ = 6~(u, T) is G,-measurable  and G,-integrable. 
With U(t) defined as in (1.1), we have the relation 

~b', = E(I(  sup U ( t ) >  u)lG.}. 
O ~ t ~  T 

(3.2) 

Thus, 

E{~'.IG.+,} = E{E(I( sup U ( t ) >  u)lG.) lG.+t}  
O ~ t ~ T  

= E { I (  sup U(t)>u)lG,÷,}=¢'~+l. (Q.E.D.) 
O ~ t ~ T  

PROOF OF THEOREM 2.1. From (3.2), we have that E~b~(u, T) = ~(u, T). From 
lemma 3.1 and the (reverse) martingale convergence theorem, it is easy to show 
that 

(3.3) lim ~',(u, T) = ~(u, T) a.s. 
n~oo 

Define the stopping time 

z = i n f { n ~  1: k~I~(Xk--PYk)>U}" 
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Now, it is easy to see that ~0, (u, T) and ~0"(u, T) difier only on the set { n < ~" < oo}. 
Thus 

O~qJ,(u, T ) -~ ' , (u ,  T)= I ( n <  ~ '<~)~O a.s. 

This and (3.3) are sufficient for the proof.  (Q.E.D.) 

P R O O F  O F  T H E O R E M  2.2. 
tion for (2,9) is, for e > 0, 

We show 

(3.4) 

Denote ~p,* = qJ,*(u, T). From (2.4), a sufficient condi- 

Z P(1,6.*- ~.I> e) <oo. 
n 

2 P(6~-~. >t)<oo, 
the p roof  o f  the other inequality being similar. 

Define F,  = cr((X,, Y,), i =  1 , . . . ,  n) for n i> 1, a nondecreasing sequence o f  
sub or-fields. Now, from the condit ion (2.8), there exists a positive constant  K 
such that, for sufficiently large n, 

(3.5) n -I >t exp (-KBI/2).  

From the Markov inequality, with 6 > e -~, we have 

P(¢.* - ft. > e) <~ exp {-erKB' /2}E{exp (rKB' /2(~.  * - ~b.))}. 

From (3.5), exp { - e r K B  ~/2} is summable.  Thus, to prove (3.4), we need only show 

(3.6) sup E{exp (sB'/2(~. * - ~.))} < oo 
el 

where s = 6K. From (2.6), since condit ionally on F., 4'.* is the mean of  a binomial 
r andom variable, we have 

E{exp (sBl/2( ~b. * - ~ . ) ) }  = E((1 - ~ . )  exp {-s~p.B -I/2} 

+ $~ exp {s(1 - ~bn)B-I/2}) B 

= E(1 + s2~b, (1 - ~b,)/(2B) + O(B-3/2)) a 

(1 + s2/(8B)+ 0(B-3/2)) ° 

by a Taylor-series expansion.  This is sufficient for (3.6) and hence (2.9). 
(Q.E.D.) 

4. SIMULATION 

In this section, finite sample properties o f  the sample reuse estimators introduced 
in Section 2 were investigated. A simple example was used so that calculation 
o f  exact probabilities o f  ruin and compar ison with other studies were possible. 
Claim amounts  were assumed to be exponential ly distributed with mean 1. The 
claims were assumed to arrive as a Poisson process with intensity p = 0.8, i.e., 
interarrival times are independent  and exponential ly distributed with mean 1.25. 
The claims amount  and arrival times were assumed to be independent  and 
premiums arrive with unit intensity (P  = 1). Under  these assumptions,  it can be 
shown that 

(4.1) ~0(u) = 0.8 exp {-0.2u},  
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thus giving an easy expression for exact values of  ~b(u). Furthermore, in a recent 
study, ASMUSSEN (1984) has provided exact values of  ~(u, T) and several popular  
approximations of ~(u, T) for various values of  T. 

The bias (BIAS) and root mean square error (RMSE) were used to judge the 
performance of the estimators. All computations were done on a VAX 11/750 
owned and operated by the Department of  Statistics at the University of 
Wisconsin-Madison. The IMSL Fortran subroutines produced the random 
deviates. 

In Table 1 we give the results of the performance of the sample reuse estimator 
of  the infinite horizon time probability of  ruin. The tables give the criteria for 
ruin probabilities ~b(u)= 1%, 5%, 10%, 40% and for sample sizes n =25,  50, 
100, 150, 200. The ruin probabilities were chosen to represent a range which is 
typically of  interest to the actuarial community. The sample sizes were selected 
to represent small and moderate numbers of claims. We used B = 100 sample 
replications to compute the estimators for each simulation run. 

In Table 2 we give the results of  the performance of the sample reuse estimator 
of  the finite horizon time probability of  ruin. The number of sample replications 
are as in Table 1. To make our study comparable to the study of ASMUSSEN 
(1984), the level of initial reserve yielding ~(u)  = 0.8% and horizon times T = 13.8, 
41.3, 68.8, 96.4 were selected. For this level of  reserve and these times T, the 
exact probabilities O(u, T) were taken from ASMUSSEN (1984). Because ~b(u) is 
small, we used larger sample sizes, n = 100, 150, 200, 250, 300. 

