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ABSTRACT 

It has been argued in previous studies that the expected utility decision criterion 
provides useful insights for certain insurance problems, such as underwriting, 
reinsurance and portfolio optimization problems. In this study three new models 
are developed which extend and generalize previous results. The first model 
analyses modified stop-loss reinsurance. The second model analyses risk pooling 
where both inward and outward reinsurance occur. Expected utility calculations 
can be used to provide insight on the attractiveness of competing reinsurance 
and risk pooling options. The third model is for strategic planning, where 
risk/reward tradeoffs for all the insurer's business activities (underwriting, invest- 
ment, reinsurance) can be considered in aggregate. The simpler models can often 
be solved analytically however the strategic planning model is relatively complex 
and uses Monte Carlo techniques to determine retained earnings distributions. 
The expected utility approach has been found to be powerful, flexible and 
comprehensive as a decision aiding mechanism. From a normative viewpoint, 
this approach accounts very well for all the important decision elements. Recent 
developments in decision support systems will allow these models to be made 
available to practitioners in user friendly forms. 

INTRODUCTION 

A considerable volume of research has been conducted into the application of 
the expected utility decision criterion in risk and insurance. Much of the funda- 
mental work was done by BORCH (1974) and important contributions were made 
by BUHLMANN (1971) and FREIFELDER (1979). SAMSON and THOMAS (1983) 
applied the criterion to reinsurance decision making and subsequently (SAMSON 
and THOMAS, 1985) showed how such a decision criterion could be used as a 
screening device as well as a decision aiding tool. 

In this study the earlier developments in using expected utility models for 
underwriting and reinsurance decision making are extended and generalized such 
as to facilitate comparisons of reinsurance and risk pooling. It is further argued 
that in general, from a normative standpoint these "risk position" decisions 
should not be taken in isolation of all other strategic decisions. Finally, a utility 
theory model is developed which encompasses all the strategic decisions of the 
insurer (underwriting, investment, reinsurance). 
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M O D E L  1 M O D I F I E D  S T O P - L O S S  R E I N S U R A N C E  

Deductibles and coinsurance agreements have become very popular  in both 
personal and commercial lines of  insurance. In reinsurance, modified stop-loss 
contracts (where a form of deductible exists) are also much used. In this section, 
upper  bound premiums are developed for modified stop-loss reinsurance using 
the methods of SAMSON and THOMAS (1983). These principles, which allow a 
reinsurer to understand tradeoffs between retention levels and coinsurance pro- 
portions apply equally well to primary insurance where optimal deductible and/or  
coinsurance decisions can be made simultaneously. 

Modified stop-loss reinsurance is a proportional transfer of  risk (claims liability) 
above a specified retention. Hence it contains elements of  both proportional and 
nonproportional  reinsurance. In quota share reinsurance or stop-loss reinsurance 
there are only two primary parameters of interest, namely the premium and either 
the proportion ceded or retention level. All three of these elements enter into 
modified stop-loss reinsurance. Indeed quota share or pure stop-loss reinsurance 
forms can be defined as special cases of modified stop-loss reinsurance. 

The advantages of modified stop-loss treaties for the insurer are in their 
flexibility and ability to allow the insurer to retain 100% of the claims liability 
for amounts below the retention level and cede portions above that level. For 
the reinsurer, an attractive feature of such treaties is the proportional participation 
of the insurer in large claim amounts (an advantage over pure stop-loss reinsur- 
ance). The need for the reinsurer to participate in small claims is obviated in 
modified stop-loss reinsurance (an advantage over quota share reinsurance). 

Expected Utility Upper Bound Premiums 

From the normative perspective of  expected utility theory, the advantages of  
modified stop-loss reinsurance over quota share or stop-loss forms can be demon- 
strated. From SAMSON and THOMAS (1983, p. 253) we can write the expected 
utility indifference condition for the insurer: 

( l )  E[ Uo(AD-  PRMAx - Y)]=  E[ Uo(AD-  X)] 

where claims X are transformed by reinsurances into retained claims Y. Up IS 
the utility function and A D represents all other assets. PRMAX is the upper bound 
reinsurance premium. 

For quota share insurance: 

Y = FX for all X, where F is the fraction retained. 

