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A B S T R A C T  

We consider a generalisation of a risk process under experience rating when the 
aggregation of claims up to time t is a Brownian motion (B.M.) with a drift. We 
prove that the distribution of rum before time t is equivalent to the distribution 
of the first passage time of B.M. for parabolic boundary. 

Using Wald identity for continuous time we give an explicit formula for this 
distribution. A connection is made with discounting risk model when the income 
process is a diffusion. 

When the aggregation of claims is a mixture of  B.M. and compound Poisson 
process, we give (using Gerber 's  result 1973) an upper bound for the distribution 
of finite time ruin probability. 
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i .  I N T R O D U C T I O N  

The purpose of this paper  is to analyse the ruin probabilities (finite- and infinite- 
time horizon) for a risk process, where premiums are collected continuously on 
the basis of  the "per turbed"  experience rating model 

The principle of  the experience rating IS to adjust premiums by taking into 
account previous information. Nevertheless, there is a difference between examin- 
ing premiums in a theoretical way and how they are applied in reality. 

Actually, in practice, the insurer uses "some kind" of experience rating principle 
and takes into account, let us say, indirect influence factors like, for example: 

(1) Uncertainty of  inflation; 
(2) Time lags between the calculation of premiums and the collection of data 

concerning claims. 
(3) Uncertainty due to a lack of precis~ knowledge about economic activity. 

RANTALA (1982), in his studies of the insurance industry in Finland, suggested 
(see section 2.2. "models  for premiums fluctuation") to add to the experience 
rating model (for the discrete case) a "noise"  term, which seems to be a good 
approximation to real situations. 

Following this idea, in order to take into account the indirect influence factors 
discussed above, we will add a perturbation by introducing a Brownian motion 
(B.M.) for the continuous case considered here, and will say that we have a 
perturbed experience rating. 

ASTIN BULLETIN Vol 16. No I 



34 ABIKHALIL 

Our analyses (Section 4) will rely on a fundamental theorem of SHEPP (1967). 
For convenience and to make the paper self-contained, this theorem is restated 
in the appendix 

This paper is organised as follows. In Section 2 and 3 we describe the risk 
process under "perturbed experience rating". 

Section 4 is devoted to analyse the ruin probabilities in finite and infinite-times 
intervals, when the aggregation of claims up to time t, {S(t), t~0}  is a B.M. with 
a drift. A connection with classical risk process with discounting is done. 

Finally, in Section 5, we apply Gerber's result (1973) to give an upper bound 
for the ruin probability before t, when {S(t), t~-0} is a linear combination of 
compound poisson process and a B.M. with a drift. 

2.  D E S C R I P T I O N  O F  T H E  R I S K  P R O C E S S  A N D  N O T A T I O N S  

We consider a risk process in which the total premium received in the time-interval 
[0, t] is denoted by P(t) ,  and we represent by {S(t), t~0}  the aggregation of 
claims up to time t. We assume that the process {P(t),  t~>0} and {S(t), t~0}  are 
Markovian and defined on a probability space (~,  F, P). 

Finally, let {Z(t),  t >10} be the surplus process of a company, and write x for 
Z(0). We have: 

(1) Z ( t ) = x + P ( t ) - S ( t ) ,  t~>O 

3.  P E R T U R B E D  E X P E R I E N C E  R A T I N G  A N D  T H E  C O R R E S P O N D I N G  

SURPLUS PROCESS 

Consider a risk process satisfying (1) where each element of premium is modified 
by refund or surcharge according to the stochastic differential equation: 

(2) d P ( t ) = ( p - k ( P ( t ) - S ( t ) )  dt+crdW(t) ,  t~O 

with P ( 0 ) =  0 a.s. and where: 

(i) p is the base premium constant rate 
(ii) { W(t),  t ~  0} is a standard B.M. process i,ndependent of {S(t), t ~  0} 

(iii) a positive constant, k being the "experience rating factor" (0 < k < 1, in 
general). 

