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ABSTRACT 

The paper  deals with the renewal equation governing the infinite-time ruin 
probability. It is emphasized as intended to be no more than a pleasant ramble 
through a few scattered results. An interesting connection between ruin probability 
and a recurslon formula for computation of the aggregate claims distribution is 
noted and discussed. The relation between danger of  the claim size distribution 
and ruin probability is reexamined in the light of some recent results on stochastic 
dominance. Finally, suggestions are made as to the way in which the formula 
for ruin probability leads easily to conclusions about the effect on that probability 
of the Iong-tailedness of the claim size distribution. Stable distributions, in 
particular, are examined. 
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I .  INTRODUCTION 

Subsequent sections of  this paper  examine various aspects of  ruin theory from 
viewpoints which are very much heuristic. They contain very little original 
material. Rather are they concerned with modes of thought which may be applied 
to the various aspects of  ruin theory considered in order to yield a better 
understanding of them than is obtained by concentration on the mathematical 
detail. From this point of view, the paper  possibly has some didactic value and 
indicates lines of  thought which can lead to valuable conjectures--these latter 
to be tested subsequently of  course by rigorous mathematics. 

Of course, ruin theory has been with us for the best part of  the present century, 
dating back to LUNDBERG (1909). However, the recent past has brought a number 
of  new techniques which facilitate manipulation of the theory, or indeed coherent 
and suggestive thought on the subject. A number  of the references given at the 
end of the paper  are quite modern, indicating the extent to which these new 
techniques have been developing. 

The particular aspect of  ruin theory which has been selected to form the subject 
of  this paper  is the renewal equation governing the infinite-time ruin probability. 
The form of this equation is set out in Section 2. Subsequent sections derive from 
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that equat ton a few results on computa t ion  o f  ruin probabilities (Section 3), the 
effect of  danger  o f  the claim size distribution (Section 4), and the effect o f  long 
and short tailed claim size distributions (Section 5). 

Undoubted ly ,  other  topics could have been covered. However,  it is to be 
emphastsed that the present paper  is intended to be no more than a pleasant,  
and slightly different, ramble through a few scattered results. 

2. T H E  B A S I C  E X P R E S S I O N  F O R  R U I N  P R O B A B I L I T Y  

Consider  the classical ruin process. That is, an initial reserve o f  x >10 is increased 
by premium income at the rate o f  c per unit time and decreased at r andom epochs 
by claim payments .  

These claims are generated by a Poisson process with a mean density o f  1 
claim per unit time. The sizes of  the claims are i.i.d, with d.f. (B . )  whose mean 
is 1. 

Write c = 1 + '0, where ~0 is the safety loading per unit o f  risk premium. 
Define 

(2 1) h(y) = [ 1 -  B(y)]/c,  

and 

F(x)  = h(y) dy. 

Note  that F ( - )  is a defective d.f. It is possible to rewrite it as: 

F(x )  = G ( x ) / c ,  (22)  

where 

G(x) = g(y) dy, 

with 

(2.3) g(y) = 1 - B(y) = ch(y). 

Since the mean associated with B ( . )  is unity, G is a non-defective d.f. 
Now, let ~b(x) denote  the probabili ty that the free reserve generated by the 

initial reserve x and the claims process described above remains non-negat ive at 
all times, i.e., ~ ( x )  is the infinite-nine probability of non-ruin given initial reserve 
x. 

As any o f  the s tandard texts on ruin theory shows (BUHLMANN, 1970; FELLER, 
1966; GERBER, 1979; SEAL, 1969), ~b(x) satisfies a renewal equat ion:  

fo (2.4) th(x) = n / e +  ~b(x -y )h (y )  dy. 

Finally, define the mfimte-time probabdlty of ruin given initial reserve x: 

qJ(x) = I - 6 ( x ) .  
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Exact and approximate solutions to equation (2.4) appear in various forms (again 
see the standard texts). The particular form of the solution with which the present 
exposition will concern itself is the following: 

(2.5) ~b(x) = (n /c )  U(x), 

where 

(2.6) U(x )=  ~ F"*(x), 
n=0 

the F"*(.  ) being defined in the usual way as a convolution: 

(2.7) F°*(x)= fo ~ 

--Io" 
Fl"-t)*(x- y) dF(y) 

F°'-')*(x- y)h(y) dy. 

