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ABSTRACT 

The distribution of total claims payable by an insurer is considered when the 
frequency of claims is a mixed Poisson random variable. It is shown how in 
many cases the total claims density can be evaluated numerically using simple 
recursive formulae (discrete or continuous). 

Mixed Poisson distributions often have desirable properties for modelling claim 
frequencies. For example, they often have thick tails which make them useful 
for long-tailed data. Also, they may be interpreted as having arisen from a 
stochastic process Mixing distributions considered include the inverse Gaussian, 
beta, uniform, non-central chi-squared, and the generalized inverse Gaussian as 
well as other more general distributions. 

It is also shown how these results may be used to derive computational formulae 
for the total claims density when the frequency distribution is either from the 
Neyman class of contagious distributions, or a class of negative binomial mixtures. 
Also, a computational formula is derived for the probability distribution of the 
number in the system for the M/G/1  queue with bulk arrivals. 
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1. NOTATION AND PRELIMINARIES 

It is of interest to obtain the probability distribution of the claims payable by an 
insurer. To formulate the problem, it is assumed that these total claims on a 
portfolio of business may be represented as 

(1.1) Y = X i  -F X 2 - F  " " " -I- X N  

where N is a counting random variable representing the number of claims payable 
by the insurer and {Xk; k = 1, 2, 3 , . . .  } is a sequence of independent and identi- 
cally distributed non-negative random variables (independent of N) representing 
the size of the single claims. 
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Let 

(1.2) 

and 

W l L L M O T  

p ,=Pr{N=n} ,  n = 0 , 1 , 2  . . . .  

(1.3) p ( z ) =  ~ p.z". 
r i c o  

Furthermore, let the common cdf of the sequence {Xk; k = 1, 2, 3 , . . .  } be 

(1.4) F(x)= Pr{Xk <~xl, x~O 

and the associated Laplace transform be 

(1.5) Lx(s) = E(e-'Xo. 

Similarly, for the random variable Y, let 

G ( y ) = P r { Y ~ y } ,  y~O (1.6) 

and 

(1.7) 

It is well known 

Ly(s) = E(e-'Y). 

co 
(1.8) L y ( s ) =  E p,[Lx(s)]"= P[Lx(s)]. 

n=O 

To this point, no assumption has been made as to the support of Xk (and 
hence of T). Two possible cases are considered. 

(a) Case 1--Xk has discrete support 

In this situation Xk is assumed to be a counting random variable with probabihties 

(1.9) fx=Pr{Xk=x},  x = 0 ,  1 , 2 , . . .  

Clearly, Y is also a counting random variable and so let 

(1.10) gy=Pr{Y=y},  y = 0 ,  1 , 2 , . . .  

It is obvious that in this case the relation (1.8) holds if L(. ) is interpreted to be 
the probability generating function of Y and the Xk. 

( b ) Case 2--Xk has rmxed support 

Here it is assumed that Xk is absolutely continuous on (0, c¢) but with a (possible) 
spike at 0. Thus let 

(1.11) 

and 

fo = Pr(X~ = 0}, 

f (x )  =~xF(X) ,  (1.12) x>O.  
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(1.14) 

(1.13) 

and 

Define the Laplace transform of (1.12) to be 

I: ] ( s )  = e - ~ f ( x )  ~ 
+ 

(1.13) 
= L x ( s ) - f o .  

In this case Y has the same support  and so define 

go = Pr{ Y = 0}, 

g(y)=~yG(y) ,  y > O  

f) ~(s) = e-'Yg(y) dy 
+ 

(1.16) 
= Ly(s) - go. 

Two choices of  support  for Xk are made in order to obtain recursive computa- 
tional formulae for the density g(y) or the probability function gy for discrete, 
mixed, and continuous claim amounts. In both cases, the support of Xk is the 
same as that of Y. This allows for repeated application of the recursive formulae, 
and thus for extension of the results to contagious type distributions with pgf ' s  
of the form Q,[Q2(z)] where Qi and Q2 are pgf's.  From (1.8), L r ( s )  = Ql[Lz(s)] 
where Lz(s)  = Q2[Lx(s)] so that, in general, the support  of Xk and Y should 
be the same for repeated application. The contin~ous case can easily be handled 
by assuming that f0 = 0 in the mixed support  case. 

Separate notation for discrete and continuous portions of the distribution is 
used rather than a generalized density in order to prevent notational difficifities 
(e.g., limy~o g(y) ~ go). In keeping with this philosophy of ease of  interpretation, 
only discrete sums and Riemann integrals are used. 

Computat ional  techniques are (m general) necessary because analytic 
expressions for compound random variables are only obtainable in the simplest 
of  cases. An important class of  frequency distributions is that for which 

(1.17) np ,=[ (a+b)+a(n - l ) ]p ,_ l ,  n = 2 , 3 , 4 , . . .  

Recurslve formulae for the total claim distributions with frequency probabiliites 
satisfying (1.17) were derived by SUNDT and JEWELt. (1981) and WILLMOT and 
PANJER (1985). They showed that if Xk has discrete support,  then 

gx = hx + ~ k~.ygx-y, x = 1, 2, 3 , . . .  
y = l  

(1.18) 

where 

(1.19) hx = p' - (a + b)po f ,  
1-afo 
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and 

ax + by 
(1.20) /%Y = x ~  --~o) fv. 

In the mixed support case, 

(1.21) g ( x ) =  h(x)+ k ( x , y ) g ( x - y )  dy, x > 0  

where 

(1.22) h (x) - Pt + (a + b ) (go-  Po) f (x)  
l - a f o  

and 

ax + by 
(1.23) k(x, y) = x ~ o )  f ( y  ). 