TABLE l 

SAMPLE REUSE ESTIMATOR OF ~(u)  

~(u)  n BIAS RMSE 

I% 25 - 0  01000 0 01000 
50 - 0  01000 0 01000 

100 - 0  00865 0 01366 
150 - 0  00780 0 01331 
200 - 0  00310 0 07100 

5% 25 - 0  04905 0 05037 
50 - 0  04000 0 08653 

100 - 0  02430 0 18292 
150 - 0  01120 0.16296 
200 - 0  01430 0 09928 

10% 25 - 0  08825 0 12187 
50 - 0  05965 0 15995 

100 -0.03795 0 18523 
150 - 0  00190 0 16258 
200 -0.01245 0 14340 

40% 25 - 0  13520 0 35943 
50 -0.08230 0 31779 

100 - 0  04175 0 26445 
150 0 01305 0.27088 
200 0 00565 0.21420 



$88 FREES 

TABLE 2 

SAMPLE REUSE ESTIMATOR OF O(u,T) 

T tp(u, T) n BIAS RMSE 

13 8 0 00007 100 -0.00002 0 00071 
i 50 -0.00007 0 00007 
200 0 00003 0 00141 
250 0 00003 0 00099 
300 - 0  00002 0 00071 

41 3 0 00145 100 -0.00090 0 00436 
150 -0.00090 0 00316 
200 0.00005 0.01236 
250 0 00070 0 00821 
300 - 0  00080 0 00295 

68 8 0 00338 I00 - 0  00277 0 00509 
150 - 0  00228 0.00617 
200 -0.00028 0 03057 
250 0.00107 0 01931 
300 --0.00118 0 00785 

96.4 0 00491 100 - 0  00441 0 00614 
150 - 0  00376 0 00730 
200 0.00120 0 07068 
250 0 00135 0 02797 
300 --0 00140 0 01366 

As was expected, the performance of  the infinite time estimator was better the 
closer O(u) was to 50%. In Table l, the asymptotic theory comes quickly into 
play when ~b(u)=40% as evidenced by the decreasing BIAS and RMSE terms 
with increasing sample size. For ~ ( u ) = 5 % ,  we see some levelling off of the 
RMSE term from n = 1D0 to n = 150. The smallest probabilities showed no 
evidence of  levelling off for the sample sizes considered. Some attempts were 
made to increase B, the sampling replication number, but this did not seem to 
affect the performance of  the estimators. See EFRON (1982) for further discussion 
of the selection of B. 

Perhaps the most interesting fact of  the simulation study was that the perform- 
ance of  the finite time estimators improves as T decreases. In Table 2, the 
asymptotic theory comes quickly into play when T = 13.8. For T = 41.3, we see 
the decreasing trend in the BIAS and RMSE terms beginning at a larger sample 
size n = 100. The intuition is as follows. For T = 13.8, on the average it requires 
about 11 observations to check for ruin by time 13.8 (since 11 × 1.25 × 1 = 13.75). 
With a sample size of  n = 100, we have approximately 9 independent and identical 
realizations of  an indicator of ruin by time T = 13.8. Repeating this reasoning 
for T = 41.3, the reader can verify that we have only approximately 3 independent 
and identical realizations of  this indicator of  ruin. While the goal of  the estimators 
introduced in Section 2 is to reuse sampling information, by increasing the horizon 
time T we increase the number of  observations necessary to check for ruin and 
thus reduce the number available for resampling. 
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5. DISCUSSION 

The estimators introduced in Section 2 are defined in terms of the classical method 
of collecting data, i.e., based on a random sample of  size n. However, it is easy 
to modify these estimators for other methods of  data collection and retain their 
important statistical properties. For example, suppose an insurance company 
would like to estimate the probability of  ruin based on one year of observed 
data. Then the sample size itself is random. However, it is easy to see that the 
usual results on random change of time (cf. CSORGO and R~v~sz, 1980, theorem 
7.1.1) can be applied to preserve the properties stated in theorems 2.1 and 2.2. 
In the risk and queuing literature, this change of time is usually referred to as a 
transition to operational time. 

The most important drawback of the estimators t/,, and ~,* is that they rely 
heavily on the independence of the bivariate pairs (X,, Y,). While this assumption 
is used in most models constructed to calculate the probability of ruin, other 
models such as a model which uses the mixed Poisson process for the claims 
number process (cf. SEAL and GERBER, 1984) do not. 

Except for the important assumption of independence, the estimators ~n and 
~,* and their properties are relatively free from assumptions when compared to 
other estimators of  the probability of ruin. Both estimators are non parametric 
in the sense that they do not assume a particular parametric form nor knowledge 
of the distribution function F. While we have primarily concerned ourselves with 
the continuous time case the estimator is valid in the discrete time case, i.e., when 
Y, is equal to some constant K with probability one. In the assumptions we have 
not precluded the case P( Y, = 0) > 0, thus allowing for the possibility of multiple 
claims at any point in time. Further, we have not assumed independence between 
the claim arrival time and the claim amount.  If  this assumption is made, we 
conjecture that a different estimation procedure can be constructed that uses the 
data more efficiently, in some sense. We leave this as an open question for future 
research. 

The sample reuse estimator On* is computationally similar to the usual Monte 
Carlo procedure. However, it is different philosophically in that the Monte Carlo 
procedure assumes knowledge of the underlying distribution function while the 
sample reuse does not. This similarity suggests that dynamic factors in ruin 
probabilities such as interest, inflation, economic cycles, etc., that have been 
incorporated in Monte Carlo methods (cf. BEARD et al., 1984, Chapter  7) may 
be incorporated in sample reuse estimators. We leave this as an open area for 
future research. 
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