By (2.5) and (2.6), the probability of non-ruin ~(x) involves a sum of d.f.'s. It 
is inconvement for some purposes that these d.f.'s are defective. They may be 
converted to non-defective by means of (2.2) and (2.3). Thus, (2.6) and (2.7) 
may be replaced by the following: 

(2.8) U(x) = Z c-"G"*(x), 
n -0  

with 

(2 9) G"*(x) = G(n-~)*(x - y )  dG(y) 

fo = G("-')*(x-y)g(y) dy. 

3. A N  A G G R E G A T E  C L A I M S  A M O U N T  R E P R E S E N ' I A T I O N  O F  S U R V I V A L  P R O B A B I L I T Y  

3.1. The Representatton 

If we write p= l / ( l+r / ) ,  then (2.8) takes the form: 

U ( x ) = ( l + r / ) r / - '  ~, (1-p)p"G"*(x), 
n=O 

and, by (2.5), 

(3.1.1) ~b(x)= ~ (1-p)pna~*(x). 
n~o 

This is an interesting representation of the survival probabdlty because it can be 
recognised as the d.f. of aggregate claims when the number of claims has a 
geometric distribution (parameter p) and claim size has d.f. G( . )  
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This representation can be found in BOWERS, GERBER, HICKMAN, JONES and 
NESBtTT (1982, Section 12.6), though their development of it is a little different 
from here. It is repeated in PANJER (1984). 

It follows that any algorithm available for the evaluation of the aggregate 
claims distribunon (subject to geometric claim frequency) can be used immedi- 
ately to evaluate ruin probability 

3.2. A Connectron with Panjer's Recurslon 

Evaluation of the aggregate claims distribunon is precisely the purpose of Panjer's 
recursion (PANJER, 1981; SUNDT and JEWELL, 1981). This recursion can be 
applied to various claim frequency distributions of which the geometric distribu- 
tion is one. 

Panjer's formula is. 

Io (3.2.1) g(x) =p~f(x)+ (a+by/x) f (y )g(x-y)  dy, x > 0 ,  

where g(.  ) is the (continuous) p.d f. of  aggregate claims; Pn is the probability 
of n claims in the time period under consideration ; f ( .  ) is the p.d.f, of  individual 
claim size; and a, b are parameters characterizing the clmm frequency distribunon 
which must satisfy: 

(3.2.2) p,, = p,_t(a + b/n). 

For the geometric claim frequency distribution appearing in Section 3.1, a =p,  
b =0.  Moreover, in the application of recursion (3.2.1) to (3.1.1) it is necessary 
to replace f by g, the p.d.f, assoctated with G (N.B. this g is not the same as 
that appearing in (3.2.1); and g by 05', the denvanve of 05. In this last replacement, 
05' plays the role of a notional p.d.f associated with 05 when the latter is viewed 
as a d.f. 

With these replacements, (3.2.1) becomes. 

(3.2.3) 05'(x) = ( 1 - p ) p g ( x ) + p  g(y)05'(x-y) dy. 

3.3. Recovery of the Renewal Equation from Panjer's Recurston 

The particular application (3.2.3) of Panjer's recursion provides qS' rather 
than 05. The survwal probability may be obtained by integrating (3.2.3). First, 
(3.2.3) is rewritten using the fact that g(y)= ch(y), by (2 3); 

05'(x) = (1 -p)h(x)+ h(y)05'(x-3') dy [pc = 1] 

fo = (d/dx) h(y)05(x - y )  dy, 
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where the last step has used the fact that 4,(0) = ~/c = 1-p.  Then 

Io O(x)=q/c+ h(y)O(x-y) dy, 

again using the fact that O(0) = rJc. 
Thus, the basic renewal equation (2.4) has been recovered from Panjer's 

recurslon (3 2.3). 
Though a little academic, it is perhaps fascinating to note that the above 

argument could have been applied in reverse, beginning with the renewal equation 
(2.4) From this could have been derived (3.2.3), and hence (3.2.1) for the special 
case in which' 

(i) claim frequency follows a geometric distribution, 
(ii) d.f. of aggregate claims amount is the same as some survival probability 

4,('). 