These relations, together with 

(1.24) go = P(fo), 

enable one to obtain the distribution of total claims recursively for the class of 
frequency distributions satifying (1.17). The results are easily extended to more 
complicated contagious distributions (see WlLLMOT and PAmER, 1985) through 
repeated applications (a fimte number of times). 

Equation (1.21) is a Volterra integral equation of the second kind and (1.18) 
the discrete analogue. BAKER (1977) gives a good description of the numerical 
solution of  (1.21) for g(x). STROTER (1984) considers these recursions in an 
insurance situation. Many of the computational formulae of this paper are of 
the form (1.18) or (1.21). 

Some common distributions satisfying (1.17) include the Poisson, negative 
binomial, binomial, geometric, and the logarithmic series. An additional member 
of the class of &stributions satisfying (1.17) will be introduced in Section 3. 

Many authors have looked at claim frequency distributions which satisfy 
difference equations in order to derive computational formulae for the total claims 
distribution. PANJER (1981), SUNDT and JEWELL (1981), WILLMOT and PANJER 
(1985), and others have used this approach 

The purpose of this paper ~s to present an alternative class of frequency 
distributions for which recursive techmques are obtainable. Consider the class 
of mixed Poisson distributions with probabilities 

j '~ An e-~ 
(1.25) p, = - -  dU(a) ,  n =0,  1,2 . . . .  

o n! 

where U( . )  is the cdf of a non-negative random variable. These distributions 
have often been used to model insurance claim numbers m the collective risk 
theory (BUHLMANfl, 1969). LUNDBERG (1940) and McFADDEN (1965) provide 
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good descriptions of  mixed Poisson processes. Mixed Poisson distributions also 
arise in some queueing contexts (e.g., M / G / 1  queue). They have thicker tails 
than the Poisson distribution and as such may be more suitable for modelling 
claim frequencies in some situations. Some basic properties of mixed Poisson 
distributions are now summarized. 

2. BASIC P R O P E R T I E S  OF  M I X E D  POISSON R A N D O M  V A R I A B L E S  

From (1.25), it is easily seen that the pgf (1.3) of N satisfies 

L o (2.1) P(z) = e x(~-u dU(A). 

If  the Laplace transform of the mixing distribution is defined to be 

L o ~(s) = e-'* dU(a ) (2.2) 

then, clearly, 

(2.3) P ( z ) = f f ( l - z ) .  

If  U(" ) is a discrete counting distribution, then P(z) = Q(e ~-~) where Q is a pgf. 
These discrete mixtures correspond to contagious or compound random variables 
and will not be dealt with here. See ORD (1972) or DOUGLAS (1980) for a 
discussion of the relationship between mixing and compounding. 

There is one particular relationship between mixing and compounding which 
is of interest, however. Suppose U( . )  is the cdf of an infinitely divisible distribu- 
tion. Then (MACEDA, 1948) the mixed Poisson distribution (1.25) is also infinitely 
divisible. See BUHLMANN and Bozzl  (1970) also. This implies (FELLER, 1968) 
that (1.25) also defines a compound Poisson distribution and so (2.3) may be 
written as 

(2.4) P(z) = e Mo(z)-ll 

where ~ > 0 is a parameter  and Q(z) the pgf of a counting distribution. Further- 
more, if one adopts the convention that Q(0) = 0, then (VAN HARN, 1978) /z and 
Q(z) are unique. It is often of interest to identify/x and Q(z) explicitly and this 
can be done in some situations. A well known example is now given. 

EXAMPLE 2.1. The Negatwe Binomial Distribunon. Suppose U ( ' )  is a gamma 
distribution, i.e., 

dU(x) = dR. 
r(c~) 

The Laplace transform of this distribution is 

~ ( s )  = ( l + ~ e s )  - °  . 
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Thus, by (2.3), 

and so 

P, 

Since Q(0)=  0 in (2.4), 

and 

Wl L L M O T  

P(z)=[l-13(z-1)] -'~ 

r ( ~  + n  ) . . . .  /3~, 
F ( a ) n ! ) ( l + / 3  n =0,  1 , 2 , 3 , . . .  

/.t = - log  Po 

= ot log (1 +f l )  

Q(z) = ~ log P(z) + 1 
i.t 

I ° g ( 1 -  1+/3 
(2.5) 

1 /3 

which is a logarithmic series pgf. For some other mixing distributions, similar 
results can (and will) be obtained. 

It is easy to show that Poisson mixtures are identifiable (see DOUGLAS, 1980). 
This means that 

I e*(Z-') dU,(A)= f e*(z-t) dU2(A) 

implies that Ut(A ) = U2(A). Thus, in discussing Poisson mixtures, one can discuss 
the (unique) mixing function. 

The convolution of two mixed Poisson distributions is again a mixed Poisson 
distribution with mixing distribution which is the convolution of  the two com- 
ponent mixing distributions. This is obvious from (2.3), since 

P(z) = i f , (1-  z)ff2(1-z)  

can arise by convoluting two mixed Poissons, or by mixing over a convolution. 
Thus, mixed Poisson distributions are closed under convolution. 

If U(A ) is absolutely continuous with unimodal density, then the corresponding 
mixed Poisson distribution (1.25) is also unimodal (HOLGATE, 1970). 

Many relations are easily obtainable from (2.1). Clearly, 

dk Io ° dzkP(Z) = Ake *(~-I) dU(X) 

and so 

(2.6) E [ N ( N -  1). • • ( N - k +  1)] = E(Ak). 
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In particular, 

V(N)  = E(A 2)+ E ( A ) - [ E ( A ) ] 2  

= V(A)+E(N) .  

