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A B S T R A C T  

Chains of  reinsurance were first modelled by Gerber, in a special case. It is shown 
that more general results can be obtained by applying Borch's theorem. The 
Pareto-optimal reinsurance indemnities are uniquely determined using the only 
assumption that the participating companies use exponential utility functions. A 
simple comparison then shows that Gerber 's  indemnities are not Pareto-optimal. 
Even if no assumption at all is introduced, the indemnities are shown to be 
closely linked to the risk aversions of  the participants. 
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I .  I N T R O D U C T I O N  

A chain of reinsurance (Co, Ci . . . .  , C.)  is a set of  n + 1 insurers, in which it is 
assumed that each participating company Ci(i = 1 , . . . ,  n - 1 )  is in direct contact 
only with two others, namely C~-i, to which coverage is sold, and Ci+l, from 
which coverage is bought. The last element of  the chain, C,,, cannot buy any 
coverage, while the first element, Co, cannot sell reinsurance. Co, the ceding 
company,  accepts a given risk in compensation of a premium Po- The distribution 
function of the claims amount will be denoted by G(x) .  Ci, in return of a premium 
Pi, accepts to pay an idemnity L(x)  to C~_~, if the claims amount to x. In turn, 
C~ buys coverage to Ci_~, in the form of an indemnity li÷j(x), and pays Pi÷~ for 
this protection. 

POLIGYHC) LD ~ I ~  q...._.... C O ~ , ~,~,~,,,.,~..... t;~......,~..., C~+, "'" ~ Co 
x I~ I~ I ,+~ ~'- I .  

While chains of  reinsurance are frequently encountered in practice, the first 
attempt to model mathematically their transactions is due to GERBER (1984), in 
a very special case: 

- - on ly  proportional reinsurance is available; 
- -a l l  companies apply the expected value principle; 
- -a l l  companies evaluate their situation by means of an exponential utility 

function 

ui(x) =--1 (1 - e-°"~); 
ai 
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- - t h e  claims are normally distributed; 
- - t h e  following bargaining rules are enforced: the buyer of  reinsurance lets the 

seller know how much he will buy as a function of  the loading; the seller then 
determines the loading. 

With those assumptions (some of which the practitioners will at the very least 
call heroic), it is possible to explicitly determine the loadings and the share of  
each participant, in a sequential way. In the special case n = 1 (one reinsurance 
transaction only), the indemnity takes the very simple form 

l ~ ( x )  = ao - -  X .  

2ao+ a~ 

So the ceding company always retains at least 50% of the original claims, a 
counter-intuitive result. Cessions in excess of  50% are then shown to be possible, 
if the following (even more unrealistic) bargaining rules apply: the seller of 
reinsurance lets the buyer know how much he is willing to sell, as a function of 
the loading; the buyer then determines the loading on the basis of this information! 

Gerber 's  results were extended by D'URSEL and LAUWERS (1985), with even 
stronger assumptions (equality of all risk aversion coefficients ai, for instance), 
and criticized by BORCH (1985). 

The purpose of this paper  is to show that more general results can be derived 
by applying the classical theorem of Borch. Indeed, the only assumption that the 
companies use exponential utility functions will allow us to determine explicitly 
the indemnities l i(x).  In the special case n = 1 we will obtain 

l l (x )  ao "~ X ,  

ao+ al 

which shows that Gerber 's  indemnities are not Pareto-optimal. Then, the applica- 
tion of  a value concept of  game theory (for instance Nash's  bargaining model) 
will enable us to find a unique set of  premiums. 

2. BORCH'S RISK EXCHANGE MODEL 

This classical model (see for instance BUHLMANN 1970) considers a pool of n 
insurance companies Ct . . . .  , C,;  the initial situation of  C~ is characterized by a 
pair [Rj, Gj(xj)], where Rj denotes its free reserves and Gj(xj) the distribution 
function of  its claims amount.  The members of  the pool will try to improve their 
situations by concluding a treaty 

)7 = [y, (x, . . . . .  x , ) , . . . , y , ( x , , . . . , x , ) ] ,  
r l  n 

such that Y~j=~ y j ( x ~ , . . . ,  x , )  = Y~j=~ xj; yy(x~ . . . .  , x , )  is the sum Cj has to pay if 
the claims for the different companies respectively amount to x ~ , . . . ,  x,. The 
signature of  such a treaty modifies the utility of  Cj from 

f; U j ( x j )  = u j ( R j  - x j )  dOj(xj) 
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t o  

uAY) = [ u j [ &  - y A x , , . . . ,  x,,)] d G ( x ,  . . . .  , x, ,) ,  
d o 

where 0 is the positive orthant of  E" and G ( x ~ , . . . , x , )  the n-dimensional 
distribution function of the claims amounts ff = (x, . . . .  , x,,). 

