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ABSTRACT 

The estimation of risk premium for individual car models is discussed. Cluster 
analysis is used to identify groups of car models with similar technical attributes. 
Credibility theory is used to combine estimates of risk premium from individual 
car model claim statistics, group claim statistics, and a technical assessment 
carried out by car experts. The procedure is applied to a small set of  car models. 
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I .  THE PROBLEM AND AN OUTLINE OFF THE SOLUTION 

In Sweden the premium charged for a private motor insurance policy depends, 
principally, on four rating factors: geographical area; mileage; no-claims bonus; 
and car model. In this paper the problem of using car model as a rating factor 
is discussed. Each car model is allocated to a car-model insurance class, and the 
premium charged depends on this classification. The allocation of car models to 
insurance classes presents few difficulties for car models that are common and 
have been in existence for a few years. However, for cars which are so new or 
are so uncommon that little (or no) claim statistics are available, the solution is 
less trivial. 

The allocation of car models to insurance classes depends on the risk premium, 
i.e., expected claim amount in relation to the exposure to risk. The basic problem 
can thus be defined as estimating a risk premium. 

In order to estimate the risk premium three sources of information can be 
defined. 

1. Claim statistics for the car model itself. 
2. Claim statistics for car models which are similar to the car model in question. 
3. A technical assessment of the car from an insurance point of view. 

Provided that the amount of claim statistics is sufficient, the first of these 
sources yields the best objective estimate of risk premium. However, in the event 
of a limited amount of claim statistics, for example if the car is new or uncommon, 
the other two sources must be brought into play. 

* A previous version of this paper was presented to the Astin Colloquium at Biarritz, France. 
t The work was carried out whilst the author was working at the Swedish Actuarial Research Board. 
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In the past these three sources of  information have been combined in a fairly 
subjective manner. Although this has probably resulted in satisfactory results, an 
objective method for combining the sources of  information is to be preferred. 
Figure 1 outlines the solution proposed. 
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FIGURE 1. Schematic representation of the solution proposed 

In this paper  we first address the problem of finding "similar" car models, in 
particular cluster analysis methods are mentioned. This allows us to identify 
groups (or clusters) where car models within the group have similar attributes 
(such as engine power, weight etc.). 

The intention is to use known technical attributes of  car models to form groups 
where the risk premiums are relatively similar. A small sample of fairly common 
car models has been taken, and some cluster analyses applied (using attributes 
engine power, and weight of  car). The resulting groups have been examined, 
with particular reference to the estimated risk premium for third party insurance. 
This showed that use off the grouping structure went a long way towards differen- 
tiating between risk premiums. 

Having identified an estimate of  risk premium from each of the three sources, 
the problem remains to combine these estimates. Linear combinations of risk 
premium have been considered, in other words a weighted combination such as: 

a x estimated risk premium from claim statistics for the car model 

+ b x estimated risk premium from claim statistics for a group of  similar car models 

+ c x estimated risk premium from a technical assessment. 

Estimates for a, b and c need to be found. In fact for reason of presentation 
(of both methodology and of results) the process is split into two parts. Firstly 
a linear combination of  the first two sources of  information is considered. This 
problem can be solved by using credibility theory, and use is made of the 
Biihlmann-Straub model to attain a credibility estimate of  risk premium (from 
now on called a pure credibility estimate in this paper). 
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This estimate can then be linearly combined with the estimate from the technical 
assessment. Appropriate weights for the pure credibility estimate and the technical 
estimate are found by means of a simple extension of the credibility model. 

2. E S T I M A T I O N  O F  RISK P R E M I U M  FROM A S I N G L E  S O U R C E  

2.1. Motivation 

Before considering how risk premium estimates can be combined, a few words 
should first be said about how we expect to estimate risk premium from each of 
the "sources of information". 