For pure stop-loss reinsurance: 

Y = X  for X<~ C 

Y = C  for a l l X > C  

where C is the retention limit. 
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For modified stop-loss reinsurance: 

(2) Y = X  f o r X ~ < C  

Y = C + F ( X - C )  for X >  C 

where C is the retention limit and F is the fraction retained for Y >  C. 
To illustrate the upper  bounds for modified stop-loss reinsurance we choose 

the exponential utility function U ( A )  = - e  -kA. This choice is based on its previous 
use by BORCH (1974), FREIFELDER (1979) and SAMSON and THOMAS (1983) and 
does not imply that its use is recommended without empirical justification. Indeed, 
as a matter of  implementation a number of  plausible utility functions should be 
considered and a new methodology for doing so is presented as an Appendix. 

For this form of utility function, equation (1) becomes 

I0 I (3) - e  -k(AD-p . . . .  - Y) " f ( Y )  d Y +  - e  -k[AD-PRMAx-C÷F(Y-C)]  " f ( Y )  d Y  
c 

io o = - - e - k ( A ° - X ) f ( X )  " d X .  

This equation can be solved for any loss distribution although in some cases due 
to intractability, numerical methods may be necessary. Exact solutions can be 
found for the negative exponential loss function: 

f ( x )  = A e -A~. 

The solution to equation (3) for this case is 

(4) PRMAX = T i n  1 + e (k-A)C" [ (k- -  k F ) / ( k f - A )  " 

For the special case of  quota share reinsurance, C = 0 and equation (4) reduces 
to equation (22) in SAMSON and THOMAS (1983, p. 259). For the special case of 
pure stop-loss reinsurance, F = 0 and equation (4) reduces to equation (20) in 
SAMSON and THOMAS (1983, p. 258). Table 1 shows values of PRMAX for k = 
0.000055-' and A =$1/2380.95 (as used by SAMSON and THOMAS (1983) and 
F R E I F E L D E R  (1979). 

The insurer may have a large number of  reinsurance possibilities available and 
the data in Table 1 (or else similar sets of  data for whichever utdity function 
form and parameters are appropriate) can be used to support those decisions. 
The calculated upper  bound premiums are not market quotations, but represent 
the intrinsic value of the various reinsurance options to the insurer. The tradeofts 
between proportional and nonproportional elements can be made by comparing 
alternatives with approximately equal upper  bound values. For example, a 
maximum premium of $260 applies to positions of: 

1. Pure stop-loss reinsurance ( F  = 0) with a retention level of  C = $6000. 
2. Approximately F = 0.56 above C = $4000. 
3. Approximately F = 0.79 above C = $2000. 
4. Approximately F = 0.90 with C = 0 (quota share reinsurance). 



$48 SAMSON 

TABLE I 

VALUES OF Pm~ax FOR k = 0 0 0 0 0 5 ,  A =1 /238095  

Retention Level C 

F 
Fraction 
Retamed 0 2000 4000 6000 8000 10,000 

0 2535 1169 549 260 123 58 
0.1 2295 1062 499 236 111 53 
0 2 2053 953 449 213 101 48 
0 3 1807 842 397 188 89 42 
0.4 1559 728 344 163 77 37 
0 5 1307 613 290 137 65 31 
0 6 1052 495 234 I I I  53 25 
0 7 794 375 178 84 40 19 
0 8 533 252 120 57 27 13 
0 9 268 127 60 28 13 6 
1.0 0 0 0 0 0 0 

These comparisons can similarly be made for any premium level. 
A second mode of using this form of analysis is to compare market quoted 

premiums for various alternatives with calculated upper bound values both as a 
screening device (SAMSON and THOMAS, 1985) and as a method of ultimate choice. 

A third mode is to obtain premium quotes and substitute them into the left 
side of  equation (1) (or in the illustrative case, equation (3)) such as to evaluate 
the expected utility for each alternative. 

Reinsurance agreements usually involve processes of  negotiation between the 
insurer and a broker or reinsurer, hence the most valuable approach is likely to 
be the "upper  bound"  method. An insurer can quickly and efficiently know its 
preferences and determine its strategy if data such as in Table 1 is available 
during such negotiation processes. There would be potential advantages for the 
reinsurer to know the utility function of the insurer (as well as its own) so that 
it too could find an optimal negotiation strategy. 

This analysis of  modified stop-loss reinsurance can also be applied to primary 
insurance, where a potential insured is considering an optimal deductible (C)  
and an optimal coinsurance level (F).  In most personal lines, F = 0 (there is no 
coinsurance element above the deductible) however risk managers often need to 
make decisions involving tradeoffs between C, F and P (premiums) in commercial 
lines. The present analysis generally applies to aggregate loss distributions (i.e., 
implicitly assumes only one claim or an aggregation of losses from many claims) 
and can be modified to incorporate claim frequency distributions. 