A treaty fi is said to be Pareto-optimal if there is no .F' such that ~ ( p ' )  I> ~( f i )  
for all j, with at least one strict inequality. Borch has shown that the set of  the 
Pareto-optimal treaties is characterized by the equations 

kju~[Rj - y j ( . , ~ ) ]  = k tu '~[R , -  y,(~)],  j = 1 , . . . ,  n, 

where the k~ are non-negative bargaining constants. In the case of  exponential 
utilities, the Pareto-optimal solutions take the form 

(1) YJ(-x)= q2 ~ x,+y2(0), 
i=1 

where qj = ( l / a j ) / ( ~ = ,  1/ai),  and yj(0) is a monetary transfer that depends on 
the bargaining constants. So a Pareto-optimal treaty is a quota share, where each 
company takes over a fraction of all claims inversely proportional to its risk 
aversion. 

3. FIRST M O D E L  

In practice the reinsurance chain is formed by successive additions of companies: 
Co underwrites a risk and seeks coverage by C~; C1 accepts part of  the risk and 
contacts C2, which in turn seeks protection by C3, etc. Usually, a company C, 
will only be in touch with C~_1 and C~+~; it will be informed of the origin of the 
risk and of the cessions from Co to C,_~; on the other hand, it will not be aware 
of  the protective actions taken by C~÷~ (and hence of the continuation of  the 
chain until C,,). Co, for instance, knows everything about its relations with C~ 
but is usually totally unaware of the liabilities of  C2 . . . . .  C, (just as an ordinary 
policyholder more often than not does not even know the name of his company 's  
reinsurer). It is then quite realistic to model the chain as a set of  n two-company 
treaties between C~-t and C~, i = 1 , . . . ,  n. The application of Borch's theorem to 
this specific risk exchange leads, for the treaty i, between C~_t and C~, to the 
equation 

k ,u ' , [R , -  y',(x)] = k ,_ ,u ' , _ , [n ,_ , -  yi - , (x) ] ,  

(the upper  indice denoting the treaty), where 

y i ( x )  = 1 , (x )  - P, 

y L , ( x )  = l , _ , (x )  - P,_, + P, - I , ( x ) .  

k~ may be set equal to 1. So 

u~[ R, - l ,(x) + Pi] = ki_, u'i_,[ R,_, - l ,_ , (x)  + l i (x)  + Pi-, - P,]. 
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The addition of the obvious conditions L(0) = L-t(0) = 0 (no reinsurance payment 
if no claim) determines ki-t 

u',[ R, + P,] 
ki- i - 

u;_t[ R,_, + e,_, - P,]" 

Thus 

(2) 
u;[ R i -  I i (x)+ Pi] u;-,[ R i - , -  l i - , ( x )+  [i(x)+ Pi-, - Pi] 

u;[ R, + P,] u;_,[ R,_, + g _ ,  - P,] 

Assuming exponential utilities, this equation becomes 

e x p ( - a , [ R , - L ( x ) +  PJ) e x p ( - a , _ , [ R , _ , - L _ ~ ( x ) +  l , ( x )+  P~_~-PJ) 
(3) 

exp ( -a , [  Ri + Pi]) exp( -a , [Ri_ l  + P i - I -  Pi]) 

After easy computations,  it simplifies to 

a i - !  
(4) l i (x)  =- ' -7--- - - l i_ , (x) ,  i= 1 . . . . .  n. 

t a i - i ~ i  

Each indemnity is a fraction of the preceding one: the risk progressively becomes 
diluted towards the end of the chain. 