Thus, mtxed Poisson random variables have variance exceeding the mean (unlike 
the Poisson). 

For a thorough discussion of mixed Poisson distributions, see DOUGLAS 
(1980), HAIGHT (1967), or JOHNSON and KOTZ (1969). Some particular choices 
of U ( ' )  are now considered. 

3. SICHEL'S MIXED POISSON DISTRIBUTIONS 

An alternative to the gamma distribution as a mixing distribution is the generalized 
inverse Gaussian distribution given by 

iz-XX•-I e-(,~2+~2)1213x 
(3.1) dU(x) = dx 

2Ka(~/3- ' )  

where KA(" ) is the modified Bessel function of the third kind with index A. This 
distribution is discussed in great detail by J0rgensen (1982). The Laplace trans- 
form of (3 1) is 

(3.2) •(s) - K~ {,u.fl-'(1 + 2/3s) K~(I.03-') '/2}(1 +2fls)-A/2 

EMBRECHTS (1983) considers ruin probabilities for GIG claim severities. SICHEL 
(1971) and ATKINSON and LAM YEH (1982) consider the Poisson mixed over 
this distribution with pgf (from 2.3) 

(3.3) P(z) = KA{~/3-t[I - 2/3(z - 1)]1/2}[1 _ 
K A ( / z ~ _ , )  2 f l ( Z - -  1)] -a /2 .  

The probabilities are given by 

(34) pn =/x" K~+"[Izfl-~(l+2fl)'/2]( 
n! g~(txl3 -t) 1 +2fl)  -(x+")/2, n =0,  1,2 . . . .  

which satisfy 

(3.5) ( l+213)n(n-l)p,=2fl(n-1)(A+n-1)pn_t+t. t2p,_2,  

The factorial moments are 

kK~+k(I.~13-') 
E [ N ( N - 1 ) . . . ( N - k + I ) ] = / z  KA(/zfl_t) 

using (2.6) and JORGENSEN (1982, p. 13). 
In general, it is much more convenient if A is a half integer, in other words, 

If A = m +~ where m is a (positive or negative) integer. In this case (JORGENSEN, 
1982, p. 170), 

(3.7) Km+u2(x )=~/~ / (~e_  ~ ~ (re+i)! (2x)- ' ,  m = 0 , 1 , 2 ,  
,=o(m_i)!i v " " ,  

n = 2 , 3 , 4 , . . .  
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and so considerable simplification in the above formulae is thus possible. A 
recursive formula for the total claims distribution with claim frequency distnbu- 
tion given by (3.4) was derived by WILLMOT and PANJER (1985) using (3.5). 
However, it is not convenient unless the claim severity distribution admits a 
certain form. A more general technique which places few restrictions on the claim 
severity distribution and works when h is a half integer will be derived. If h ~s 
not of this form the distribution (3.4) is more difficult to deal with in any event. 

Before deriving this recursive algorithm, however, it is expedient to consider 
This distribution, which is important in its own the special case when h = - 2 .  

right, was introduced by HOLLA (1967) and studied extensively by SICHEL (1971). 
Known as the Pmsson-lnverse Gauss~an distribution, it is a Poisson mixture with 
mixing distribution 

(3.8) dU(x)  =/ . t  (2"n'flX 3) - i /2  e-(X-~)21213x. 

Formula (3.8) and subsequent formulae are obtainable by substituting h =-½ 
into the previous formulae and using JORGENSEN (1982, pp. 170-171). The 
Laplace transform of (3.8) is 

(3.9) ffff(s) = e -<"/~)1°+2~s)'/2-~1 

and the pgf of the resulting Poisson mixture is 

(3.10) P(z) = e -(~/È)~t~-2~-~>~'~-~. 

The probabilities are given by 

p .~-~  ( n - l + k ) ,  ( ~ ) k  
p . = P O n ~ . k ~ o i n _ l _ k ) ! k  i (1+2/3) -("+k)/2, n = 1 , 2 , 3 , . . .  (3.11) 

where 

(3.12) PO---- e-(~/~){(l+2~)I/2-il- 

The explicit formula (3.11) is not particularly useful, however, since (3.5) becomes 

(3.13) ( l+213)n(n- l )pn=213(n- l ) (n -~)p ,_ l+~z2p , ,_2 ,  n = 2 , 3 , 4  . . . .  

and so the probabilities may be calculated using (3.13) together with (3.12) and 

(3.14) pl = /z ( l  + 2fl)-~/2po. 

The factorial moments are 

k-, ( k - l + m ) I  (.__fl_~m 
(3.15) E [ N ( N - 1 ) ' ' ' ( N - k + I ) ] = ~  k ~ o ( k _ l _ m ) ! m I \ 2 t x  ] • 

The mean and variance are 

(3.16) E ( N )  =/x, 

(3.17) V(N) = tz(1 +fl) .  
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This distribution, like the negative binomial, has 2 parameters. The skewness of 
the negative binomial distribution, in terms of the mean/z  and variance 0 2, may 
be expressed as o--3{30 .2-  2~ +2p.-*(o "2- to.)2}. The corresponding quantity for 
the Poisson-lnverse Gaussian distribution is 0"-3{30. 2 - 2/z + 3/.z-~(o "2 -/.z) 2} which 
exceeds that of  the negative binomial. Thus, this distribution has a thicker right 
tail and may be more suitable for modelling claim frequencies as a result. 