MODEL 2 RISK POOLING 

BORCH (1974, p. 25) has commented that: 

An insurance company generally wants to retain as much of its 
portfolio as possible. If  it is not obliged to reinsure to satisfy government 
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requirements, a company will not usually give a part of  its portfolio 
away to a reinsurer unless it gets another more or less equivalent portfolio 
in return. 

The advantages of  risk pooling, sharing or reciprocal agreements are principally 
that in such cases the net premium base of the insurer is eroded less than in the 
case of  pure outward reinsurance. 

For reciprocal reinsurance or risk pools, the expected utility of  entering the 
risk pool is: 

(5) E [  U D ( A D  -- Y -  Z - a P ) ]  

where Z is the inward claims liability and AP is the net premium adjustment 
(outward-mward) .  

In general the insurer wishes to maximize expression (5). Pure outward cession 
occurs where Z = 0 and ~ P  = PR (the outward reinsurance premium). I f  Y and 
Z are statistically independent then expression (5) can be evaluated for vanous 
alternatives of  Y and Z as: 

io ;o o (6) gD(ao-  Y - Z - a P ) f ( Y ) - a Y f ( z ) "  aZ 

In most cases this integral will not be analytically tractable, and numerical 
methods involving risk analysis are recommended. If  Y and Z are statistically 
dependent then the attractiveness of risk pooling is altered. If  the covariance of 
Y and Z is high relative to the variances of  Y and Z then risk pooling may be 
unattractive, and certainly may be worse than pure outward reinsurance. This 
can be demonstrated using normally distributed claims distributions (see HOGG 
and KLUGMAN, 1984, p. 35 for a discussion of this distribution in the insurance 
claims context), and assuming that mean-variance ei~ciency is desired. 

For an a risk pool,* a point of minimum variance exists for the pool only if 
the covariance of the claims distributions is less than the average of their variances. 

Prior to pooling, let the claims variance of participating companies 1 and 2 be 
cr~ and o'22 respectively. 

For company 1, risk pooling transforms its claim variance to 

2"=(1 a)2oh2+ a2o-~ + 2(1 ('If) ( Oil ) O'12 . 17" 1 -- 

At critical points, &r~ ' /Sa =0.  

8o-I" 
(7) ¢5-~- - 2(1 - a)°'~2 + 2acr~ + (2 - 4a)°"2" 

The second derivative is given by: 

(8) 8a 2 - 2cr~ 2 + 2o'~ - 4o'12. 

* An insurer  forms an "or risk poo l "  when It lays off a p ropor t lon  ~ of  its risk habf lny  and  accepts  
the same p r o p o n l o n  ~ f rom ano the r  par ty  (which ma y  be a no the r  insurer,  re insurer  or  a mul t l -par ty  
pool)  The  te rm cr~ ° denotes  va r iance  including the effects of  risk poohn  8. 
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Hence:  

2 2 

(9) 0-t2 < 0-' + 0-2 
2 

for a minimum. 

The minimum variance ( found by equating expression (7) to zero) occurs at 

O'I 2 --  0"12 
(10)  a* = 2 2 0"t + 0"2 - 20",2 

If  this min imum is to exist in the range 0~<a*<~ 1 then: 

8ct~*~<0 at t~=0  and saLEs>0 at c~=l  
8a 8a 

implying addit ional condit ions 0-I ~ 0-t2 and 0-~ >I 0-12. 
2 0-5 then the critical point is at o~* =½ regardless of  0-12. This Note that if o"1 = 

critical point  may however  be a maximum, minimum or stationary point depend- 
mg on the value of  expression (8). 