In other words, Panjer's recursion formula for aggregate claims distribution might 
easily have arisen as a conjecture derived from the basic renewal equation of 
ruin theory. 

3.4 Computation of Rum Probabdlty 

As noted in Section 3.1, algorithms available for the evaluation of aggregate 
claims amount  distribution may be readily applied to the evaluation of ruin 
probability. Formula (3.2.3) provides one such example. 

Practical application of such techniques in general circumstances require that 
formulas like (3 2.3) be dlscretized. The discrete version of Panjer's recurston 
(3.2.l) is provided by PANJER (1981, p 25): 

i 

(3.4.1) g,=p ~ f~g,_~, 
.t 1 

where g,,f  are the same p.d.f.'s as in Section 3.2 except that the distributions are 
now discrete with mass points0 ,  h, 2 h , . . . , : h , . .  , for some step h > 0 .  

The recursion (3.4.1) may be adapted to the ruin probabihty case in the same 
way as (3.2.1) yielded (3.2 3): 

(3.4.2) ( d 0 ) , =  p ~ gj(dO),_~, 
J ~ l  

where gj now represents the discretlzed version of the p.d f. g ( - )  defined by (2.3) 
and (dO), is the increase in the function 0 (x )  over the interval ((1-½)h, (t+~)h). 
Similarly, we adopt (d0)0 = 0(0) = 1 - p .  

Shortly after circulatson of the announcement  of this  lecture, Prof. H. H. Panjer 
advised that he had been working along similar lines. A formula corresponding 
to (3 4 2) (in fact, a more refined version) can be found in PANJER (1984). 

Similar procedures have also appeared recently in the work of GOOVAERTS 
and DE VYLDER (1984a) 
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It should be noted that, by (2.3), the p.d.f, g ( . )  always exists and so the 
corresponding distribution cannot in fact be discrete. The discretization (3.4.2) 
is necessarily, therefore, an approximation only. 

Some further d~fficulties occur in relation to the existence of some mass at the 
zero point under the "distribution function" ~b(.). As this paper  ts concerned 
only with broad ideas, these difficulties are not pursued. The details of their 
treatment are provided by PANJER (1984). 

3.5. Lundberg-Type Approximation to Ruin Probabihty 

Suppose that the distribution associated with g(- ) is approximated by a distribu- 
tion of a finite random variable. This is done by assuming that 

g j = 0  for j >.L 

Then (3.4.2) reduces to: 
J 

(3.5.1) (d~b),= ~ (pgj)(dqh), j when i>~J. 
./ I 

This is a linear recurrence relation m the (d~),  wsth constant coefficients pg~. The 
asymptotic solution of such a system for large i is well-known. It takes the form: 

(3.5.2) (d~b), = const. × a ' +  o(ot'), 

for some positive constant a. 
It follows that 

~b(ih)= E (dqS), 
) I + l  

= const, x a' + o(c~'), 

i.e., putting x =  ih, o~ = e x p  ( -Rh) ,  R const .>  0 (provided p <  1), 

(3.5.3) @(x)~  C exp ( - R x )  for x ~ ,  

where C is a constant > 0. 
The result (3.5.3) is recognised as the usual ruin probability approximation of 

the Lundberg type. 

3.6. Fmzte-Time Rum Probabihty 

The great bulk of this paper is concerned with the infinite time probability of 
ruin ~b(x). However, there is one very simple application of Panjer's results to 
the finite-time ruin probability. 

Let ~b(x, t) denote the probabihty of survival over the time interval [0, t] when 
the initial free reserve is x. Thus, i f ( x ) =  ~b(x, co). 

SEAL (1969, p. 98) shows that: 

(3.6.1) ~(O,t)=~7/c+(ct)- '  [1 -P(y , t ) ]dy ,  
c t  
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where P(y, t) is the probability that aggregate claims in the time interval [0, t] 
do not exceed y. 

Note that P ( . ,  t) may be evaluated by means of Panjer's recursion. To the 
extent that this recursion simplifies the computat ion of the distribution of aggre- 
gate claims amount,  it also simplifies computation of ~(0, t). 