Also, like the negative binomial, it has a convolutive property. I f  N, has pgf 
(3.10) with parameters/3 and/z, and Nt, N 2 , - . . ,  N v are independent, then ~v=, N, 
has pgf (3.10) with parameters/3 and ~v= l/.t,. Hence it is closed under convolution. 
Rewriting (3.10) as 

it is easy to see that 

(2.18) 

P( z ) = e 2 ~ ( : - 1 ) {  l + [  l + 213( t - z )  ] [ / 2 } - I ,  

lim P(z) = e "(z-~) 
/3~0 

and so the Poisson-Inverse Gaussian has a limiting Poisson form obtained when 
/3~0.  

It is clear from (3.9) that the inverse Gaussian distribution is infimtely divisible 
and so (3.10) may be put in the form 

(3.19) e x[o(z)-l].  

Imposing the condition that Q(0 )=  0, it is clear that 

(3.20) 

and 

(3.21) 

h = ~ [ ( 1  + 2 / 3 ) ' / 2 -  1] 

[l - 2 /3 (z -  1 ) ] ' /~ -  (1 + 2/3) '/~ 
Q ( z )  - 

1 - ( l  +2,8) t/2 

The pgf Q(z) is that of an extended truncated neganve binomial distribution as 
defined by ENGEN (1974). The coefficient of  z" in (3.21) is 

(3.22) q , =  n !F(½)[(1 + 213),/2_ 1] , n = 1 , 2 , 3  . . . .  

The distribution (3.22) sausfies (1.17) with a = 2 f l ( l + 2 / 3 )  -~ and b =  
-3 /3 (1+2 /3 ) - ' .  

To derive a recursive formula for the total claims distribution with claim 
frequency distribution given by (3.11) one can use the relation (3.13) or, more 
generally (3.5), as was mentioned earlier. A more general technique is to note 
that, from (3.19) and (1.8), one can write 

(3.23) Lv(s)  = e ~tQtL'(~)j-t~ 
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Hence, by the above results, one can compute the distribution with transform 
Q[Lx(s)] using (1.18) or (1.21) with a=2fl(l+2fl) -I and b = - 3 / 3 ( 1 + 2 f l )  -~ 
since (1.17) is satisfied by the distribution (3.22). Then this distribution may be 
used in a second application of (1.18) or (1 21) as the severity distribution with 
Poisson frequencies to get the total claims distribution with transform (3.23). It 
should be noted that for certain claim severity distributions (eg. gamma or inverse 
Gaussian) the recursion given by WILLMOT and PANJER (1985) is more efficient 
than the one proposed here, needing only one application of (1.18) or (1.21) in 
these cases. Otherwise, it ts normally less convenient. 

Hence, one can obtain the total claims distribution for the claim frequency 
distribution (3.4) in the special case h = -½. This may be used to derive a recursive 
formula in the case when h is a half integer. From (1.8), define the total claims 
distribution (for fixed A) by 

(3.24) Lv(s, h) = PA[Lx(s)] 

where Pa(. ) is given by (3.3), It is easily shown from the elementary properties 
of  the modified Bessel function of the third kind (JORGENSEN, 1982, p. 170) that 

(3.25) ~ K^ (x) = ~ KA (x) - Ka +1 (x). 
0x x 

Using this fact, it is easily shown that 

K~+~(IX/3 -I)  
--~-Ly(s, AI=IX -1) L~(s)Ly(s,A+l). (3.26) Os K~ (txfl 

Thus there is a close relationship between the total claims distribution having 
(3.4) as claim frequencies and those having (3.4) but with A replaced by h + 1. 
If  Xk has discrete support,  then the L's in (3.26) may be interpreted as pgf 's,  
and so the coefficients of s ~-i on each side must be equal, yielding (in an obvious 
notation) 

(3.27) ^gx -Ix Ka+'(Ixfl-') ~ yfy'a+,g~_y, x = 1 , 2 , 3 , . . .  
x K~(IXfl -I)  wl 

and 

(3.28) ~go = PA (fo). 

Similarly, if Xk has mixed support, (3.26) may be rewritten as 
g -~ a .  ~+~(ix/3 )~  . . . . . .  

(3.29) ~sg~(s ) = tx ~ J ~S)tA+~go-e g~+l(s)] 

which yields on inversion 

[ KA+,(IXI3-~ ]ftv.~4#KA+l(l..l.fl-l)f°' 
(3.30) g (x)=kix Ka(ixfl- ' )  a+,gojJ,-~, ~ ~ o yf(y)gA+,(x-y)dy. 

Thus, if one begins with A = - ½  and computes the total claims distribution for 
the Poisson mixed over the inverse Gaussian case, one can use (3.28) and (3.27) 
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or (3.30) repetitively to obtain the total claims distribution with the claim 
frequency probabilities (3.4) for A = - ~ , - ~ , . . . .  

To compute the distribution for h = n+½ where n is a non-negative integer, 
one could use the above technique to obtain the distribution when h = - n - ½ ,  
then note that, if h > 0, 

(3.31) Lv(s, A) = {1 -2 /3[Lx( s ) -  1]}-*Lv(s, - h ) .  

The first term on the right hand side is a compound negative binomial transform 
whose associated distribution can be computed using (1.18) or (1.21). Denoting 
this distribution by ~gx or g~(x) and the distribution with transform Lv( s , -h )  
by 2gx or g2(x), the required distribution can be computed from (4.19) or (4.20). 

Hence one can compute the total claims distribution for h = n+½ for any 
integral n. Clearly, the closer h is to -½ the better, and the technique is not 
practical for [a,[ large. However, the result does not depend on the severity 
distribution to as great an extent as that of  WILLMOT and PANJER (1985). 