To facilitate a compar ison of  risk pooling and modified stop-loss reinsurance, 
we calculate upper  bound  premiums in the case o f  exponential  utility functions, 
i.e., for the equation: 

fo°Io o f (11) --e-k°(aD-Y-z-e) f(y)  • d Y ' f ( z )  • dz = --e--kD(mD--X)f(x) dx  

where X is the onginal  claims distribution of  the insurer which is negative 
exponential  with parameter  At, Y is the retained claims of  X ;  Y = aX;  Z is the 
original claims distribution o f  the other party, and the insurer accepts a propor t ion 
(1 - / 3 )  of  this risk. Z is assumed negative exponential  with parameter  X=. The 
solution to equation (11) is 

-1 [ ( k ( 1 - / 3 ) - A 2 ) ( k a - A l ) ]  
(12) P = - x - I n  A 2 ( k - A t )  

and if A 2 = A t = l / $ 2 3 8 0 . 9 5  and k=0 .00005  as before, the upper  bound  net 
premiums are shown in Table 2. Note that the solution (12) generally applies to 
the range k < At. Implicit in this illustration is the assumption of  independence 
between X and Z and hence between Y and Z. 

A number  o f  observations can be made about  the data in Table 2 and about  
compar isons  between Table 2 and Table 1. First, there is symmetry in Table 2 
across the non-leading diagonal.  The insurer is indifferent (only in cases where 
the inward and outward claims density functions are identical) between positions 
o f  (outward,  inward) proport ions  of  (a , /3)  and (1 - /3 ,  l--a) for any a and /3 
pair. Secondly P is not zero in Table 2 for cases where a =/3 unless a =/3 = 0 
or a = fl = I (in which cases no effective change occurs). For  cases where a 
and /3 are equal but not 0 or l, P is positive, indicating that for a risk averse 
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TABLE 2 

VALUES OF PRMAX FOR A TWO PARTY RISK POOL 

$51 

13 0 01 02 0.3 04 05 0.6 07 08 0.9 10 

0 0 -240 -482 -728 -976 -1228 -1483 -1741 -2002 -2267 -2536 
01 268 28 -214 -459 -708 -959 -1214 -1472 -1734 -1999 -2267 
02 533 293 51 -194 -443 -695 -949 -1207 -1469 -1734 -2002 
03 794 555 312 67 -181 -433 -688 -946 -1207 -1472 -1741 
04 1052 813 570 325 77 -175 -430 -688 -949 -1214 -1483 
0.5 1307 1068 825 580 331 80 -175 -433 -695 -959 -1228 
0.6 1559 1319 1077 831 583 331 77 -181 -443 -708 -976 
0 7 1807 1568 1325 1080 831 580 325 67 -194 -459 -728 
0 8 2053 '1813 1571 1325 1077 825 570 312 51 -214 -482 
09 2295 '2055 1813 1568 1319 1068 813 555 293 28 -240 
1 0 2535 2295 2053 1807 1559 1307 1052 794 533 268 0 

of ~ 

1-/3= 
A 2 =  

k= 

proportion retained of outward nsk transfer 
propomon accepted of reward risk transfer 
A t = 1/238095 
0 00005 

insurer there is a considerable  advantage from forming equitable nsk  pools. For 

cases where c~ =/3, P takes on a max imum value at a =/3 = 0.5. 

Implementation: Aided Decision Making Using Expected Utility Models 

An insurer  may have a n u m b e r  of alternatives open to it as methods of modifying 
its claims liability posit ion,  including various re insurance and risk pool oppor-  

tunities. Each of these may involve a n u m b e r  of parameters (retent ion limits, 
propor t ions  retained,  premiums,  etc.) and compar isons  (to determine the best 
opt ion)  cannot  be accurately made without reducing the effects of these complex 
choices to a single measure. In decision theory, one useful procedure for compar-  
ing alternatives is to identify the one with the highest expected utility, however 
practical difficulties may preclude such processes from directly occurr ing in 

negot iat ion sessions because of the extensive calculat ions which are required. 
For example,  with only a two party risk pool and tractable dis t r ibut ions and 
utility funct ions,  the left hand  side of equat ion (11) has to be calculated. More 
generally,  numerical  solut ions are often required. The upper  bound  approach 
can be used to produce tables which can be readily used in evaluat ing re insurance 
and risk pool ing options.  

As an i l lustration,  consider  an insurer (with exponent ia l  utility, k = 0.00005) 
which is consider ing the following five opt ions on its claims liability (which has 
exponent ia l  claims probabi l i ty  density funct ion and A = 1/$2380.95). 

1. Modified stop-loss reinsurance of 50% retention above a limit of  $2000, 
costing a premium of $700. 

2. Modified stop-loss reinsurance with 80% retention above a retent ion of 

$4000 costing $118. 
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3. Forming a risk pool with another party having an identical claims liability 
where the fraction retained at = 0.8 and the fraction accepted (1 - /3 )  = 0.2. There 
is no premium. 