2.2. Estimation of Risk Premium from Claim Statistics 

Risk premium is the ratio between the total claims cost and the exposure to risk. 
The total claims cost is well defined, but a definition of exposure to risk is not 
so clear cut. Some of the more common measures of exposure used in actuarial 
studies include: number of policies; number of policy-years; and total premium 
charged. Each measure has its own advantages and disadvantages, and care must 
be taken when making a choice. In Sweden we are fortunate to have available 
in our database a very good measure of exposure: that is a measure called 
"number of normalised insurance years". To obtain this, the amount of time that 
each policy is effective is multiplied by the appropriate rating factors (for bonus/ 
mileage/geographical area) to give a normalised exposure. This is then summed 
over the appropriate policies to give the total number of  normalised insurance 
years. 

The method of obtaining suitable rating factors is not discussed here. One 
method would be to use a classical factor analysis model (see for example VAN 
EEGHEN et al. 1983) on a sample of car models, using bonus, mileage, geographical 
area and car model as factors. 

Risk premium can then be defined as 

Total amount of claims 
Risk premium = 

Number of normalised insurance years" 

The chief advantage of this measure of exposure is that it allows for the fact 
that certain types of cars are driven by drivers in high (/low) risk groups. 

2.3. Estimation of Risk Premium from a Technical Assessment 

There are a number of studies which have tried to establish a link between the 
risk premium and a detailed technical description of  a particular car model. There 
are, however, problems in applying such methods not least of which the problem 
of data availability. For example the costs of  relevant spare parts are not 
necessarily available when a new car model is allocated to an initial insurance 
class. It is thus preferable to use the present practice where experts conduct a 
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technical assessment of the car and use their judgement to estimate a risk premium. 
Not.e that the usual practice is to express this judgement in terms of an assignment 
to an. insurance class. As discussed in the following section, the insurance class 
is just a one-to-one transformation of risk premium. The assigned insurance class 
can thus be used to construct an estimated risk premium. 

2.4. Relationship Between Risk Premium and Insurance Class 

For the purpose of calculating premium, each car model is assigned to a car 
model insurance class. This allotment is quite simply a transformation of the risk 
premium for the car model in question. 

i = [ f ( r ) ]  

where: i is the insurance class, r is the risk premium, [x] denotes the  nearest 
integer to x, f ( r )  is a monotonically increasing function of r. 

Note that f ( r )  should include some method of indexing the risk premium. 
One example of a suitable function for f ( r )  is the linear function: 

f ( r )  = kl + k2r 

where k~ is changed from year to year to reflect inflationary increases in claim 
costs, and both k~ and k2 are used to produce a reasonable spread of insurance 
classes. 

The choice of transforming function is essentially a political decision. Its 
importance for this paper is that technical experts find it easier to express their 
judgement of risk by reference to insurance class instead of "raw" risk premium. 
Knowledge o f f ( r )  is thus essential if we are to convert a judgement of insurance 
class to an estimated risk premium. 

3. C L U S T E R  A N A L Y S I S  O F  C A R  M O D E L S  

3.1. Motivation 

One possible source of information to aid in the allocation of car models to 
insurance classes, is the claim statistics of similar car models. The first question 
to ask is: what do we mean by similar? It is, of course, possible for experts to 
look at and compare various car models and say how similar they are. This has 
several drawbacks: 

(a) The measure of  similarity is a qualitative instead of a quantitative 
judgement. 

(b) The creation of  a group of similar car models will be done on subjective 
and not objective grounds. 

(c) The exercise is time consuming. 

In order to achieve a useful quantitative judgement of similarity we need to 
seek suitable measurable technical data on car models. For example it has long 
been claimed that there is a relationship between risk premium and the car 
weight/power. 
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Having formed a quantitative measure of  similarity, cluster analysis methods 
give a way of forming groups (or clusters) or car models where car models in 
the same group are in some sense similar. 

A full discu'ssion of  cluster analysis is not possible here, and for further 
information, the reader is referred to HARTIGAN (1975). The intention in this 
paper  is to illustrate how cluster analysis can be used, rather than to give an 
exhaustive analysis of  the data. 