Since lo(x) = x, successive replacements lead to 

l i ( x ) = (  (l aj_, ~x  i= l, n. j=, aj + aj_,] ' " " '  

Each indemnity is a fraction of the claim amount,  that depends on all the 
"preceding" risk aversion coefficients, but is independent of ai÷~, a i 4 2 , . . . ,  an. 
A consequence is that the addition of a supplementary link C,+~ to the chain 
does not modify the indemnities. 

l~(x) is a decreasing function of a,: the highly risk-averse companies will accept 
only small liabilities; the largest part of  the risk is transferred to the companies 
with a low degree of risk aversion. The limiting case a i = 0 means that C, is a 
risk neutral company that does not buy any reinsurance: l , (x)  = l~-i(x); li÷~(x) = 
0; the chain does not extend beyond C,. The other limiting case a~ = o0 of extreme 
risk aversion leads to L(x )  = 0: C~ refuses to accept liability and acts as a broker. 

L(x) ,  the payment of  Ci to C,_~, is only a "gross" disbursement for C~, since 
it collects L+l(x) from C,+1. 

The "net"  payment 

D,(x) =/ i (x)  - 1,..(x) 

is equal, after replacement, to 

D , ( x ) = ( f i  a~i-' ) .  a'+-l---L--" X. 
j=l ai-i + a j a, + ai+l 

So the Pareto-optimal treaties are proportional;  C~'s share is a function of all 
risk aversion coefficients from ao to a~+~; the quotas are independent of  the claims 
amount distribution and do not have to be negotiated. 
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It is easy to check that 

Di(x) = ai-, a i+ ,  Di_l(x). 
ai ai + ai+l 

So, if a~_, < ai, D~(x) < Di_~(x). 
It has been shown already that the addition of  a last link to the chain does 

not modify the indemnities. What happens if a new company, Ck, is inserted 
between Ci-z and Ci? Clearly the indemnities / j ( x ) , j =  l . . . .  , i - l  and the net 
payments D j ( x ) , j =  1 , . . . ,  i - 2  are not modified. For I ~  i, the new indemnity 
equals 

( o , ,  + 
The modified net payment DE(x) equals 

ai-i + ajj a,_l + ak 

Simple computations lead to 

Dr(x) - D',(x) - 
j = l  " a l + l  j¢i aj-i t- aj/ at+ 

ai_| ak 
X. 

a i -  l -t- ak Ok ~ ai 

ag at 
x. 

ak + ai at + at.~ 

_ _ I  aiz.L ai-, ak ] 
Lai-~+ai ai-t+ak a ~ a i  . x  

which is always positive. So the insertion of a supplementary link always has the 
effect of decreasing the net payments of all the companies "following" the new 
one. 

It is important to notice that in this model we only have "local" Pareto- 
optimality, since, while applying Borch's theorem to e.g. Ci_~ and C ,  it is 
deliberately ignored that C~ will subsequently seek reinsurance by Ci+~. While 
it is not infrequent in practice to accept a risk before seeking protection, in many 
cases existing treaties certainly influence the negotiation between two links of a 
chain. Presumably the risk aversion coefficient of a company will strongly depend 
on whether reinsurance is already available or not. Note that a "global" Pareto- 
optimal model is presented in Section 7. 

4. P R E M I U M  D E T E R M I N A T I O N  

As shown in the preceding section, the shares of  the participants in each claim 
are uniquely determined; they are not subject to bargaining (this is a well-known 
property of exponential utilities). The fact that the Pareto-optimal solution set 
generally consists of an infinity of treaties is reflected in the indefiniteness of the 
premiums Pi; there usually exists an infinity of acceptable Pi, even if the individual 
rationality condition (no company will. accept a decrease in utility) is enforced. 
In fact, the determination of  the premium P~ is equivalent to the computation of 
the value of a two-person cooperative game without transferable utilities between 
Ci and Ci-i (see for instance LEMAIRE 1979). 
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As an illustration, let us compute the Nash value of the chain (NASH 1950). 
Nash has shown that one and only one treaty satisfies the four following axioms: 

1. Pareto-optimality 
2. Linear invariance 

The solution is not affected by a linear transformation performed on the 
players' utilities. 

3. Symmetry 
Every symmetric game has a symmetric solution; if the players are not 
distinguishable by the rules of the game, the value shall yield them equal 
utility payoffs. 