4. POISSON-BETA, POISSON-UNIFORM, AND THE NEYMAN CLASS 

Consider the distribution obtained when the Poisson mean is mixed over the 
beta distribution given by 

/3(~ - x )  ~-' 
(4.1) dU(x) - '  

ThUS,  

dx, O < x < p . .  

f•h"e 
=* ( g - a )  ~-l 

(4.2) P" = fl n ! ~ dh 

~.~ ~ r ( n + k + l )  (-/.z) k 
= . r ( / 3 + l ) k = 0 F ( f l + n + k + l )  k! ' n = 0 , 1 , 2 , . . .  

and is discussed by JOHNSON and Ko-rz (1969, p. 227) and BEALL and RESCIA 
(1953). A more general beta mixture was discussed by WILLMOT and PANJER 
(1985). However, the recursion obtained is not very convenient for some severity 
distributions. The above mixture is useful in obtaining results for more general 
severity distributions for certain choices of ft. These results are quite simple to 
apply to get computational formulae for the Neyman class of  frequency distribu- 
tions, and for the Poisson-uniform mixture (/3 = 1 in (4.2)). The formulae place 
little restriction on the severity distribution. 

From (4.2), the pgf is 

(4.3) P(z) = M[1,/3 + 1,/z(z - 1)] 

where M ( .  ) is the confluent hypergeometric function (see JOHNSON and KOTZ, 
1969, p. 8). The relation (4.3) can be expanded as 

(4.4) M [ I ,  13 + 1,/z(z - 1)] = F(/3 + 1) .'~'o I-'(,8 + n + 1)'  
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from which it ~s clear that 

(4.5) E ( N )  = p.(fl + 1)-'. 

To derive a computational formula for the class (4.2), consider an arbitrary 
frequency distribution {qn; n =0,  1, 2 , . . .  } with pgf Q(z) and mean Q'(I)<00.  
Then, if 

E 
k = n + l  

(4.6) r, = n =0,  1, 2 , . . .  
Q'(1) ' 

it is easdy shown (see JOHNSON and KOTZ, 1969, p. 261) that {r,; n =0,  1, 2, . . .  } 
also defines a distribution with pgf 

Q ( z ) -  1 
(4.7) R(z) = 

Q ' ( 1 ) [ z -  1]" 

Substitution of Lx(s)  in (4.7) in the place of z and cross multiplying yields, (with 
LR(s) = R[ Lx(s)],  LQ(s)= Q[ Lx(s)]),  

(4.8) Q'(1)LR(s) = Q'(1)LR(S)Lx(s) + 1 -- Lo(s). 

Clearly, both LR( ')  and LO(.) are transforms of compound random variables. 
If Xk has discrete support then so do the random variables with transforms LR(" ) 
and Lo( . ) .  Interpreting them all as pgf's the coefficients of s ~ in (4.8) must be 
equal, yieldmg, (in an obvious notation), 

1 - ogo 
(4.9) RgO -- Q'(1)(1 - f o ) '  

Qg~ 1 x 
(4.10) Rgx-- Q,(1)( l_fo) ' l - l~fov~=lLRgx - , X= 1 , 2 , 3 , . . . .  

The equation (4.10) is of the same form as (1.18). Thus, the coefficients Rg~ are 
obtainable from those of ogx. 

If the Xk'S have mixed support, then using (1.13) and (1.16) together with (4.9) 
and (4.8), one obtains 

(4.11) ~,R(s)[Q'(1)(l-fo)]= Q'(I)Rgof(s)--~,o(s)+Q'(1)f(s)~,R(S ) 

which may be inverted to yield 

Q'(1)Rg°f(x)-go(x)Q'(1)(1-fo) 1 Io ~ (4.12) gR(X)-  +1--~o f (y )gg(X- -y )  dy 

which is of the form (1.21). Again the subscripts on the g ( . )  functions refer to 
the underlying frequency distribution m each case. The importance of these 
results hes in the abtlity to obtain the total claims distribution with claim 
frequencms {rn, n = 0 , 1 , 2 , . . . }  form the total claims distribution with claim 
frequencies {q,; n =0,  1, 2 , . . .  }. 
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These results are now used to obtain recursive formulae for the total claims 
distribution with claim frequencies pgf(4.3). It is easily shown from (4.4) that 

(4.13) M[I ,  1 , / x ( z -  1)] = e ~'~z-'~, 

and that, for/3 ~ 0, 

M [ 1 ,  /3 + l, l z ( z - 1 ) ] -  I 
(4.14) M[1, fl +2,/.z(z - 1)] - 

/z(/3 + 1 ) - ' ( z -  1) 

Thus (4.13) is a Poisson pgf and (4.14) is a relation of the form (4.7). Hence the 
probabilities of random variable with pgf's of the form (4.3) with successive/3 
values are related by an equation of the form (4.6). For example, from (4.13) 
and (4.14), 

(4.15) M[1, 2,/.z(z - 1)] = - - 

More importantly, a recursive calculation can be obtained to get the total claims 
distribution with frequencies of claims having pgf's of the form (4.3) with/3 any 
positive integer. Simply obtain the total claims distribution for the Poisson 
frequencies (4.13) from (1.18) or (1.21). Then, use (4.9) and (4.10) or (4.12) to 
obtain the total claims distribution with claim frequencies pgf M[1, 2 , / z ( z -  1)] 
and then M [ I , 3 ,  g ( z -  1)], etc., until M[1,/3 + 1 , / z ( z -  1)] is reached. In each 
application, M[1, 7 +  1,/.L(z- 1)] is interpreted as Q(z) and M[1, 7+2,/.~ ( z -  1)] 
as R ( z )  in formulae (4.10) and (4.12). 