3.2. A Pilot Study 

For the purposes of  illustration, a sample of 50 car models has been taken. The 
car models chosen are all fairly common,  and have a relatively large amount of 
claim statistics. For each car model we have extracted the following information: 

(a) Manufacturer. 
(b) Model name. 
(c) Code (as defined by the central car classification author i ty- -BKK).  
(d) Weight in kg (averaged over cars given the same model code). 
(e) Engine power in kW (averaged over cars given the same model code). 
(f) Estimated Risk Premium (third party insurance). 

Note that We have defined a "car  model"  as all cars with the same code number. 
Figure 2 examines the effect of both weight and engine power on risk premium. 

Those car models in the top third have been given the symbol +, those in the 
middle third the symbol 0, and those in the bottom third the symbol - .  These 
symbols have then been plotted on a graph with axes weight and engine power. 

The relationship between weight/engine power and risk premium is clearly seen. 
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FIGURE 2. The effect of engine power/weight on risk premium 
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3.3. Clus ter  A n a l y s i s  o f  C a r  M o d e l s  

As indicated before, it is not possible to fully discuss here the application of all 
types of  cluster analysis. Instead we content ourselves with one particular method, 
which illustrates how cluster analysis can be used. 

The first step in a cluster analysis is to define similarity (or dissimilarity) 
between objects. In this case we use sum of squares: 

Let x o = measure ofat t r ibute j  on object i; i = 1, n ; j  = 1, m. Define d i s s im i la r i t y  
between objects k and l: 

dkl = ~ Wj(Xkj- -Xo)  2. 
jffil 

For weights wj we have used the inverse of attribute variance, i.e., 

wj - , ~.j = - xq.  
1 ~g (x O_~.j)2 n i=1 

( n - I )  i=, 

Having formed a matrix of dissimilarities between objects the next stage is to 
define a criterion for forming groups. 

In this case we use Wards method, i.e., we find a partition into G groups such 
that 

~-~-- ~ dks is minimized 
g = l  n/g ~ l ~ S g ; k < l  

(where ng = number of objects in group g and S s =set  o f  indices of objects 
allocated to group g). 

We can prove that this is equivalent to minimizing 

G 
Z 2 

g=l keSsj=l 

where 

.j = X O . 
ng  i=!  

In other words we are looking to minimize the within group weighted sum of 
squares. 

The method according to Ward is carried out stepwise. We start with n separate 
groups, each group containing a single object. At each stage we amalgamate that 
pair of groups which leads to the minimum increase in sum of squares. 

The results of such a method can be illustrated by means of a dendogram, or 
tree diagram. Figure 3 gives the dendogram for the analysis of the sample set of 
car models (using the attributes engine power and car weight). Note that reading 
from left to right we can see at what level groups are amalgamated. 
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-J i 

FIGURE 3. Dendogram of cluster analysis 

From the dendogram we can see how the sample set of car types can be 
partitioned into five groups. These five groups are used in the subsequent analysis. 
The choice of  how many groups to take is fairly arbitrary, but in the practical 
implementation the emphasis would be on producing groups with su~cient  
numbers of car types to give a good group risk premium estimate. 

The important question to now ask is: has this partition helped differentiate 
risk premiums? 

3.4. Has the Cluster Analysis Helped ? 

Our aim in conducting the cluster analysis was to form groups of car models 
with similar technical characteristics, which hopefully have similar risk premiums. 
Having conducted a cluster analysis of  a sample set of car models, let us now 
look at the risk premiums in those groups. Note that we have chosen car models 
with a relatively high amount of claim statistics, thus yielding risk premium 
estimates which can be regarded as fairly accurate. 

To investigate the within group risk premiums, Box Plots have been drawn 
(see Figure 4). For those not familiar with Box Plots, a quick explanation might 
be useful. 

A Box Plot is a diagrammatic representation of the location and spread of a 
set of data. The data is first ordered, and the following key values registered. 

(a) Max value. 
(b) Upper  quartile (i.e., ~ way down the list). 



172 CAMPBELL 

ALL 

Group } Gr~2 

Grou 

Grou, 4 

6r i 55 

i I i i i r I J i i i 

Av. weight llO0 837 944 1083 1231 1369 
Av, power 56 31 47 52 67 83 

FIGURE 4. Box Plots of estimated risk premium for all cars and individual groups 

(c) Median (i.e., ½ way down the list). 
(d) Lower quartile (i.e., -~ way down the list). 
(e) Min value. 