4. RUIN PROBABILITY AND DANGER OF THE CLAIM SIZE DISTRIBUTION 

The concept of  danger of a claim size distribution is introduced after the manner 
o f  BUHLMANN, GAGLIARDI,  GERBER and STRAUB (1977). Thus, it is said that 
one claim size distribution with d.f. B~ is more dangerous than another with d.f. 
B2 if: 

(i) co>/.t~ >i P-E, where /~,  [.£2 are the means of B~, B 2 respectively; 
(ii) there exists a constant a such that: 

Bl(x)>lB2(x) for x < a ;  

B l ( x ) ~ B 2 ( x )  for x ~  a. 

The following proposition, proved by BUHLMANN, GERBER, GAGL1ARDI and 
STRAUB (1977, p. 80) establishes a connection between danger of  a distribution 
and stop-loss premium. 

PROPOSITION 4.1. / f  Bi, B2 are d.f.' s and B~ is more dangerous than B2, then, 
for each real t. 

(4.1) (x - t) dB,(x)  i> t) dBE(X). 

Le. for any green retentmn, B~ generates stop-loss premiums at least as great as B 2. 

It is convenient to introduce the terminology of GOOVAERTS, DE VYLDER and 
HAEZENDONCK (1984), who refer to (4.1) as second-degree stop-loss dominance 
of B~ over B2 The general definition of stop-loss dominance of  course encom- 
passes nth degree dominance Goovaerts,  de Vylder and Haezendonck establish 
relations between this type of dominance and stochastic dominance. 

Present interest is in only first-order stochastic domlance, defined as follows. 
A d.f. B~ is said to havefirst-orderstochastlc dominance over d.f. B E if B~ (x) ~ B2(x) 
for all x. 

Also of interest for present purposes are the following propositions 
(GooVAERTS,  DE VYLDER and HAEZENDONCK, 1984, p. 308). 

PROPOSITION 4.2. Stochastic dominance of  nth degree is preserved under mixing 
of dtstrtbutions. 

PROPOSITION 4.3. Stochastic dominance of  nth degree is preserved under convol- 
ution of distributions. 
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Now consider how these results bear upon the ruin probability given by (2.5) 
and (2.8). It is seen that survival probability qS(x) is obtained by: 

(i) convolution of the d.f. G( . ) ;  
(it) mixing of the resulting convolutions. 

Now let G,, U,, ~, be associated with B,, l=  1, 2, through (2.3), (2.8) and (2.5) 
respectively. Note that the stop-loss dominance (4.1) may be written equivalently 
a s :  

i . e  

[ 1  - B,(x)] dx I> [1 - B2(x)] dx. 
t t 

p , , -  [ 1 - B l ( x ) ] d x ~ l . z 2 -  [ 1 - B E ( x ) ] d x ,  

when /x~,/x2 < oo, and assuming that Bt(0) = B2(0) =0 0.e., positive claim sizes). 
Thus, if 

(4.2) /x~ =/z2, 

then, by (2.3), (4.1) is equivalent to 

(4.3) Gl(x)  ~< G2(x) for each x, 

i.e. Gt is first-degree stochastically dominant over G2. 

The above results may be combined to yield the following: 

B l m o r e  dangerous than B2 

by (4.3) 
(by defimtion,/z~ = p.2 = 1) 

G~ first-degree stochastic dominance over G2 

Propositions 4.2 and 4.3 

4~t first-degree stochastic dominance over 4~2 

~,(x)t>~2(x) for all x 
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Thus, the following result, originally proved by TAYLOR (1976, pp. 204-205) is 
recovered 

PROPOSITION 4 4. I f  one mdwldual  clatn~ size distribution B I Is  more dangerous 
than another B2, then the associated tnfimte-tlme ruin probabilities are related as 
follows: 

~ , (x )~  > ~2(x) for  all x. 

Moreover, it may be checked through the above proof  that equality between ~p~(x), 
62(x) for  all x occurs only If B,, B2 are Identical a.e. 

Taylor obtained this result by means of integral mequalities. Here the same result 
has been obtained by much simpler and more direct methods. Rather similar 
methods are used by DE VYLDER and GOOVAERTS (1984b, Theorem 2) to estabhsh 
the same result. 