Equation (2) is linear stochastic differential equation Using classical result from 
GIHMAN and SKOROHOD (1972), its solution is 

P ( t ) = e  I_'k - l ) + k  eZ'S(s) ds+o'X(t)  , t~O (3) 

where 

(4) X( t )  = eZ'dW(s),  t~O .  
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Substituting (3) in (1), Z( t )  becomes 

(5) Z ( t ) = x + ~ ( 1 - e - k ' ) + k e  -k' ek~S(s) d s + o ' e - k ' X ( t ) - S ( t ) ,  t~O 

In order to characterise and reduce this expression we have the following two 
propositions. 

PROPOSITION 1. {X( t ) , t ~O}  is a gausslan process with zero mean and with 
covarlance : 

f mm(~,r) 

(6) cov (X(s ) ,  X ( t ) )  = Jo e 2k" du = j-2k (e2ktm'"c"s~-- 1). 

PROOF. The fact that X ( t )  is gaussian with zero means is obvious. For relation 
(6), it suffices to use the well-known property: 

(7) E f ( t )  dW( t )  . g(t)  dW( t )  = f ( t )  . g(t)  dt 
a ~ l a  

where in this formula f and g are assumed to be continuously differentiable on 
the indicated intervals of integration. The proposition follows then by an elemen- 
tary computation. [] 

Assume now that {S(t), t/>0} is stationary, independent increments, finite vari- 
ance with S ( 0 ) = 0  a.s. and belonging to D[0, oo) where D[0, c~) denotes the 
space of functions on [0, oo) that are right-continuous and have left-hand limits, 
we have 

PROPOSITION 2. The process {jr 0 e ke dS(s),  t !> O} ts well defined, a.s. finite, and 
every sample path satisfies the following relation : 

;o fo (8) e~ d S ( s ) = e k ' S ( t ) - k  e~S(s)  ds. 

PROOF. See HARRISON (1977) Proposition 2.1. [] 

COROLLARY. Under the assumption of  proposition 2 and substatuting (8) tn (5) 
the surplus process can be expressed as: 

fo (9) Z ( t ) =x +T P(1  - -e -k ' ) - -e  -k' e~dS ( s )+e -k ' o ' X ( t ) ,  t~O. 
K 

4. RUIN PROBABILITIES WHEN {S(t),t>~O} iS A a M  WITH A DRIFT 

4.1. Description and Charactertsation of the Surplus Process 

Assume moreover that S(t)  satisfies the differential (stochastic) equation; 

10) dS(t)  = m dt+oh dW~(t) 
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where rn is a posttive constant  and { W~(t), t/> 0} is a s tandard B.M. independent  
of { w(t),  t~0}. 

Then the relation (9) gives: 

(11) Z ( t ) = x + ~ ( l - e - k ' ) - e - k '  Io e~ m d s + e - k ' ( c r l X l ( t ) + o ' X ( t ) )  

where we define, as before 

fo Xl( t )  = - e a dW~(s). 

From proposi t ion 1, {X~(t), t >i 0}, is a gaussian process independent  of  {X(t ) ,  t/> 
0} with zero mean and as covariance function; 

1 (e2kl~,n,,~, 1). cov (X,(s), x , ( t ) )  = ~ 

It is well-known that the sum of  two independent  gaussian processes is a gaussian 
one. So we can wrtte. 

(12) OrlXl(t) + o-X(t)  = ~ X ( t )  

where 

(i) {X( t ) ,  t~>0} is a gaussian process with zero mean and having the same 
covariance function as {Xz(t), t>~0} 

(ii) 

(13) ~2=  crz2 + er2 

Consequent ly ;  

(14) Z ( t )  = x +  -~ ( 1 -  e - k ' ) +  A -k, " o-e X ( t ) ,  t>~0 
k 

where /z = p - r n > 0  
Now let /z* =/x  + kx. 

PROPOSITION 3. I f  {S(t) ,  t ~ 0} zs a B.M. wzth a drift m, the process {Z(t) ,  t >I 0}, 
zs an Ornstein- Uhlenbeck process with a drtft tz(y) = Ix* - ky and an mfimtesimal 
variance o'2(y) = ~2. 

PROOF. It is clear that Z ( t )  is a gaussian and has cont inuous sample paths 
with independent  increments. 