4. Independence of irrelevant alternatives 
The solution is not affected by removal, from the feasible set, of any point 
except the solution itself and the disagreement point (no reinsurance, in 
our case). 

The only treaty that satisfies those axioms is obtained by maximizing the product 
of  the players' utility gains. In our model, this leads, for the negotiation of Pi 
between C~ and C~_~, to 

max 
P, 

U,_,[R,_, - l~_,(x) + l,(x) + P~_, - P~] - U~_,[R,_, + P~_, - l~_,(x)]~ 
l 

x {  U,[ R , -  I,(x)+ P,]-  U,( R,)} 

=max { E[a~. l ( l - e x p [ - a ' - ' ( R ' - ' -  l ' - ' (x )+ l ' (x)+ P ' - ' -  Pi)]) 

- E [ a - ~ _  ( 1 -  e x p [ - a , _ , ( R , _ , -  I,_l(X)+ P,-i)])]  } 

x { E [ ~ ( 1 - e x p [ - a i ( R , -  l ,(x)+ Pi)])] - ~ ( 1 - e - " ' R ' ) } .  

It is equivalent to maximize 

{-ea,- ,~E{exp[-a,_,( l i(x)  - l,_,(x))]} + E[exp(ai_, li-l(X))]} 

x {1 - exp(-a,Pi)E[exp(a,li(x))]}. 

Denote M( t )  the moment-generating function of the claims amount distribution, 
and let 

A, = E {exp[-a,_~( li( x ) - li_,(x))]} = M[ a,_,( i,_~ - i,)] 

B, = E[exp(a,l~(x))] = M[a,ii] 

C~ = E [ e x p ( a ,  li_,(x))] = M[a,-lii-i], 

introducing the notation ii = l ,(x)/x. The product to maximize reduces to 

[ - A , .  ea'- 'e '+C,][1-B," e-a,e,]. 
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The first order condition is 

- a i - l A i  e a'-'p' + AiBi( ai-i - a~) e P,(a,-'-a,) + B~Cia~ e -°`e' = O. 

Let 

The equation reduces to 

A = - a i _ l A i  

B = A,Bi(ai-i  - al) 

C = aiBiCi 

X = e a~-,p~ 

y = e-aiP,. 

A X +  B X Y +  C Y = O .  

This is the equation of a conic, of center ( - C / B ,  - A / B ) ,  if B # 0. By performing 
the change of variables 

C A 
X ' = X + . ~  and Y'= Y+-~,  

the equation becomes 

A C  
X ' Y ' =  B 2 

and can easily be solved numerically. 
If B = 0, the equation reduces to A X  = - C Y ,  and the solution is 

p i _ l o g  ( - C / A )  

a,- I -I- Qi 

Nash's solution possesses numerous interesting properties (ROTH 1979). Among 
others, the utility assigned to a player increases as his opponent becomes more 
risk-averse. So the higher the risk aversion of a participant of the chain, the 
higher the premium P~ he will pay for his protection. 

A first approximation of Pi can be obtained from equation (3) by expanding 
the exponentials around the reserves. The first-order approximation is 

l + ai[ l i ( x ) -  P,] l + ai_,[ P i -  Pi_, + l i _ , ( x ) -  l i(x)] 

l -a ,P i  l + a,- ,(  P i -  e i - , )  

A straightforward development, using relation 

l i (x)  ai-, 

l i_,(x)  - ai-, + ai' 

leads to 

a i - i  p,= P,_, 
a~ + ai+! 
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and to 

",=(.0, aj_t + aj /  

So, as a first approximat ion,  the same relationship applies to the indemnities 
and the premiums:  any part icipant  in the chain will pay a certain fraction of  all 
claims, after collecting the same fraction of  the original premium. 

5 .  C O M P A R I S O N  W I T H  G E R B E R ' S  M O D E L  

Applied to the simple t ransact ion between an insurance company  and its reinsurer 
(n = I), formula  (4) reduces to 

l , ( x )  = ao 
ao 4- at X, 

while Gerber ' s  model led to 

/ ; ( x )  a,____~__ x. 
2ao4- at 

Consequent ly  the latter proposal  is not Pareto-optimal.* This can be shown 
directly. Denote  Uo and Ut the expected utilities when the indemnity is l~(x), 

t ! t . and Uo and Ut,  the expected utilities corresponding to I t ( x ) ,  we need to show 
that 

Uo ~> U~ and U~i> U], with at least one strict inequality. 