As a final remark, brief reference is made to the discussion in Sections 4 and 
5 of GOOVAERTS and DE VYLDER (1984b). It ts pointed out there that the result 
of Proposition 4 4 can be reversed in the case of fimte-time ruin probabilities. 

Indeed, it follows immediately from (3.6.1) that: 

B, more dangerous than B2 J 

II 
Proposition 4.1 

B~ stop-loss dominant over B2 [ 

P , ( . ,  t) first-degree stop-loss dominant over P2(', t) 

II 
by (3 6.1) 

~,,(o, t) ~. 6 ( 0 ,  ,). 

In this reasoning P,(.,  t) denotes P ( . ,  t) of(3.6.1) with B(. ) replaced by B,(. ), I = 
1, 2. The first step in the chain of reasoning is easily derivable from results of 
GOOVAERTS and DE VYLDER (1984a, Theorems 6 and 7) on preservation of 
stop-loss dominance under mixing and convolution. 

The above result is extended somewhat by GOOVAERTS and DE VYLDER (1984b, 
especially Theorem 4 and the diagram in Section 5). 
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It IS interesting to let t ~ oo in the last result, and compare  with Proposit ion 
4.4 It then follows that 

(4.4) 0t(0) = ~2(0) 

regardless o f  the respective dangers of  B~ and B 2. 

This result is consistent with the well-known general result: 

0(0) = ] - n/c.  

5. I N F L U E N C E  O F  C L A I M  S I Z E  D I S T R I B U T I O N  O N  P R O B A B I L I T Y  O F  R U I N  

5.1. General 

This section is intended to be no more than heuristic. The issues to be examined 
briefly are: 

(1) the reasons why qJ(x), as a funct ion o f  x, differs so greatly according to 
whether  the distribution o f  individual claim size is long or  short tailed; 

(ii) the meaning of  the terms long and short tailed in (l); 
(iii) in the short  tailed case, the insensitivity of  the function ~(x)  to the detailed 

shape o f  B( . ) .  
To begin with it wdl be helpful to write G " * ( . )  as the d.f. o f  the mean of  n 
drawings from the d.f. G( -  ), whereas G ~* is the d.f. o f  the sum o f t h e  n drawings. 
Thus, 

(5.1.1) t~"*(x) = G"*(nx).  

Combina t ion  o f  (2.8) and (5.1.1) yields: 

co 

(5.1.2) U(x)= E c °~°*(x/n). 
n = O  

The two expressions for U(x),  (2.8) and (5.1.2), show that the properties o f  ~(x)  
are determined by the properties of  sums of  drawings from the d f. G ( .  ), or on 
the alternative view by the properties o f  means of  drawings from G( • ). 

5.2. A Heuristic Argument 

The final observat ion o f  Section 5.1 leads one naturally to consider  application 
o f  the central limit theorem. 

We shall return shortly to the question of  applicability o f  this theorem, but 
suppose for the moment  it can be applied to G"* (x /n )  in (5.1.2) Then, as n ~oo,  

(5.2.1) G"*(x ln )  ~ dP(xln; Ix, 0-21n), 

the probabil i ty that a normal  variate wlth mean Ix and variance 0-2/n assumes a 
value o f  x / n  or less, Ix and 0 -2 being the mean and variance o f  G ( . ) .  The 
convergence in (5.2.1) is convergence in measure. 



H E U R I S T I C  R E V I E W  O F  R U I N  T H E O R Y  R E S U L T S  83 

Note also that (5.1.2) may be rewritten as: 

(5 2.2) U ( x ) = e / n -  ~ c - " [ 1 - G ° * ( x / n ) ] ,  
r i c o  

and consider large x. 
For small values of n, the convergence in (5.2 1) does not take effect, but the 

summands in (5.2.2) are small anyway because of the largeness ofx.  As n becomes 
large, (5.2.1) takes effect so that (5.2.2) gives U(x) approximately as: 

(5.2 3) c/n - Z c-"[1 - ~ ( x / n ;  ~, o2/n)]. 
n ~ O  

This ~s very much a heuristic result. There are two aspects of it which have not 
been treated with care. 