Write 

Z ( t ) = e - k ' ~ ( t ) ,  t~>O (15) 
with 

(16) ¢(t) = x e k ' + ~  (e k ` -  l ) + ~ X ( t ) ,  

By dttterentiating (15) we get 

(17) dZ( t )  = - k Z ( t )  dt+ l.t * d t + ~ d W 2 ( t ) ,  

t ~ 0 .  

t ~ O  
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where {W2(t),t>~O} is a s tandard B M. From this, the proposi t ion follows 
immediately. []  

REMARK. We will call ~(t), the modified surplus process, and will represent 
it by the compound ing  B.M.: 

(18) ~ ( t ) = x e k ' + ~ ( e  k' 1) {~ W(e2k'--l) ,  t>~O. 

4.2. The Rum Functions 

We are interested in the random variable "t ime of  ruin" defined as usual by: 

(19) T = i n f { t > ~ 0 :  Z ( t )  ~ 0}. 

In t roduce the ruin functions,  respectively on finite and mfimte-time horizons: 

(20) ~,(x, t)= P[T<- t/Z(O)= x] 

(21) ~b(x) = P[ T < oo/ Z(O) = x]. 

4.2.1. The UInmate Rum ts Certain 

It is obvious that Z( t )  and ~'(t) hit zero at the same random time T, so at this 
time and from (18), 

(22) xe~r +_~(ek r d W(e2kr_ l )=O.  
k 

Let v be the scale change m time defined by v = e 2 k ' -  1 and let v* = e 2 k r -  1. 
In terms of  v (22) gives: W(v*)=~(v*)  where 

(23) ~'(v) = a - y,/v--+ 1, o>/0.  

a, y beine two positive constants defined by 

a =  and 7 =  ( k x + ~ ) .  

Obviously 

(i) ~:(v) is cont inuous  
( n )  ~ ( 0 )  = o~ - v = - x , / 2 k / ~  < 0 

( I l l )  ~(V)/D"->v~ccO 

We can then apply Shepp 's  result (see appendix,  corollary A) for the function 
(23) and deduce that the ultimate ruin is certain 

4.2.2. Ruin Probabtli O, on Ftmte-Ttme Interval 

Our objective m this section Is to study the function ~(x, t), which we assume 
to have density p(t) (the argument  x is omitted),  or in terms of  v, we are interested 
in the density g(v), where g(v) dv = p ( t )  dt. 
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From theorem A (appendix) we have 

(24) e-A~+A~"/V~i-~2(°/21g(v) dv = 1, h > O. 

then following the method used by SHEPV (1967) or DANIELS (1969), for 
Re (s)> 0, 

;o o ;0 o (25) h s-~ e a"-^2/2 dh = A ~-t eX.-x2/2 dh e-a~+aY'/~Ti-a2(°/2)g(v) dv 
0 

Iv ° I; = y~-teW-~Y2dy (v+l) -~/2g(v)dv  

where y =  h ~ / v + l  
Relation (25) gives the Mellin transform of g(v), or the Laplace transform of 

the first passage time density of  the process Z(t )  (cf. v+  1 = e2g'), which means 
that if we set r = kt, this density is h(r )  where h(r)  d~'= g(v) dv and consequently 
(25) becomes: 

I f  l(s, ~ _  ___) h*(s) = e - " h ( r )  dr= l(s, 2/) (26) 

where 

foo 1 yS-I e~y-:y 2 dy = e-~2D ~(-a)  (27) I(s, o~)=F~s) o 

in terms of the parabohc cylinder function. 
KEILSON and Ross (1975) prepared tables of  h(t) which give numerically the 

simple zero, -fl~, of the denominator of  (26) on the negative real axis with the 
appropriate coefficients 

of  the simple spectral decomposition 

(29) h(r) = : %(a, fl) e -°,T. 
g I 

The preceding result can be summarised in the following proposition. 

PROPOSITION 4. 