On a vertical scale the spread between quartiles is illustrated by a box and the 
median is plotted inside this by a straight line. The spread to max/min  values is 
then plotted by simple straight lines (or "whiskers").  More information can be 
found in VELLEMAN and HOAGLIN (1981). 

A Box Plot of  all estimated risk premiums, together with Box Plots of  estimated 
risk premiums for individual groups, are given in Figure 4. It is clear that, in 
general, the groups di~erentiate quite well between risk premiums, although the 
difference between groups 4 and 5 is debatable. The average within group weight 
and engine power are also shown, and we can see that groups 4 and 5 represent 
the heavier more powerful cars. It could well be that the relationship between 
risk premium and weight/engine power tails off for higher values. 

The fact that two groups have similar risk premiums does not adversely effect 
the ensuing analysis. The cluster analysis will be a positive aid provided that 
there are some groups with differing risk premiums. 

Further to the analysis with Box Plots we can also conduct an analysis of 
variance (of risk premiums). Clearly there is a significant difference between the 
groups in terms of risk premium. 
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Degrees Mean Square 
Source Sum Squares Freedom Error F-Ratio 

Between Group I 1 030.25 4 2757.56 18.63 
Within Group 6 660.77 45  148.02 

Total 17 691.02 49 

3.5. Further Remarks 

So far, only the two attributes weight and engine power have been considered. 
Other attributes may also be of help, for example: 

(a) average age of car model, 
(b) manufacturer,  
(c) breadth/length etc., 
(d) form of car ( e s t a t e / sa loon / spor t s / . . . ) ,  
(e) engine type (diesel/petrol). 

The value of weights wj in the calculation of similarity could also be investigated 
further to see if better results an be obtained. Indeed other measures of  similarity 
and clustering criterior could be considered. 

4. APPLICATION OF THE BI~IHLMANN-STRAUB MODEL 

4.1. Motivation 

The relationship between individual risk and collective risk is a key problem for 
the insurance mathematician. If we knew enough about an individual risk in 
terms of expected future claims, there would be little problem in calculating an 
insurance premium. This is rarely the case, and the insurance mathematician 
needs to consider a collection of risks when estimating the insurance premium 
for an individual risk. 

Credibility theory gives us a way of combining the little information that we 
do have on an individual risk with the information on the collective. 

In this case we want to consider how to combine claim statistics for an individual 
car model with claim statistics for the relevant group of car models. 

4.2. The Model 

The model suggested by BUHLMANN and STRAUB (1970) can be defined as 
follows: Let Pq = a fixed (known) measure of  the volume of data or risk exposure 
of  car model j in year i; xo = the i~3ss ratio (i.e., claims paid divided" by Po) of 
car model j '  in year i; n = the number of  observation years, N = the number of 
different car models. 
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We expect car model j to differ in some respect from other car models, and 
assume that this difference can be characterised by a risk parameter which differs 
from car model to car model. 

0 r = the risk parameter for car model j. 

In the Biihlmann-Straub model the following assumptions are made: 

BS1. Conditionally, for fixed 0r, the random variables Xu, X2 j , . . . ,  X,~ are 
independent. There exist functions p, and o-2 of #, and known positive constants 
Pu such that 

E [ x o l ¢ ] = ~ ( o r )  

and 

var [X01 0~] = o-2(¢)/P0. 

BS2. The vectors ( O r, X l j ,  X2r . . . . .  X , j ) ,  j = 1 , . . . ,  N are independent and the 
random variables Oj,j  = 1, 2 , . . . ,  N are independent and identically distributed. 
Define 

P,j 

N 

P = E P j  
j = |  

xj= ~ P,jx,j/ 8 
i = l  

N 

x =  E 6 .E/P  
j ~ l  

= E[~(Or)] 

v= E[o-2(Or)] 
w = var [~(0j)]. 