The first inequality 

~o[1 - e x p ( - a n [ R o +  P o -  x - Pt + I t (x) ] ) ]  a G ( x )  

[ l - e x p ( - a o [  Ro+ P o - x -  P't + i't(x)])] d G ( x )  

reduces to 

e%n' M [  ao( 1 - i,)] ~< e%P~ M [  ao(1 - i'l)]. 

I f  the claim amounts  are normally distributed, of  mean m and s tandard deviation 
cr z, M ( t ) =  e ' '  e '2''/2 and the inequality becomes 

ao(l - i,)2¢r2 ao(l - i ' I)2o'2 
Pt 4-(1 - i~)m 4 ~ P'~ - ( 1  - i',)m 4 

2 2 

The same computa t ions  for the second inequality )ead to 
. t2  

- P i  4- mit 4- a'i~°'2 °'2 attl ~ - p't + i'~ m 4. - -  
2 2 

* Of course, in a two-company chain, "local" and "global" Pareto-optimality amount to the same 
thing. 
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Assembling the two inequalities, we obtain 

• ix , 0 1 0 " 2 / - 2  .t ~ .t 
P i + m ( i l - t t / . . t - - - ~ t t l - i i 2 ) ~ < P , ~ < P i + m ( i ~ - t , ) +  [(1 - t~)2-(1 - i,)2]. 

So, whatever  the premium P'~ in Gerber ' s  model,  it is possible to find a premium 
P~ in our  model that improves both companies '  situations iff 

• 2 "t2 -t 2 - l , )  -(1 )2]. a , ( t l - - l t  ) < ao[(1 --il 

Replacing i~ and i't by their respective values ao/(ao+ a~) and ao/(2ao+ a~), it is 
easily seen that this inequali ty is always satisfied. 

6. O T H E R  U T I L I T Y  F U N C T I O N S  

Some results can be obtained without specifying the form of  the utility function. • 
According to the Taylor -Lagrange  theorem there exists 0 <  0 <  1 and 0<,5  < 1 
such that (1) can be written 

u',( R, + P,) - I,(x)u','( R, + P, - Ol,(x) ) 

uS(R, + P,) 

u'i-,( Ri- ,  + P,-, - P,) + [ l i (x)  - l , _ , ( x ) ]uL , [  Ri_, + P,_, - P, + 5̀ ( l , (x)  - l i_ ,(x)  )] 

uI- , (  R,_, + P~- , -  Pi) 

t !  u,_,[ R,_, + P,_, - P, + ,5( l , (x)  - 1,_, (x))]  

uI_,( R,_, + P~_t - P~) 
I i(x)  - l ,_,(x) ,  

uTE R, + P, - OI,(x) ] uT_t[ R,_, + P,_, + P, + ,5( I , (x)  - I ,_,(x)  ) ] 

ui( R, + P~) u~_~( R,_~ + P~_~ - P~) 

r,-t( Ri-,  + P,-, - Pi) 
L(x) ~ h_ , (x ) ,  

ri( R, + Pi)+ r.-i( R,-i  + P i - i -  Pi) 

where r i ( x ) = - u T ( x ) / u ' i ( x )  classically denotes the risk aversion function of  C~. 
So a highly risk averse company  will only take over a small port ion o f  the liabilities 
of  its predecessor  in the chain. 

By differentiating (2) with respect to x, we obtain 

I! 
" - - I L  i - - I  u i [ g i + P ~ - l , ( x ) ] [  OI,(x)~ u;' rR + P ~ _ ~ - P i + I i ( x ) - I i _ , ( x ) ]  

u~( R, + P,) \ - - ~ - ' ]  - u;_t( g,_,  + P,-l - e,) 

o,,-,(x) 5 
\ ax Tx / 

u','_t[ R,_1 + P,_~ - P, + I , (x)  - l ,_ t (x)]  
OI,(x) u',_, (R,_, + P , _ , -  P,) Ol,_,(x) 

ax uL,[R,_,+e,_,-~+I~(x)-l;_,(x)] uT[R~+P,-t,(x)] ax 
uL,(n,_, + P,_, - P,) ul (R,  + P,) 
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So, except in the case of risk neutrality, 

0l,(x) < ol,_, (x): 
Ox Ox 

the risk becomes more and more diluted as the chain progresses; the indemnities 
become less sensitive to the claims. 