4. Entering a risk pool with another party having an identical claims liability 
where at =0.8, 1 - /3  =0.1 and the premium charged is $300. 

5. Entering a risk pool where the other party has an exponential claims density 
function with parameter  h.2=A~/2. For this pool the proposed retained claims 
on the outward risk is at = 0.8 and the fraction accepted on the inward risk is 
1-/3 = 0.3 with net (inward) premium of $860. 

For option 1, the upper  bound premium from Table 1 is $613, hence option 1 
can be immediately screened out as being unattractive in an absolute sense (this 
reinsurance option is worse than no reinsurance). 

For option 2, the upper  bound premium is $120, hence this option is slightly 
better than the original "no  reinsurance" position. 

Option 3 has an upper  bound premmm of $51 and since this is a pooling of 
identical risks, no premium need be paid and a significant advantage can be 
gained. Note that in this situation of identical risks, a 20% sharing of risks 
provides a benefit of over 60% of the maximum (a $51 equivalent gain when 
a =/3 = 0.2 compared to a maximum of $80 when cr =/3 = 0.5). 

Option 4 has an outward premium which is above the upper bound ($293 from 
Table 2) and is rejected. 

For option 5 the indifference premium is a lower bound on an inward premium, 
and is -$949 (calculated in the same manner  as for options 3 and 4) meaning 
that an inward payment of  at least $949 must occur to make this option worthwhile. 
Since the premium offered is only $860, this offer is rejected. 

In conclusion the most attractive option is 3 and it would be to the advantage 
of  the insurer to increase the mutual participation in the risk pool from the 
suggested 20% up to 50%. Had more than one option passed the screen and 
been attractive in an absolute sense, the expected utility of these options could 
be calculated and compared.  

A number of  other important implementation issues exist, including estimation 
problems and problems of intractability. The expected utility model inputs are 
the claims density functions and the utility functions. Much work and many 
advances have occurred in estimation for both these elements, for example, HOGG 
and KLUGMAN (1984) on loss distribution estimation, and FARQUHAR (1984) 
and SAMSON (1984) on utility function assessment. Although inaccuracy always 
exists in these empirical procedures, improved methods are continuously increas- 
ing the ability of  researchers and practitioners in fitting functions to claims and 
utility functions. 

In more complex reinsurance and risk policy arrangements than those illus- 
trated above, analytical solutions to the equations cannot generally be found and 
either numerical integration techniques or Monte Carlo procedures can be used 
to give close approximation solutions. Monte Carlo procedures are particularly 
powerful and flexible, and can account for correlations between variables (HERTZ 
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and THOMAS, 1983). These techniques also readily allow for sensitivity analysis 
to be performed. Monte Carlo methods would be most suitable in complex 
multi-party risk pools or layered reinsurance arrangements, where direct integra- 
tion of the appropriate equations would be difficult or impossible. In such cases 
the Monte Carlo techniques would be used to approximate total claims distribu- 
tions and the expected utility function can then be numerically applied to the 
total claims function. 

M O D E L  3 T O W A R D S  A G E N E R A L  T H E O R Y  O F  I N S U R A N C E  

Utility theory provides a useful basis for modelling the activities of  an insurer 
such as to produce the best overall or aggregate result. Consider an insurer with 
assets A, at time t, which must make decisions regarding underwriting, investment, 
reinsurance and other functions such that at time t+  1 its assets will be A,+~, 
where A,+ t = At +AA. Although accounting practices vary considerably across 
insurers particularly in an international context we develop a simplified but 
representative decomposition of AA below based on a number of  balance sheets. 

AA = AC + AR + RE 

where AC is a change in paid up capital, AR is a change in reserves (share 
premium, asset revaluation, surplus, etc.), RE is retained earnings. 

One simplified decomposition for RE is: 

(13) RE =(1 - T)[E ( P , - X , - E , ) + R + P I + R e ] - D  

P, = premiums in line i, 
X, = claims in line i, 
E, = expenses in line 1, 
R = investment returns, 

PI = profit/loss on sale of  investments, 
Re = reinsurance effects (premiums and claims, both outward and 

inward), and 
D = dividends paid, 
T = representative tax rate. 

Most companies '  retained earnings equations contain many other terms, 
however the primary operating effects are contained in equation (13). 