Biihlmann and Straub show that the greatest accuracy linear estimator of/x(0j), 
i.e., the estimator that minimises 

El{ E [X(.+,)r I OA - go - g , X , r  . . . . .  g°X.r} ~] 
is 

where 

g(oj) =,~jxj + (1-  o~j)~ 

For the purposes of this paper this estimate is called the pure credibility estimate. 
Assuming we have data for X~ and Pu, it just remains to find estimators for 

the parameters /z, v and w. 
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Note that p, represents the overall mean value, v represents the within car 
model variance and w represents the between car model variance. 

• 4.3. Parameter Estimators 

There is much discussion in the literature on parameter estimation in the 
Bi.ihlmann-Straub model (see for example DUBEY and GISLER 1981). I suggest 
the following: 

1 N ~=-:E ajg 
O/j=l 

where 

N 

j= l  

gw / (13w + ~) 

1 N 1 

1 up,  
,=z - x ) = - ( N  - 1 ) >  

Note that ~ can be less than 0 in which case the estimator of ~(0j) is taken as: 

~(oj) = ~ P 

i.e., we assume that there is no heterogeneity in the portfolio. 

4.4. Additional Comments to the Model 

4.4.1. Exposure 

The model requires a measure of exposure for each car model. The measure used 
in this study was "number of normalised insurance years". Further details can 
be found in Section 2.2. 

4.4.2. An Inflation Free Measure of  Loss 

Implicit in the model assumptions is that the claim process is stationary and free 
from the effects of  inflation. This is obviously not true if raw claim costs are 
used, and a method of  indexing is required. One suggestion for getting around 
the problem is to divide all estimates of risk premium by the risk premium for 
the collective of all cars. 
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5. INCLUSION OF TECHNICAL EXPERTS' JUDGEMENT 

5.1. Motivation 

A regular  p rob l em in the  a l loca t ion  o f  car  mode l s  to insurance  classes is that  a 
new car  mode l  must  be ass igned to a class before  any siich cars are sold,  let 
a lone  before  any claim stat ist ics have been ga thered .  At present  the p rob lem is 
solved by exper ts  conduc t ing  a technical  assessment  o f  the vehicle.  The result  o f  
the  assessment  is a l loca t ion  to an insurance  class, which is equiva len t  to an 
( a p p r o x i m a t e )  es t imat ion  o f  risk p remium.  This technical  assessment  can also 
be o f  use in the case where  the amoun t  of  c laim statist ics is small .  

A l though  the assessment  o f  the exper ts  is very much a subjec t ive  j udgemen t ,  
we can still s tudy the past  pe r fo rmance  of  such exper ts  and  arr ive at an es t imate  
o f  the accuracy  o f  thei r  assessment .  The  stat is t ical  es t imate  o f  risk p r e mium 
( fo l lowing  the me thod  desc r ibed  in Sect ions 3 and 4) also has an assoc ia ted  
accuracy ,  and  by compar ing  the accuracy  o f  these two es t imates  an op t imal  
c o m b i n a t i o n  o f  the two es t imates  o f  risk p remium can be found.  

5.2. Accuracy of the Experts' Assessment 

To date  no comprehens ive  s tudy o f  the accuracy  o f  the exper t s '  assessment  has 
been car r ied  out. However ,  a small  s tudy of  72 car  models  that  were ini t ial ly 
assessed in the mid  1970's has  been carr ied  out. A c ompa r i son  o f  init ial  assessment  
with the insurance  class in 1984 shows the fo l lowing (for  third par ty  insurance  
class) 

N u m b e r  o f  car  models  in s tudy:  72 
N u m b e r  with a h igher  insurance  class 1984: 19 
N u m b e r  with a lower  insurance  class 1984: 9 
N u m b e r  unchanged :  44 

All of  the  movemen t s  (up  or down)  were no more  than  one insurance  class. 

If  we assume that  the 1984 insurance  classes are correct ,  and  use insurance  
class as a measure  o f  risk p remium,  we can es t imate  the bias an accuracy  o f  the 
exper ts '  assessment  as fol lows:  

19 - 9  
Average  error - - -  - 0.13 

72 

Var iance  o f  e r ror  = ( i 9 + 9 - 102/72)/71 = 0.37 

S t anda rd  dev ia t ion  = 0.61. 