(30) 
t k  

~b(x, t)= h(r) dr 

= : :'(~' ~------------------~(:- e-~,"). 
j i flj 

Where o)(ct, fl ) and flj are defined above. 
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4.3. Connectton with Classtcal Discounted Risk Process 

In his paper ,  HARRISON (1977) studied the ul t imate ruin probabi l i ty  for a classical 
model  with interest rate /3. The basic equat ion for the surplus process denoted 
here by ,Z(t), was (see example  3.3. of  HARRISON 1977) 

Io ] (31) Z ( t ) = e  t3, x +  ( 1 - e - m ) + t ~  e-t3sdW3(s), t~O 

where ~, & are two posit ive constants  and { W3(t), t/> 0} a s tandard  B.M. 
This process  is a diffusion, and its infinitesimal mean and variance are ft.(y) = 

/~ + y and t~2(y) = t~ 2, y ~ R, respectively. 
The modif ied process,  (the square-bracketed  term in (31) denoted  by 

+ ~ 
(32 ( ( t )  = x + ~  (1 - e  -t~') W4(I - e -2m) ,  t~>O 

where { W4(t), t~>0} is a s tandard  B.M. 
In this case, Harr i son  showed that the ul t imate ruin is not certain and its 

p robab lh ty  is: 

(33) q~(x) - 1 - ~ ( a x  + b) 
1 - ~ ( b )  

where a and b are two positive constants  defined by: 

2~2 a~  a = and b =-H- 

and • (. ) being the s tandardised normal  distr ibution.  
This result is not surprising, because if we make in (32) the scale change in 

t ime g = ( l - e  20,), the process {g(t), t~O}  hits zero when 

w4(~)= x +  + , / i ~ ,  0 ~ 1  

so in terms o f  ~, the B.M. stops at ~ =  1 and it is not certain that W4(~) will hit 
the parabol ic  bounda ry  before  ~ = 1. 

IMPORTANT REMARKS 

(1) The rescaling of  B.M. representat ion is a very delicate operat ion.  We cannot  
make  it for a process like Z.(t) as was done  in HARRISON (1977). The 
reason is that the covanance  of  the integral representat ion of  Z ( t ) ,  see 
equat ion (31) is not the same as that  o f  the rescaling B.M. (see equat ion 
(18) in HARRISON 1977). 

(2) The difference between the two processes ({Z( t ) ,  t/> 0} is character ised as 
being a B.M plus an elastic force that  pulls the process back toward zero 
with a constant  propor t ional i ty  to the current  absolute posi t ions k(k  > 0). 
While, {Z( t ) ,  t~>0} is character ised similarly but the elastic force is a 
repulsive one pushing the process away from zero (constant  propor t ional i ty  

/3). 
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5. U P P E R  B O U N D  FOR R U I N  P R O B A B I L I T Y  W H E N  T H E  A G G R E G A T I O N  O F  

C L A I M S  IS A C O M P O U N D  POISSON PROCESS 

Let S( t )  be a compound Polsson process; we can write, 

N ( t )  

(35) S ( t )=  ~ A,, t~>0 

where {A,} , - |  is a sequence of positive independent, identically distributed 
random variables with a common distribution function F( . ) ,  and {N(t), t>~0} 
is a Polsson stochastic process, independent of the {A,},-|, having parameter A. 

Moreover, we assume S( t )  independent of {X(t), t~0},  defined in section 3. 
In the context of classical risk theory: 

A, denotes the amount of the ~th claim (z = 1, 2 , . . . )  and 
N ( t )  represents the total number of claims occurring in the time-interval 
[0, t]. 

Thus, the Riemann-Stieltjes integral I'o ek~ dS(s)  becomes: 

N(r) 
(36) X ek"A, 

J 1 

where tl, t2, .. •, denote the times at which claims occur. 
The surplus process (9) is now: 

N ( t )  

(37) Z ( t ) = x + ~ ( l - e - k ' ) - e  -k' ~ ek ' ,A ,+o 'e -k 'X ( t ) ,  t ~ O  
l 

or equivalently 

[ N,,) ] 
P ,  k, l )+o 'X( t )  ~ ek',A, (38) Z(t)=e-k' xek '  + k  te -- -- , - i  

= e - k ' [ x ( t ) - - X * ( t ) ] ,  t~>O 

where 

(39) X ( t ) = x e k '  + ~ ( e k ' - - l ) + t r X ( t ) ,  t>~O 

NCt) 
(40) X*( t )=  ~ ek"A,, t~O.  

~- |  

As before, {X(0,  t/> 0} is a gaussian process with independent increments with 

(41) IE[2(t)] = x e k' + ~  (e k' - 1), 

2 

( 4 2 )  v a r  I X ( t ) ]  = - ~ -  ( e  2 k '  - 1)  
2k" 
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and with as moment generating function: 

(43) M(r, t )=exp[-r[xek '+ p~ (ek'-- 1)] + ~  O'2 (e T M ~  -1  )}. 