7. SECOND MODEL 

In our second model we assume that the whole chain is entirely formed, and 
known by all participants, when the risk is underwritten. A "global" Pareto- 
optimal treaty is sought; Borch's theorem has to be applied simultaneously to 
all companies 

u ~ [ R , - y i ( x ) ]  = ki_|u'i_~[Ri_l- y i _ l ( x ) ] ,  i =  1 . . . .  , n, 

with 

and 

y , _ , ( x )  = Pi - P~-i + / , _ , ( x ) -  l,(x) 

y,(x) = P,+,-  P~+ I,(x)-  l,+dx). 

We obtain, again assuming exponential utilities, 

e x p ( - a , [ R i -  Pi+~ + P~ - L ( x )  + L+,(x)]) 

= ki_~ e x p ( - a , _ ~ [ R , _ z  - P~ + P~-i - l~_~(x)+ If(x)]). 

If x =0,  l , ( x ) =  I~_ i (x )= l~+,(x)=0, and 

k~_~ = e x p [ - a , (  R, - P~+ ~ + P,) ]/  e x p [ - a , _ , (  R,_,  - P~ + P~_~)]. 

T h e n  

(5) 
e x p ( - a , [ R , -  Pi+, + Pi - l , ( x )  + l i+,(x)])  

e x p ( - a , [  Ri - P,+, + P/]) 

= e x p ( - a , _ ~ [ R , _ ,  - Pi + P,- ,  - L-i(x)  + l~(x)]) 

e x p ( - a , _ ~ [  R,_,  - P, + P~_, ]) 

After simplifications, we obtain the following system of n equations with n 
unknowns 

(6) - a ~ _ , l , _ l ( x ) + ( a , _ , + a , ) l ~ ( x ) - a ~ l , + ~ ( x ) = O ,  i =  1 , . . . ,  n 

with l o ( x ) = x ,  In+l(x) =0.  
So 

a ~ [ l ~ ( x ) - l , ÷ ~ ( x ) ] = a ~ _ ~ [ l i _ ~ ( x ) - L ( x ) ]  forall  i=  1 , . . . ,  n. 
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Denote this common quantity by H. Since l o ( x ) = x  and l , ,+,(x)=0,  we have 
immediately 

" H 

i=o  ai  

and 

/ n l 

H--X/5o  
Thus the net payment of company i is 

_-!/i ±. (7) l i ( x ) - l , + t ( x )  ai/ j=oaj x. 

The gross payment is 

= - - . x ,  i = O , . . . , n .  
k=i ak/  j=o a j  

The determination of  the premiums is now more complicated, since it is 
equivalent to the computation of the value of a (n + l)-person cooperative game 
without transferable utilities. Several value concepts are suitable, but the calcula- 
tions become extremely complex. A first approximation of Pi can be obtained, 
like in the first model, by expanding the exponentials in (5) around the reserves. 
The first-order approximation is 

l + a i [ P i + , - P , . +  l i ( x ) - l i + , ( x ) ]  l + a i _ , [ P i - P , _ , +  l , _ , ( x ) - l i ( x ) ]  
m 

1 + a , ( P , + ,  - p , )  l + a , _ , ( P ,  - P , _ , )  

After development and repeated use of (6) this reduces to 

- a , _ ,  Pi-, + (ai + ai_,) Pi - aiPi+, = O. 

The same relationship thus applies to the premiums and the indemnities. 
Consequently, in first approximation, 

i±/i 
Pi  = - - "  x :  

k=i ak / ;=O aj 

the same fraction is to be applied to the initial premium and to the claims to 
obtain the liabilities of each participant. 

Note that formula (7) is nothing else than (1): each company pays a net share 
of each claim which is inversely proportional to its risk aversion. So the chain 
reduces to the "classical" risk exchange. 
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