These  es t imates  canno t  be t rea ted  as any th ing  more  than a coarse  es t imate  o f  
the accuracy  o f  the exper t s '  assessment ,  but  they do  give us a s tar t ing point ,  

One.  of  the d rawbacks  with using this es t imate  of  risk p remium is that  the 
exper ts '  a ssessment  is expressed  as a whole  number .  There  is no reason why the 
exper t  shou ld  not be encourage  to give a dec imal  number ,  for e xa mp le  he might  
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give a car model an insurance rating o f  5.4 indicating that, a l though he would 
place the car model in insurance class 5, he considers the car model to be one 
o f  the more risky in that insurance class. 

Ideally we would also like the expert to give an estimate o f  the accuracy of  
his own assessment. This is not such a practical idea, but we could ask an expert 
to classify his assessment as: 

(1) Certain or 
(2) Fairly certain or  
(3) Not certain. 

A follow up study would show how accurate experts are and give estimates 
for variance. As a start we propose:  

Classification Standard Deviation 
Estimate Bias of Error 

(1) Certain 0 0.5 
(2) Fairly certain 0 1.0 
(3) Not certain 0 2.0 

5.3. Combination of Technical Assessment and the Pure Credibility Estimate 

In order to combine  the estimate of  risk premium obtained from the technical 
assessment with the pure credibility estimate already formed (see Section 4.3), 
the credibility model must be extended. 

Let ~ ( 0  i) = the estimate or risk premium as obtained from the technical assess- 
ment. Assume that E[fi(Oj)lO~]=lz(O j) and let q=E{Var[fi(O~)lS~]}. Condi-  
tionally, given 8j, the random variables fi(Oi), Xij . . . .  , X ,  i are independent .  

It then follows (see appendix for proof)  that the estimator that minimises 

E[{ E[Xc.+i ,j I 0~] - g o  - g ,  X , j  . . . . .  g . X . j  - hfi (Oj)} ~] 
is 

where 

~(0j )  = ajXj +/3jr2 (0j) + (1 - 09 - ,/3j)~ 

o 5 = l~wq/(pjwq+ vq+ vw) 

13~ = vw/( l~wq+ vq+ vw) 

and xj and fi(O i) are condit ionally uncorrelated,  given 0j. This can be reexpressed 
a s  

~( o~) = a~( oj) + (1 - a ) ~ ( o j )  

where a = q(Pjw+ v)/(Pjwq+ vq+ ow) and /.~(Oj) is the pure credibility estimate 
o f  Section 4.3. 
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5.4. Estimation of the Parameter q 

There are a variety of  possible estimators for the parameter  q. For example by 
noting that 

E {Var [/2 (0j) I 0j]} = Var [//(0j)] - Var [~ (0j)] 

we see that the following is a natural unbiased estimator: 

1 N 

where 

I would however recommend that an estimate of q is obtained by means of 
some form of follow up study where the initial assessment made is compared 
with the risk premium obtained after several years claim experience. Such a study 
is important in particular to analyse any bias in the assessment made, since the 
credibility analysis is built on the assumption that 

In such a follow up study, one possible estimator is 

^ 1 tiff 1 

This can be justified by noting that 

E{Var [/2(0~) [ 0~]} = El{//(0~) - Xj} 2] - E{Var (X~ I 0~)} 

In the case where Pj is large, i.e., when Xj is an accurate estimate of  risk 
premium this estimator of  q approximates to the "variance of error" found in 
Section 5.2. 

6. A P P L I C A T I O N  O F  T H E  P R O C E D U R E  

To illustrate the procedure outlined in this paper, seven uncommon car models 
have been taken and an at tempt has been made to estimate their risk premiums 
(using the sample of  " c o m m o n "  car models analysed in Section 3). 

The group structure as presented in Section 3 has been preserved. The weight 
an engine power of  each new car model was then used to allot the car model to 
the "nearest"  group. The risk premium calculated from individual car model 
statistics was then combined with the group risk premium (following the method 
outlined in Section 5) to produce a pure credibility risk premium. 