Consider Z*( t) = ek'Z( t)-- x. 
Obviously Z*(t) is a process with independent increments, then we can apply 

GERBER'S result (1973) to calculate an upper bound for ~ (x ;  t). 
In our case, we have 

(44) ~(x,  t) ~< mine -'~ max [ [ e - ' Z ' ~ ] .  
r 0 ~ s C t  

Since {X(t), t~> 0} and {X*(t), t ~  > 0} are independent, using (43), (44) becomes: 

(45)~(x't)~mlne-r~maxexpr o ~ ,  - r  x +  ( e ~ - l ) + ~  - 1 ) r 2 + K  

where K*(r, s) is the cumulant generating function of X*(s). 
From C. G. TAYLOR'S paper (1979) we have 

~A f '~ '  8(u)-  1 (46) K*(r,s)= .~, u du 

where ~(u) denotes the moment generating function associated with F( .  ). As in 
TAYLOR'S paper (1979) we can only consider values of r such that r >  r*(t) with 
r*(t) being the unique real and positive solution of 

(47) -r  (e - l)+~(e2k'- l)rZ+K*(r, t)=O. 

Then 

(48)'q"(x,t)-~ min exp]-rx-r(x+TP~(e k' - 1 ) + ~ ( e  zk ' -  1)r2+ K*(r, t)]  
or 2 

r~r*Ct) L \ k /  

REMARK. If we take for S(t) a linear combination of a compound Poisson process 
and a B.M. with a drift (but independent), the whole analysis, in this section is 
still valid. 

The numerical treatment of proposition 4 and equation (48), with comparison 
with other models (JANSSEN and DELFOSSE 1982) will be developed in a forthcom- 
ing paper. 
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APPENDIX I 

F U N D A M E N T A L  W A L D  I D E N T I T Y  IN C O N T I N U O U S - T I M E  

Let f ( t ) ,  t ~ 0  be a continuous function and let • be the first time t, such that 
W(t) = f ( t )  where { W(t), t~0}  is a standard B.M., and let F(t)=P(r-.~ t). 
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THEOREM A. If: (1) h . > 0 ,  (2) f ( 0 ) > 0 ,  (3) f ( t ) / t ~ O  as t ~ ,  then 

(A.1) e af(')-x2('/2) d F ( t ) =  1. 
0 

PROOF (see SHEPP, 1969). Actually,  this result is a direct consequence  o f  the 

fact that the process {e ~w~')-~2~'/2), t t> 0} is a mart ingale.  [] 

COROLLARY A. Let f (  t) = cx/ff--+ t -  u and suppose u < cx/b 

(A.2) P i t s  > t] = dF( t )  = 1. 

PROOF. From (A.1) as A ~ 0 the integrand goes to one domlnatedly .  [] 

A P P E N D I X  II 

In this append ix  we give numerical  values to illustrate the upper  bound  in (48); 
when the dis t r ibut ion o f  individual  claim size is negative exponent ia l ,  i.e. that 

1 1 - r  
(49) K*(r,  t) = ~  lOg { l m r  e k,}. 

In (49), we assumed that the expected number  o f  claims for unit t ime is equal  

to unity. 
For  x =  o ' =  1, p =  1.3 and various values o f  t and k, we find: 

t /k  0.05 0.10 0.15 0 20 

0.1 1.47001739E - 03 1.428926E- 03 1.38886793E - 03 1.34982067E -03  
0.2 0.144325801 0.0139840728 0.0135472572 0.0131219139 
0 25 0.021223472 0.0205326385 0.0198601574 0 019205716 
0.3 0.0263070499 0.0254139702 0.0245450083 0 0236998074 
0.35 0.0295210032 0 0284802841 0.0274679932 0.026483791 
0.5 0.0305188815 0.0293484819 0.028208696 0.0270998241 
0.9 0.792848419 0.787248899 0.781640129 0.776030215 
0.1 0.799357953 0.793401234 0.787431127 0 781457787 
!.5 0.818592853 0 811100702 0.803582347 0.796061988 
2 0 826321282 0 81754902 0.808761104 0 80000189 
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