In maximizing the expected utility of  the insurer's aggregate earnings, 
r isk/reward decisions within particular insurance accounts or investment 
decisions are evaluated in terms of their effect on the firm as a whole. Figure 1 
shows the flow diagram for the computerized decision support  system on which 
this model has been implemented. For any set of  strategic variables, Monte Carlo 
methods were used based on probabilistic inputs about premium volumes, claims, 
expenses and investments to calculate a probability distribution of  retained 
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earnings. A utility function, with form and parameters identified using the method 
in the Appendix, is applied to this output distribution, and expected utilities can 
be calculated and compared for a large number of potential strategies in a short 
time. 

The model can be used for generalized strategic planning, single unit changes 
(such as entering a new market or line of business), or fine tuning. This normative 
model of insurer management does not in itself constitute a general theory of 
insurance, but provides decision makers wtth important insights regarding optimal 
operating strategies. 

The reinsurance models in SAMSON and THOMAS (1983) considered reinsur- 
ances in isolation of other important decision variables such as underwriting and 
investment. Although in some circumstances this may be reasonable, the present 
approach generalizes the use (and hence increases the power) of expected utility 
models such that underwriting, investment and reinsurance problems can be 
solved simultaneously. 

KEENEY (1982) suggested that the aim of decision analytic models is to provide 
insights not answers, and similarly the aim of decision support systems and 
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models is to aid decision and .judgement processes and not replace them. The 
system can be used to provide insight and evaluate decisions such as: 

1. Increasing (decreasing) claim adjustment efforts as a means of reducing 
(increasing) claims. Secondary effects such as changes in cash flow for investments 
and reinsurance premiums can be automatically accounted for by the system. 

2. Underwriting new business, including effects on profit using various reinsur- 
ance agreements [based on the developments in SAMSON and THOMAS (1983)] 
and including reserving and investment policy effects. 

3. Changing premium structures for existing business, in which case estimates 
of demand elasticities are required. Insights on changing premium structures can 
best be gained by considering the many secondary effects (as well as primary 
demand, effects). In this decision context, the effects of changing premiums cause 
nearly every parameter shown on Figure 1 to change and the aggregate effect of 
such changes can be calculated using an expected utility approach. 

This generalized strategic planning model can be implemented as a decision 
support system. It was developed at the University of Illinois as a user-friendly 
interactive system capable of  being implemented on micro or mainframe com- 
puters. The user inputs a variety of data on claims distributions, investment 
returns, reinsurance options, etc., and can iterate with the system and evaluate 
various strategies in this computer aided manner, eventually converging upon a 
satisfactory (and hopefully optimal) solution. The user friendly character of such 
systems allow top management to participate in the creative, structuring processes 
and sensitivity analyses rather than merely to choose between previously struc- 
tured options. 

Decision support systems can also be artificially intelligent. In this system a 
useful feature is its ability to suggest a strategic response (or at least a direction 
of response) to a change in an exogenous variable. For example, if general market 
prices begin to move in a particular direction, the system could consider the 
effect of various options not only on underwriting profit but also on investments, 
reinsurances and ultimately on the retained earnings distribution. 

D I S C U S S I O N  O F  T H E  USE O F  E X P E C T E D  U T I L I T Y  M O D E L S  

Many researchers have suggested that expected utility could be used in insurance. 
BUHLMANN (1971) suggested a "principle of zero utility" premium calculation 
method and FREIFELDER (1979) proposed exponential utility ratemaking rules. 
BORCH (1974) usefully applied utility theory to a number of aspects of insurance. 
None of these studies, however, proposed a unifying insurance theory which 
involved both a decision aiding mechanism (the structuring and evaluation model 
of Figure 1) and an axiom based (see KEENEY, 1982) objective function (i.e., 
maximize expected utility) which would use this approach to simultaneously set 
effective strategies for all of  the insurer's activities. 

The strength of the proposed approach is its ability to relate decisions such as 
reinsurance and investment decisions to an aggregate "whole firm" context. Many 
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other approaches have been suggested for insurer management including risk 
theory and portfolio theory. From the viewpoint of  expected utility analysis, we 
find these approaches to be merely special cases involving assumptions on the 
form of the utility function. Risk of ruin theory can be interpreted as involving 
a two state utility function (Roy,  1953, p. 432) which is impractical and generally 
unrealistic. Portfolio theories usually assume either quadratic utility or joint 
normally distributed returns which, particularly in an insurance context, do not 
seem to be justifiable. CUMMINS and NYE (1981) used a utility theory approach 
to indicate optimal operating positrons on a mean-variance efficient frontier. 
While this approach is a useful one, the assumption that utility can be expressed 
in terms of mean and variance may not be appropriate in all cases. The present 
(Monte Carlo) approach has the advantage of being completely flexible with 
regard to distributional forms. We believe that many returns distributions in 
insurance companies are skewed (HoGG and KLUGMAN, 1984) and /or  truncated 
by reinsurances (SAMSON and THOMAS, 1983). 