TABLE 1 

A P P L I C A T I O N  OF THE P R O C E D U R E  TO SOME U N C O M M O N  CAR TYPES 

"1"1 
Pure O 

Car Engine Credibility Overall 
m 

Weight Power Assigned Number Risk Premiums Risk Premiums Risk Premium Estimate Estimate 
..-t (kg) (kW) to Group of Claims (Car Statistics)" (Group Statistics) (Technical Expert) of  Risk prem. Risk Prem. 

I 950 35 3 8 6.62 (~ 11.31 ) 9.02 (±4.74) 8.00 (±3.92) 8.48 (±4.37) 8.15 (±2.92) -1 
2 1330 53 4 73 17.03 (±6.62) 11.06 (±5.25) 10.00 (±3.92) 13.36 (±4.12) 11.14 (±2.84) 
3 1200 74 4 29 23.14 (±11.68) 11.06 (±5.25) 10.00 (±3.02) 12.92 (±4.78) 10.80 (±3.03) O 
4 1470 104 5 25 14.89 (±11.17) 11.28 (±6.49) 12.00 (±3.92) 12.19 (±5.61) 12.04 (±3.21) 7~ 
5 1660 140 5 53 20.79(±9.82) 11.28(±6.49) 11.00(±3.92) 14.17(±5.41) 11.71 (±3.17) 
6 1550 101 5 73 15.94 (±7.66) 11.28 (±6.49) 14.00 (±3.92) 13.23 (±4.96) 13.80 (±3.07) 
7 1430 70 5 115 11.28 (±5.45) 11.28 (±6.49) 10.00 (±3.92) 11.28 (±4.17) 10.42 (±2.86) 

t'll 

Notes: Claim statistics over a five year period were taken. For reasons of confidentiality Risk Premium is expressed in terms of artificial units. All estimates of  
Risk Premium are given with an estimated 95% confidence interval. 
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The initial risk premium as estimated by technical experts was then taken and 
combined with the credibility risk premium. Note that the value used for expected 
variance of a technical experts estimate of risk premium (i.e., ~ = 4) is not based 
on any factual study, but is given for illustrative purposes only. 

The results of  this exercise are given in Table I. The table gives details of each 
car's weight and engine power together with the assigned group. In the fourth 
column the number of claims for the car model in question is given to give an 
idea of how few claim statistics are available on the individual car models. The 
remaining columns give the various estimates of  risk premium, firstly from the 
various "'sources of information" an then the combinations of those estimates. 
Each estimate of  risk premium is given with an approximate 95% confidence 
interval (i.e., !.96 × standard deviation). 

The estimates used for confidence intervals of the risk premium estimates from 
individual "sources of  information" were calculated using the formula: 

(i) 1.96,,/v/P~ for risk premium calculated from car model claim statistics. 
(ii) 1.96v/-~ for risk premium calculated from the group claim statistics. 

(iii) 1.96,¢'-q for risk premium estimates by technical experts. 

In addition the following estimates were used for confidence intervals of the 
risk premium estimates using credibility and using the overall procedure: 

(i) 1.96~/(vw/(Pjw+ v)) for the pure credibility estimate 
(ii) 1.96~/(vwq/(Pjwq+ vq+ vw)) for the overall estimate. 

In addition Table 2 gives details of the effective weight given to each "source 
of  information" in calculating the overall estimation of risk premium. 

TABLE 2 

WEIGHTS GIVEN TO THE VARIOUS SOURCES OF INFORMATION 

Individual Group Technical 
Claim Statistics Claim Statistics Expert 

1 0.07 0.38 0.55 
2 0.18 0.29 0.53 
3 0.07 0.33 0.60 
4 0.08 0.25 0.67 
5 o. 10 0.24 0.66 
6 0.16 0.22 0.62 
7 0.27 0.19 0.54 

It can be seen that the estimates of  risk premiums calculated from claim statistics 
for individual car models are far from accurate. This is, of  course, not surprising 
given the few claims experienced during the five year period. A much improved 
accuracy in risk premium estimate can be found by combining with the risk 
premium as calculated from claim statistics for the whole group (see column 8). 
Further improvement can also be obtained by combining with the risk premium 
as estimated by technical experts. 
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The calculations carried out here are based on a small set of  car models (.just 
over 50). In Sweden there are more than 1500 car models on the road, and if we 
were to use all 1500 then we would expect to achieve the following benefits: 

(1) A larger number of groups, where within group variance of risk premium 
was smaller (i.e., w is smaller). 