EXAMPLE 4.1. The N e y m a n  Class. BEALL and RESCIA (1953) studied frequency 
distributions with pgf's of the form 

(4.16) P( z ) = e a(M[ l'~+l'u~z-l)}-l}. 

These are compound Poisson distributions with "severities" pgf (4.3). Hence for 
integral /3 one may use the above technique to obtain the distribution with 
transform M{1,/3 + 1, t z [ L x ( s )  - 1]}. This then becomes the severity distribution 
in the compound Poisson recursion (with mean Z ) using (1.18) or (1.21). Neyman's 
Type A, B, and C correspond to/3 = 0, 1 or 2 respectively. 

A more general situation corresponding to (4.2) occurs when the range of 
values of A is (o-, o-+~) .  In this case, it is easily seen that (4 3) becomes 

(4.17) P ( z )  = e ~ Z - ' ~ M [ l ,  13 + 1, Iz(z  - 1)]. 

Thus, from (1.8), 

(4 18) L v ( s )  = e~tL~cs)-tlM{1, 13 + 1, l z [ L x ( s )  - 1]} 

which is the product of a compound Poisson transform and a compound Poisson- 
beta transform as discussed in this section. This implies, that in the discrete case 
(in an obvious notation) 

(4.19) g~= ~ lgy'2gx-y., x=O,  1,2, .. 
y~O 
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and in the mixed support  case, 

(4.26) g(x) = ,go" g2(x)+2go" g,(x)+ g,(y)g2(x-y) dy, x > 0 .  

EXAMPLE 4.2. The Pmsson Uniform. If  the claim frequencies are Poisson mixed 
over a U(cr, o ' + ~ )  distribution, the pgf  is seen from (4.2) and (4.17) to be the 
special case o f  (4.17) when/3 = 1. Thus the technique just described and formulae 
(4.19) and (4.20) are applicable. 

There are clearly situations when the above technique is not useful (e.g., if/3 
is large). However ,  in some situations (the two examples, for instance) the 
recursive technique may be appropria te  and the exact distribution may be obtain- 
able with just a few recursive computat ions.  

5. LINEAR COMBINATIONS 

Suppose W, has Laplace transform ti,(s), i = 1, 2, 3 . . . . .  n and W1, WE, . . . ,  Wn 
are independent .  Then if a Poisson mean is mixed over the linear combinat ion 
b, W t + b2 WE+" " " + b,W,, where b, >/0, the pgf  o f  the mixture is 

(5.1) P(z)= l~I ff,[b,(l-z)], 
I = 1  

and so, by (1.8), 

(5.2) Ly(s)= H a,{b,[1-Lx(S)]}. 
I = 1  

The expression (5.2) is clearly of  the same form as (4.18) or (3.31), and so, if n 
is not too large, the distribution can be obtained by convolut ing two at a time 
using (4.19) or (4.20). 

EXAMPLE 5.1. Non-Central Chi-Squared. The Laplace transform of  a non- 
central chi-square distribution with m degrees o f  f reedom and non-centrali ty 
parameter  A is (see JOHNSON and KOTZ, 1970b) 

(5.3) ff(s)=(l + 2s)-m/2 exp (~[(l + 2s)-l-1]}. 

This is clearly the convolut ion o f  a gamma and a compound  Poisson distribution. 
Hence, the pgf  of  a Poisson mixed over this distribution is 

(5.4)   zl 12 zl,lm'2exp{  a21zl,  } 
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Clearly, the total claims distribution can be obtained as the convolution of  a 
compound negative binomial and a compound Poisson (with "severity" distribu- 
tion itself a compound geometric). Since the non-central chi-squared is infinitely 
divisible, it follows that P(z)  can be put in the form (2.4) with 

m A 
(5.5) /..i., = ~ l o g  3+ 5 

(5.6) 
Q(z)= lx-, { rn 2 A } -~Iog (l-sz)+~[1-2(z- 1)] -~ 

Thus, Q(z) is a weighted average of a logarithmic (2.5) and a geometric random 
variable. 

EXAMPLE 6.2. Reaprocal Inverse Gaussian. The reciprocal of an inverse 
Gaussian random variable (see JOHNSON and KOTZ, 1970a, p. 149) has density 
of the form 

(5.7) dU(x)= ~ exp - - " ~ - \  - ~ ]  3 dx 

and Laplace tranform 

2s\-'/2 2s 

which is the Laplace transform of the convolution of a gamma and an inverse 
Gaussian distribution. The pgf of  a Poisson mixed over this distribution is 

which is the convolution of a negative binomial and Poisson-inverse Gaussian 
distribution (Section 3). The total claims distribution is thus the convolution of  
a compound negative binomial and a compound Poisson-inverse Gaussian distri- 
bution. 

6. VOWER MIXTURES 

In this section a more general set of  mixed Poisson distributions is derived, when 
the mixing distribution is from a class of power mixtures. The pgf of  a mixed 
Poisson distribution over this distribution will be derived, and in some cases the 
total claims distribution can be calculated fairly simply. 

Consider a Markov process {Xm; m =0,  1, 2 , . . .  } where Xm, m > 0  are non- 
negative, absolutely continuously distributed random variables. Let Xo = Xo> 0 
with certainty and 

(6.1) f.,(X.,IXm_,) , m = 1 , 2 , 3  . . . .  
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be the conditional density of  Xm given X,,_~. Suppose that Xm, m > 0, can take 
on any positive value with nonzero probability so that (6.1) is well defined. 
Assume that there exist functions hm(s), m = 1, 2, 3 , . . .  such that 

io o (6.2) e-SX~fm(xmlxm_,)dxm=e-X~-'hm(~) , m = 1 , 2 , 3 , . . . .  

