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1. I N T R O D U C T I O N  

A great attention has been devoted, in the actuarial literature, to premium 
calculation principles and it has been often emphasized that these principles 
should not only be defined in strictly actuarial terms, but should also take into 
account the market  conditions (Biihlmann (1980), de Jong (1981)). 

In this paper  we propose a decision model to define the pricing policy of an 
insurance company that operates in a market  which is stratified in k risk 
classes ~j. 

It is assumed that any class constitutes a homogeneous collective containing 
2¢', independent risks Sj (t) of compound Poisson type, with the same intensity Aj. 
The number  n, of risks of cd, that are held in the insurance portfolio depends on 
the premium charged to the class by means of a demand function which captures 
the concept of risk aversion and represents the fraction of individuals of ~ that 
insure themselves at the annual premium x,. 

With these assumptions, the return Y on the portfolio is a function of the 
vector x = (x~, xz . . . . .  xk) of the prices charged to the single classes (and of the 
time) and x is therefore the decision policy instrument adopted by the company 
for the selection of the portfolio, whose optimal composition is evaluated accord- 
ing to a risk-return type performance criterion. 

As a measure of risk we adopt the ultimate ruin probability q(w) that, in the 
assumptions of our model, can be related to a safety index r, by means of 
Lundberg-de Finetti inequality. Even though it has been widely debated in the 
actuarial field, the use of q (w) offers undentable operat ional  advantages. In our 
case the safety index r can be expressed as a function of x and therefore, in the 
phase of selecting an efficient portfolio, it becomes the function to be maximized, 
for a given level M of the expected return. 

For ~', a quadi'atic approximation can be given that seems to be acceptable as 
long as the aggregate loading is not " too high". An assumption that does not 
exclude, among other things, the possibility of heavy loadings in a number  not 
too large of individual cases. 

Once the form of the efficient frontier has been determined,  the final step of 
the decision problem of the company is to select the portfolio that maximizes a 
utility function of the form u(M, V), that is the portfolio represented as the 
tangency point between the efficient frontier and the "highest possible" 
indifference curve. It could be pointed out that, in the model, the validity of 
variance as a risk measure of the' portfolio does not depend on the possibility 
of achieving an acceptable quadratic approximation of the utility function, but 
on the goodness of the approximation obtained for the ruin probability, that we 
have chosen as a stability criterion for the company. 
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It is to be noted that, in our assumptions, we can achieve a stratification more 
refined than the one obtained solely based on the characteristics of the risk 
process S(t), since we can consider classes that differ only for the risk aversion. 
This can be related to the introduction of a multivariate measure of risk aversion 
inside the collective, as suggested, e.g., by Sengupta (1981). 

On the other hand the form and the rationale of the results continue to be 
valid in all the cases in which we can obtain an expression that relates q(w) to 
the decision variables 0.e., the prices) and the endogenous quantities of the risk 
process. This is the case, for example,  in the martingale assumptions on Y(t), 
as discussed by de Finetti (1939) and developed by Gerber  (1981) in the study 
of an autoregressive model. 

2. T H E  M O D E L  

2.1. Preliminaries 

Let us consider the risk process {S(t); t ~0}, that represents the sum of claim 
amounts incurred in [0, t) in a given insurance portfolio. The accumulated claims 
up to time t can be represented as a random sum 

N(t)  

S ( t ) =  E X,, 
r = l  

with d.f. Fs(X, t)= P{S(t)~x}.  The process {N(t); t ~-0}, with distribution p,(t), 
(n = 0, 1 . . . .  ), counts the number  of claims in [0, t) and the set of r.v. {Xr; r = 
1, 2 . . . .  } represents the amount  of the rth claim incurred in [0, t). We can suppose 
that the m.g.f. Xr(u) =E{e "x'} is finite for some u # 0. 

We shall assume that the collective premium function of the risk (sum of 
premiums earned in the time interval [0, t)) is non-random and we shall denote 
it by w (t) = E{S(t)} + l(t), that is as a sum of the (aggregate) net premium E{S(t)} 
and the (aggregate) risk loading l(t). As generally accepted in the actuarial 
literature, we shall assume l(t)i> O, since we shall disregard investment income 
m premium calculation. In fact, as shown by Kahane (1979), negative loadings 
could be justified by considerations on the cost of the capital and on the rates 
of investment. Meaningful loading formulas are obtained for instance by choosing 
l(t) to be proportional  to the expected value (supposed as positive) or to the 
variance of S(t), that is 

l(t)=rlE{S(t)}, "0 I>0, 

o r  

l(t) = 3 Var {S(t)}, /3 I> O. 