Firstly, no attention has yet been given to the validity of  the convergence 
(5.2.1). Whde quite mild conditions on G( .  ) enable the conclusion that G"*(xn) 
¢I)(Xn;Id, O'2/n), Xn=l.t,k-xo'/,J-nn , as n ~ c o ,  relation (5.2.1) is another matter 
entirely. For in this latter case, the value of the argument of G " * ( . )  at which 
convergence is sought is varying with n in another way; and in fact varying 
further into the left tail of  G"*( . ) .  

Secondly, proper deduction of (5.2.3) from (5.2.1) and (5.2.2) would require 
some investigation of effect of  accumulating (by summation over n) the errors 
of approximation of G"*(x/n) by ~(x /n ;  t.~, o'2/n) 

Neither of  these matters has been treated above. Nor will any complete 
treatment be attempted. However, it will become apparent  in Section 5.4 that 
(5.2.1) is not valid for certain distributions G ( . )  which are long tailed in the 
sense described there. It will also appear  in Section 5.3 that a rigorous evaluation 
of (5.2.2) in the case of  certain short taded distributions (in the sense defined 
there) leads to results broadly compatible with (5.2.3). 

Thus it appears  that the validity of (5 2.3) as a rough approximation to U(x) 
for large x depends on the d.f. G( .  ) being sufficiently short tailed. The meaning 
o f"shor t  tailed" will be considered further in Section 5.3. If G(-  ) is not sufficiently 
short tailed, then the appearance o f ~  in the approximation (5.2.3) is not justified, 
and one might suspect that U( .  ), and therefore qJ(. ) undergoes radical change 
as G( .  ) moves from distributions which are short tailed to those which are not. 
It will be seen in Sections 5.3 and 5.4 that this is indeed the case. 

5.3. Ruin Probabdtty for Short Tailed Claim S:ze Distributions 

For the moment ,  (5.2.3) continues to be taken on trust as an approximation to 
U(x) for large x. Then, by (2.5), 

(5.3.1) qJ(x)=l-c~(x)-(~7/c)  ~ c -"[ l -¢ (x /n ; l .qaZ/n)] .  
n ~ O  

This expression is not particularly easy to evaluate, but it does convey one 
significant fact about qJ(x) for large x. Since the right side of  (5.3.1) is determined 
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by just q, #, 0 "2, there must be an approximation to g,(x) also dependent on just 
these quantities. By the definition of G( .  ) in Section 2, 

(5 3.2) /x = a 2 / 2 ,  0.2 = a 3 / 3  _ (o~2/2)2, 

where ak denotes the kth moment  about the origin of claim size d.f. B ( . ) ;  and 
where (5.3.2) has been computed on the assumption that B(0)=  0, i.e., claim 
sizes are positive. Note that, by assumption, a~ = 1. 

The conclusion from (5.3.2) and the paragraph preceding it is that there Is a 
reasonable approximation to 6(x)  for large x depending on just r/ and the first 
three moments of  the claim size distribution 

This will now be shown consistent with the Lundberg type of approximation 
(e.g., SEAL, 1969, p. 131, who also cites LUNDBERG, 1909, 1926): 

(5.3 3) 6(X) -- const. X e -e~, 

where the "adjustment  coefficient" R > 0 is the solution of the characteristic 
equation: 

(5.3.4) eR"[1 - B(y)] dy = 1 + ~. 

This solution has been shown (TAYLOR, 1974, p. 12) to take the form: 

(5 3.5) R = 2---~ - -ff2 ( 2"~'~ 2 + O . 
a2 6 \o~2] 

Similar results have been obtained by De VVLDeR (1978). 
It is clear that, as predicted, there is an approximatmn to ~(x)  for large x 

(namely (5 3.3)) which is essentially determined by '0 and the first three moments 
of  claim size distribution. 

This observation tends to break down if r/ becomes too large in (5.3.5). This 
is reasonable because, for large ~ (i.e., large c), the higher order terms in (5.2.2) 
assume reduced importance. Correspondingly, there is increased emphasis on 
the lower order terms where the approximation (5.2 1) is poor. Hence (5 2.3) 
cannot be expected to lead to a good approximation to ~(x).  

Moreover, it must be noted that the adjustment coefficient R exists, i.e., (5.3.4) 
has a solution, only if the moment generating function of [1 - B0,) ] as a p.d.f 
exists. For positive claim sizes, this is the same as requiring that the m.g.f, of  the 
claim size distribution exist. This in turn is the same as requiring that the tall of 
the claim size distribution converge to zero at least as rapidly as some negative 
exponential dlstributmn. 