Let k be a fixed positive integer. It is of interest to consider the marginal 
distribution of  Xk. Since the process is Markovian, the pdf  of Xk is 

(6.3) U(Xk)=IR~_,(~ f~(xmJxm-,))(~ 'dx~ } 

where R~-1 ={(Xl, X2, . . . ,Xk-01X,>0;  Z= 1 , 2 , 3 , . . . ,  k -  1). The Laplace trans- 
form of Xk has a fairly simple form. For notational simplicity, define the set of  
composite functions 

(6.4) h*~(s) = h,,[h*~+~(s)], m = 1,2, 3 , . . . ,  k -  1 

= hk(S), m = k 

where h,,(s) is defined in (6.2). Thus (6.4) defines the composite functions 
recursively. The Laplace transform of (6.3) is 

(6.5) ~ ( s ) =  e-*Xk H= [fm(xmlxm-,)dx,,] 

(6.6) = e-~ohTCs~. 

It is of interest to derive a useful form for the pgf of a Poisson random variable 
mixed over the density (6.3). Rather than simply replace s by 1 - z in (6.6), it is 
of use to examine the form of the functions hm(s) in (6.2). By assumption, x~ 
can take on any positive value, so that it is clear from (6.2) that fm(xmlxm-,) 
defines an infinitely divisible density (assume true for m = 1 also). Hence if a 
Poisson mean is mixed over this density, the resulting distribution is compound 
Poisson (Section 2). Thus, noting that /.xX is infinitely divisible if X is, setting 
xm-~ = 1, and using (6.2) and (2.3), it is clear that there exist Am(p.) and Q.,(z, ~) 
such that 

(6.7) h,,[t.L(l-z)]=A~(I.t)[1-Qm(z,l.t)] , m =  1 , 2 , 3 , . . . .  

The function Am(p.) is a constant and Qm(z, p.) a pgf, both depending on p.. 
Assuming that Q,,(0, ,u,)=0, they are unique, and in this case, 

(6.8) Am(p.) = hm(p,), 

and 

h m [ p , ( l - z ) ]  
(6.9) Qm(z, p,) = 1 

hm(g) 
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The pgf of the Poisson mixture will be expressed in terms of (6.8) and (6.9), 
rather than hm(" ). Again, for simplicity, let 

(6.10) ,~. Sm= ~m(~+l),  m = 1 , 2 , 3  . . . . .  k - 1  

= Ak(1), m =  k 

where Am(it) is defined by (6.8). Also let 

(6.11) Q ~ ( z )  - * * A,,+i], m = 1 , 2 , 3 ,  - 1  -Q, ,EQm+,(z)  . . . .  , k  

= Qk(z, 1), m = k 

where Q,,(z, It) is defined by (6.9). Substituting l - z  for s in (6.6) yields the 
required pgf. It is 

(6.12) p(z)=e-Xoht(h2( (hi(I-z)) )) 

= e'~xo[OT(z)-II. 

From (6.12), the mixed Poisson random variable is also a compound Poisson 
random variable, as it must be. However, the functions A~* and Q~*(z) are 
obtainable recursively using (6.10) and (6.11) from each of the component mixing 
distributions. Thus, for a given power-mixed density of the form (6.3), one can 
obtain h,,(s) from (6.2) for each m, then Am(it) and Q,,(z, t.~) from (6.8) and 
(6.9), and finally At* and Ql*(z) from (6.10) and (6.11) recursively. The usefulness 
of this approach is most evident when Qm(z, It) admits a simple parametric 
representation. This is often the case, as is now demonstrated for the following 
distributions. 

(i) Gamma 

(6.13) f,.(x,,, Ix,,,_,) - °t(ax")x'-'-le-"Xm 
r(xm_,) 

(6.14) h.,(s) = log (1 + ~ )  

(6.15) Am(it) = log (1 + ~ )  

,og(l o: 0 
(6.16) Q,,(z, It) - 

It is clear from (2.5) that Qm(z, It) is a logarithmic pgf. 
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(ii) Inverse Gaussian 

(6.17) f,,,(x.,ix,._,)= ( x~_, ~,,2 \27r13x3 ] e-(X'-<'-')~12~" 

(6.18) h,.(s) = ~[(1 + 213s) '/2-1] 

(6.19) Am(p.) =~[(1  + 2/3~) ~/2 - 1] 

[1 + 2/3/.z (1 - z)] '/2- (1 + 2/3/z) '/2 
(6.20) Ore(z, #z) - 

1 - (1  + 2r/z) '/2 

Comparison of (6.20) with (3.21) and (3.22) shows that the distribution with 
pgf(6.20) satisfies the recursion (1.17) 

Similar results may be obtained for other distributions, such as mixtures over 
linear combinations like the non-central chi-squared distribution. 

The advantages of the above approach are two-fold. First, it allows for explicit 
identification of the pgf for some complicated mixing distributions. Secondly, if 
(6.12) is the pgf of the claim frequency distribution, then from (1.8) the total 
claim transform is of the form 

(6.21) Ly(s) = e ~[e'(e=( V~tLx(~)]))] 

where P,,,( • ) is a pgf of the form Ore(Z, #.t*) for a particular choice of #z*. Hence, 
if a recursive formula exists for compound distributions with claim frequency 
pgf Qm(z, tz), one can repeatedly apply the recursion to Qk[Lx(s)], Qk-~[Lx(s)], 
etc. (k+  1) times to obtain the distribution of total claims. Since (6.16) and (6.20) 
are members of the class (1.17), recursions do in fact exist, for the pgf's (6.16) 
and (6.20), and they are given by (1.18) and (1.21). Thus, for example, if all 
fm(xmlxm_~) are gamma or inverse Gaussian (or non-central chl-squared) 
densities, then repeated recursions are simple to apply. An example of this is 
now given. 