(2) A larger number of  car models in each group, leading to more accurate 
estimates of  the credibility parameters (i.e., v, w, q and/.~). 

The assumed accuracy of technical experts judgement is also very conservative, 
although one should bear in mind that they are likely to have a lot more problems 
assessing an uncommon car model than a common car model. 

Overall we would expect the improvements in risk premium estimate illustrated 
in Table 1 to be surpassed when the method is applied to all car models. 

7 .  C O N C L U S I O N S  

This paper  sets out the methodology for combining three estimates of  risk 
premium for a particular car model from three sources of  information: claim 
statistics on the car model in question; claim statistics on similar car models; 
and a technical assessment by experts. Moreover methods for identifying "similar 
car models" are discussed. 

Application of  the methods to a limited set of  car models give very encouraging 
results. Technical attributes such as car weight and engine power appear  to be 
helpful in identifying groups of car models which have similar risk premiums. 
It is also apparent  that risk premium estimates for car models with few (or no) 
claim statistics can be dramatically improved. 

Although the results are encouraging, further work is needed before the pro- 
cedures are used in practice. Analysis using a larger sample of  car models is 
necessary, and particular attention should be made to the following points. 

(1) How well the assumptions behind the credibility model are fulfilled. 
(2) Whether improved credibility parameter estimates (i.e., of  v, w, q and /x) 

can be found. 
(3) Whether other technical attributes and /or  other clustering technics are 

useful. 
(4) How many years of claim statistics should be used, and whether other 

forms of credibility estimation (such as the evolutionary models suggested 
by SUNDT (1983)) give better results. 

(5) How well technical experts can assess the risk premium for car models. 
(6) How the method can be applied to the different elements of  insurance 

(fire, theft, third party etc.). 

The results of  using the procedures described here should also be compared 
with present practice, where estimates of  risk premium from the three sources 
are, in effect, subjectively combined. It is not expected that a dramatic improve- 
ment will be discovered, but the point is that the procedures described here 
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enable the process of  car model insurance classification to be put on a more 
objective footing. 
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A P P E N D I X  

Proof of  the result stated in Section 5.3. 
We wish to minimise 

El{ E[ Xtn+~)l Oj] - go- g~ X~j . . . . .  gnXnj -- h~ ( Oj)} 2] 

note first that 

E[(Z  - k) 2] = Var (Z)  + [ E ( Z )  - k] 2 (1) 

where k is a constant and Z is a random variable. 
The second term is minimised (at zero) when E(Z)  = k. Applying this we obtain 

g o = (  1 - ~ ,  g,-h)l'~" 

Secondly note that: 

Vat (Z)  = Var {E(Z  I Y)} + E{Var (Z  I Y)}- 

Applying this to the first term in (1), we are required to minimise 

Var[E{~(O~) -~ ,g iX ,~ -h~(OJ) lOJ}]+E[Var{ I z (Oi ) -~ ,g ,X , j -h l2 (Oj ' ]O~}]  

= V a r [ ( 1 - ~ =  g,-h)~(Oj)]+E[,~,Var{g~X~jlO~}+Var{hfi(Oj)]O~} ] 

= 1 -  ~ g i - h  w+ ~ g~v/Po+h2q 
i = |  i = l  

by differentiating with respect to h and g~ we find the minimum when 

h = vw/(Pjwq + vq + vw) 

gi = Powq / ( Pjwq + vq + vw ) 

thus 

hence the result. 

giX~i = ~wqXj/  ( Pjwq + vq + vw) 
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