If this last reqmrement be taken as defining short tailed distributions, then it 
is seen that: 

(i) short tailed claim size distributions yield ruin probabilities quite compatible 
with the heuristic result of  Section 5.2; 

(11) such ruin probabilities ~(x)  may be approximated,  for large x and ,7"// not 
too large, by an expressmn depending on just r I and the first three moments 
of the (short tailed) claim size distribution 
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5.4. Rum Probability for Long Taded Claim Szze Distributions 

5.4.1. General 

Since Section 5.3 considered short tailed claim size distributions as those converg- 
ing exponentially to zero, attention is now turned to others. 

Recall from Section 5 1 that the properties of @(x) are determined by the 
properties of  sums of drawings from the claim size distribution This suggests 
examining two classes of distribution: 

(i) the subexponential  class; 
(ii) the stable distributions. 

5.4.2. Claim Size Distributions Related to the Subexponenttal Class 

These are dealt with in the ruin theory context by EMBRECHTS and VERAVERBEKE 
(1982). A d.f G ( ' )  on [ 0 , ~ )  is said to be subexponentlal if 

1 + G2*(x) 
lim - 2 .  
~ o o  1 - G ( x )  

EMBRECHTS and VERAVERSEKE (1982, p. 62) point out that the m.g.f, of any 
member  of  the subexponentlal class does not converge. Thus, such distributions 
are indeed long tailed in the sense of Section 5.3. The cited authors point out 
that the lognormal and Pareto distributions lie in this class. 

As noted by EMBRECHTS and VERAVERBEKE (1982, p. 62), 

(5.4.2.1) 1 - G"*(x) ~ n[1 - G(x) ]  for large x. 

This has ~mmediate consequences for (2.8). If this latter is rewritten as: 

(5.4.2 2) U(x) = e l f  I -  ~ c-"[1 - G ' * ( x ) ] ,  
n--0 

for G( .  ) subexponentlal,  then substitution of (5.4 2.1) yields" 

(5.4.2.3) U ( x ) - c / r l -  ~ nc -"[1-G(x)]  for largex,  
n=0 

1 
= - [ 1 - G ( x ) ]  for largex.  

Once again, quite inadequate attention has been given to convergence questions 
in the cavalier substitution of approximation (5.4.2.1) under the infinite sum of 
(5.4.2.2). Hence (5.4.2 3) can be viewed as no more than a heuristic result. 

Nevertheless, at the heuristic level and by the very simple procedure illustrated 
above, we have obtained precisely one of the main results of EMBRECHTS and 
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VERAVERBEKE (1982, Theorem 4.6), viz. if G( .  ) as defined in Section 2 is in the 
subexponential  class, then (5.4.2.3) holds. 

Note that, for large x, O(x) then follows the complementary d.f. of G( -  ). This 
stands in contrast with tile situation for short tailed claim size distributions whose 
asymptotic ruin probabilities are essentially characterized by only ~ and the low 
order moments of  the claim size distribution. This is a manifestation of the 
phenomenon,  foreshadowed at the end of Section 5.2, whereby ( - )  undergoes a 
radical change as claim size distribution changes from short tailed to long tailed. 

It is interesting to compare the approximanon (5 4.2.3) with the inequality 
derived by BROECKX, GOOVAERTS and DE VYLDER (1984): 

(5.4.2.4) ~(x)  ~>l  [l -- G ( x ) ] f l ( x )  
77 

with 13(x)~  1 as x ~ c o .  This bound on ruin probability applies to any claim size 
distribution. 

5.4.3. Claim Size Distributions Related to the Stable Distrlbutlons 

Recall that the d.f. G ( . )  defined in Section 2 is said to be stable if: 

(5.4.3.1) G " * ( x )  = G(  a~l (x  - b,) ), 

for some centralizing constants bn > 0 and normmg constants an > O. 
A useful, somewhat weaker, concept is the following. The d.f. G ( - )  is said to 

belong to the domain of attraction of another d.f. H ( -  ) if there exist constants 
an, b, > 0, such that: 

(5.4.3.2) G n * ( x ) ~  H ( a ~ ( x - b , ) )  as n~oo.  