EXAMPLe 6.1. Inverse Gausslan-Exponential. Consider the distribution 
obtained by assuming that the mean of an inverse Gaussian distribution has an 
exponential distribution. Then k = 2, f2(x2lx~) has pdf (6 17) and fl (x~l 1) has the 
pdf(6.13). The density corresponding to (6.3) is 

i0o( (6.22) u(x2) = \2¢rl3x~] e-<-~-x')2/:~x~ct e -<~x' dxl 

=a\2~x?/  e-XJ2~ 

+ c~(l-  ~/3)e-~X~+(~s~d2) { 1 - • [ ( ~ )  '/2 (a/3 - 1)] } 
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where ¢ is the standard normal cdf. The Laplace transform of (6.22) is 

}, 
(6.23) a ( s ) =  1 +~--~[(1 + 2/3s)'/2- 1] . 

If the Poisson mean has the distribution (6.22), the pgf is given by (6.12) with 

A* = At[A2(1)] 

(6.24) = log { 1 + a-a--~[(1 + 2/3 ) ' /2 -  1 ]} , 

Xo = 1, 

and 

(6.25) Q*(z) = Q,[ Qz(z, 1), A2(1)]. 

Here At(/x) is given by (6.15), Q,(z, it) by (6.16), A2(tx) by (6.19) and Qz(z, it) 
by (6.20). Thus, (6.21) becomes 

(6.26) Lv(s) = e ~Tl°'t°2(zx(s)'')'~2°)]-I~ 

To evaluate this distribution, one application of (1.18) or (1.21) yields the 
distribution with transform Qz[Lx(s), 1], and a second Lv(s) since, in this 
particular case, e ~;I°;<:)-t~ is a negative binomial pgf. 

7 .  N E G A T I V E  B I N O M I A L  M I X T U R E S  

Consider the negative binomial distribution from example 2.1 where a has a 
distribution with cdf U(c~). Then the pgf of the mixture is 

fo (7.1) P(z) = e al°gO+O)tQ,(z)-ll dU(ol) 

= e or°,")-'1 dU,(a) 

where Ql(Z) is the logarithmic series pgf from example 2.1 and U(a )  is the cdf 
of a log (1 +/3). Hence all results for Poisson mixing apply if the mixing random 
variable is multiplied by the constant log (1 +/3) (which involves merely a change 
in parameters of the mixing distribution for all situations described in this paper) 
and Lx(s) is replaced by 

13 Lx(S)] 
I°g [ 1 - 1 + 1 3  

(7 .2 )  L z ( s )  - 

I°g (1 - T ~  ) 

This latter transform is merely that of a compound logarithmic series and the 
associated distribution can be calculated by (1.18) or (1.21), if need be. 
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8. QUEUEING APPLICATIONS 

In this section it is shown how the results previously derived can apply in a 
queuing context. Consider  the M / G / 1  queue with Poisson arrivals at rate A of  
a batch o f  customers,  the number  o f  which are distributed according to a 
distribution with pgf  Q(z) .  Suppose also that there is one server serving customers 
according to a distribution with Laplace t ransform if(s). Then, as is well known 
(see e.g., KLEINROCK, 1975), the pgf  of  the number  in the system at the departure 
instants when equilibrium has been reached is given by 

( 1 - p ) ( 1 - z ) R ( z )  
(8.1) P ( z )  - 

R ( z ) - z  

where R ( z )  = if{All - Q(z)]} in (8.1) is easily recognized as being that of  a mixed 
c o m p o u n d  Poisson distribution o f  the type discussed in this paper  and p = 
-AQ' ( I ) f f ' ( 0 ) .  The service distribution is the mixing distribution in this case, and 
as in section 7, the presence of  the factor A causes little difficulty. Hence,  any of  
the mixing distributions discussed in this paper  can be interpreted as service 
distributions and the coefficients {r~; x = 0, 1, 2 . . . .  } defined by 

(8.2) R(z)= ~ r x z  x 

X~0 

easily obtained.  Letting P ( z )  be defined by (1.3), one can rewrite (8.1) as 

P ( z ) R ( z )  - zP ( z )  = (1 - p ) ( 1  - z ) R ( z ) .  

The coefficients o f  z x on both sides must be equal, yielding 

and 

roPo = ( 1 - p)  ro 

rypx-y - P~-~ = ( 1 -  p )( r~ - rx-t), 
y=O 

These equat ions may be rewritten as 

(8.3) po = (1 - p ) ,  

x = 1, 2, 3 , . . .  

which is o f  the form (1.18). Using the fact that ro = t~(A) if Q(0) = 0, the probability 
distribution o f  the number  in the system for this queue may be calculated 
recursively using (8.3) and (8.4). The M / G / I  queue results correspond to the 
case when Q(z )  = z. The  relations (8.3) and (8.4) hold in general for both queues, 
but the results are most  useful when the mixed c o m p o u n d  Poisson coefficients 
{rx, x = 0, 1, 2 , . . .  } are easily obtainable (as for the distributions in this paper). 

(_L_____ (8.4) px = - P ) ( r x - r x - O +  p ~ - I -  ~ ~px_y, x = 1 , 2 , 3 , . . .  
ro ro y = 1 r o  
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