CONCLUSIONS 

First, since it has been demonstrated that quota share and stop-loss reinsurances 
are merely special cases of  modified stop-loss reinsurance, insurers should be 
aware that optimal solutions need not generally occur when fractions retained 
(F) or retention limits (C)  are zero. Modified stop-loss reinsurance forms with 
F ~ 0 and C ~ 0 have advantages over the special cases for both insurers and 
reinsurers and the expected utility solutions can be used to aid decision makers. 

Second, risk pooling has the advantage (over pure outward reinsurance) of 
achieving risk diversification while not eroding the premium base of the insurer. 
An expected utility model was developed for risk pools which is generally able 
to evaluate competing alternatives. Through such analyses, pure reinsurance can 
be viewed as a special case of  risk pooling [where no inward risk transfer occurs, 
i.e., Z = 0 in equation (6)]. A risk pool involving two idential risks is shown to 
reduce variance only if the covariance of the claims distribution is less than the 
average of the variances. 

Third, in generalized strategic planning models, alternative options are evalu- 
ated in terms of their aggregate effect; only rarely is it reasonable to make decisions 
in isolation. The expected utility model can be generalized to encompass under- 
writing, risk transfer and investment actions, with the expected utility of  strategy 
sets being found using numerical (Monte Carlo) methods. This model 's utility 
is its capability of  relating decisions involving individual business units of  the 
insurer to the context of  the "firm as a whole". 
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APPENDIX A UTILITY FUNCTION FITTING METHODOLOGY 

The c o m p u t e r  p rogram elicits from the dec is ion  maker  a set o f  cer ta in ty  
equivalents  to gambles  for use in fitting a uti l i ty funct ion.  These  gambles  are o f  
the form: 

(X,,  P,, Y,) ~ C, 

where C, is the cer ta inty  equivalent  o f  a gamble  involving a p robab i l i t y  P, o f  
ou tcome X, and  a p robab i l i ty  (1 - P , )  of  an ou tcome  Y,. The dec is ion  maker  can 
specify any three of  these four  pa ramete r s  (or  have the system to do  so) and  
make a subjec t ive  j u d g m e n t  about  the fourth.  Single pa r ame te r  uti l i ty funct ions  
(such as the c o m m o n l y  used exponen t ia l  and  logar i thmic)  can be fitted to the 
da ta  f rom just  one gamble ,  however  the funct ion would  be  highly  sensit ive to 
j u d g m e n t  errors  under  such condi t ions .  To minimize  the affect o f  these r andom 
errors,  N gambles  are used and random errors are assumed  to be independen t .  
Hence  if  j u d g m e n t s  on C, are made ,  errors  (e,) are given by:  

U ( C ,  + e,) = P , U ( X , )  + (1 - P,) U(Y, )  

or  

e, = - C , +  U - ' [ P , U ( X , ) + ( 1 - P , ) U ( Y , ) ] .  

The system can find least  square error  fits o f  var ious  uti l i ty funct ions  and 
r ecom mends  the use o f  that  funct ion which has the least  square  total  error.  

For  the exponen t ia l  uti l i ty funct ion 

u ( x )  = ~(1 - e  - ' x )  
r 

we find 

e, = - C ,  _ 1  In [P, e -rx '  + (1 - P,) e-rV'].  
r 

For  the logar i thmic  uti l i ty funct ion,  

U(X) = In ( X  + k) 
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e, is given by: 

e, = - C  I - k - t -  e [ P I I n ( X ~ + k ) + ( I - P ~ ) l n ( Y l + k ) ] .  

These methods have distinct advantages over traditional utility fitting 
methodologies in that: 

1. "Chaining" of gambles is not used in this method, hence biases are not 
propagated and compounded as in other methods. 

2. The "range effect" is eliminated because the decision maker can specify 
any values of  X, and Y, that are convenient. 

3. By carefully choosing values of X,, Y, and P, to be relevant to the types of 
decisions being made, other biases such as the certainty effect and the probability 
effect can be minimized. 
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