Only a stable distribution can have a domain of attraction (FELLER, 1966, p. 576). 
A stable distribution H ( . )  is characterized by an exponent 0 < a  ~<2 which 

has the following significance (FELLER, 1966, p. 576): 

(5.4.3 3) 1 -- H ( x )  ~ const. [ ( 2 -  a)/c~]x " for x ~ co. 

Also, if G ( . )  is in the domain of attraction of H ( . ) ,  then G ( . )  has the same tail: 

(5.4.3.4) 1 -  G ( x ) ~ c o n s t .  [ ( 2 - a ) / a ] x  -~ for x ~ c o .  

The norming constants are related to this exponent (FELLER, 1966, p. 170): 

(5.4.3.5) an = n J/" 

Moreover, it is known (FELLER, 1966, p. 171) that b n = b ( a , - n )  for some 
constant b. 

Now suppose that the claim size distribution is such that G ( . )  hes in the 
domain of  attraction of a stable d.f. H ( .  ). Substitution of (5.4.3.3) and (5.4.3.5) 
in (5.4.3.2) gives, for large x: 

(5.4.3.6) 1 - G n * ( x ) ~ c o n s t .  [ ( 2 - a ) / a ] [ n - t / ~ ( x - b , ) ] - ~  

= c o n s t . [ ( 2 - a ) / a ] n x - ~ ( l - b , / x )  -~ as n ~ .  
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Note the tail form (5.4.3.4) o f  G( .  ), and hence o f  G"*( .  ) since G in the domain  
of  attraction o f  H implies the same G"*. Hence the requirement of  large n may 
be d ropped  from (5.4.3.6), i.e., 

(5.4.3.7) 1-G"*(x)-[(2-a)/a]xn[1-G(x)] for l a rgex .  

Thus, for 0 < a < 2, self-convolut ion of  a d.f. in the domain  o f  at traction o f  a 
stable d.f. produces  the same result (i.e., (5.4.2.1)) as obtained with a subexponen-  
tial d.f 

Now note that the right side o f  (5.4.3.7) vanishes when a =2 ,  which case 
corresponds  to the case o f  normal,  and therefore short tailed, H ( .  ). Thus, (5.4.3.7) 
translates as: 

(5.4 3.8) q , ( x ) - c o n s t . × [ 1 - G ( x ) ]  for l a rgex ,  

in case the d.f. G ( . )  is stable with exponent  0 <  a <2 .  
It is interesting to remark that this result may be partmlly verified by other 

means. BROECr, JX, GOOVAERTS and DE VYLDER (1984) show that, for any claim 
size distribution, ~(x)  is subject to upper  and lower bounds  whose asymptot ic  
forms are: 

l [1-G(x)+x-l fo~ 
~7 

respectively for large x. 
These may be rewritten as: 

(5.4.3.9) 

and 

(5.4.3.10) 

respecuvely for large x. 

ydG(y)] and 1-- [1 - G(x) ] ,  
~7 

const, x x- t  [1 - G(y ) ]  dy, 

const, x [ l  - G(x)], 

Now consider  G( .  ) in the domain o f  attraction o f  a stable distribution with 
exponent  0 < a < 1 

By (5.4.3.4), the asymptot ic  forms of  these bounds  are both const, x x -a  for 
large x,  which verifies (5.4.3.8) m this case. 

5.4.4. Moderately Long Taded Claim Stze Distributions 
Section 5.2 considered short tailed claim size distributions, i.e., those whose 
m.g.f.'s converge.  

Of  those whose m.g.f. 's do not converge,  essentially the subexponent ia l  family 
was considered in Section 5.3. As remarked by EMBRECHTS and VERAVERBEKE 
(1982, p. 62), these distributions are sufficiently long tailed that the aggregate o f  
n claims is likely to be domina ted  by one very large claim. 
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Sections 5.2 and 5.3 indicate the radically different behaviour of ~ ( . )  under 
the mfluence of these long and short tailed claim size distributions. It is perhaps 
of  interest to consider "moderately long taded" claim size distributions, i.e., those 
whose m.g.f.'s do not converge but are in some sense close to doing so. 
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