Besides the investment income, we shall neglect also the administrative costs 
and we shall indicate by Y(t)= lr(t)-S(t)  the return on the insurance portfolio 
up to time t. Then the liquidity of the company can be represented by the risk 
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reserve R(t) = w + Y(t), being w = R(0)  the initial free capital; namely we have 

NO) 

R(t) = w +E{S(t)}+l( t)-  ~ X,. 
r = l  

One of the most natural assumptions on the process S(t) is that the r.v. Xr 
are independent with common d.f. Fx(x) independent  on time and such that 
Fx(O) = 0 (positive risk sums). If we suppose, following F. Lundberg,  that N(t) 
is a Poisson process with intensity A, the risk process S(t) becomes a compound 
Poisson process, with m.g.f. 

~os(U, t) = exp {At[x(u) - 1]}, 

where 2((u) is the common m.g.f, of the Xr, and with expected value E{S(t)} = 
AE{X}t. Fur thermore  the risk loading becomes a linear function of time, i.e., 
l(t) = l. t, whether one uses the expected value principle or the variance principle. 

2.2. The Risk Classes 

The foregoing classical model can be used to describe the riskiness of the portfolio 
of a given insurance line. Let  us now suppose that the insurance market  relative 
to this hne is stratified in k risk classes cCj, (j = 1, 2 . . . . .  k) according to the 
following hypotheses 

(a) .AC stochastically independent individual risks are in the market.  
• k 

(b) The class % is a homogeneous  collective consisting of Nj (being ~ = 1  N~ = 
vV') risks S~(t) which are compound Poisson processes with the same intensity A,. 
The classes are assumed to be ordered in such a way that A1 ~<A2~ < • • • ~<Ak. 

(C) The m.g.f. ,V(u) is the same for all the classes• 
(d) For any individual risk in the class % the premium x,t= (A,E{X}+I~)t is 

charged• Therefore  x~ and lj represent the annual premium and the annual loading 
relative to these risks, respectively. 

Denoting then by n, the number  of risks of the class cCj that are held in the 
portfolio, for the property of infinite divisibility one has A = ~k=l A~n~ and the 
return on the whole portfolio 

Y( t )=  x,n, t -  ~ ~S,(t) 
I 1 i = 1  ~j  

has m.g.f. 

(2.1) q~v(u, t ) = exp { (~ l  xjn,) ut + [X(-u ) - l  ] (~ l  Ain~)t }. 

2.3. Anti-Selection 

In this situation, if a company A decided to collect an aggregate annual premium 
zr(1) = ~ to protect  itself against unfavourable outcome of the risk process, it 
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could be led to charge to each contractholder the "average"  premium 7r/n, with 
k 

n =~,=1 nr In fact such a choice would offer the advantage of minim~izing the 
administrative costs. But if it were possible to know the risk class to which the 
contracts (not necessarily all of them) belong, it would be easy for a competing 
firm B to collect policies concerning low-risk individuals, by charging them a 
premium less then 7r/n. On the other hand, the individuals that are more exposed 
to risk would be spurred to insure themselves with the company A, considering 
as advantageous the average premium 7r/n. The  effect of such an anti-selection 
mechanism would then be an alteration of the company A ' s  portfolio composi-  
tion, such that it would increase even considerably the probability of a negative 
evolution of the process Y(t ) .  So the choice of the value 7r would turn out to 
be inadequate. 

Therefore  if we make the necessarily schematic and simplifying assumption 
that the company and the policyholders are in a state of perfect information on 
the parameters  of the risk process and in particular on the value of the intensity 
h~, the choice of the premiums will have a significant influence on the composition 
of the portfolio. 

REMARK. The assumption of perfect information finds a different formulation 
within the subjectivistic theory of probability. In fact in this context it means 
that the parts are in agreement on the values of the probabilities. The problem 
was discussed, e.g., by Pressacco (1979), who questioned whether a subjective 
fair price can be given an objective meaning. 

The possibility of different probability evaluations has been considered, e.g., 
by de Ferra (1968) and Volpe di Prignano (1974). In these cases the "advan-  
tageousness" of an insurance contract can be studied by defining an indifference 
premium that differs from the net premium both in consideration of the risk 
aversion and because of the diverse evaluations of the probabilities. The import-  
ance of these problems has also been emphasized by Rothschild and Stiglitz 
(1976), who studied the equilibrium in a competit ive insurance market  in a state 
of imperfect information. 

In any case, the dependence of premium determination upon the market  
conditions is the basic assumption in the economic models of insurance market  
proposed,  e.g., by Biihlmann (1980) and de Jong (1981). 

2.4. D e m a n d  Function and  Risk  Averswn  

We are thus led to introduce in the model a dependence of n~ on the premium 
charged to the class ~,, i.e., nj = nl(x,), (j = 1, 2 . . . .  , k). Following Cacciafesta 
(1970), we shall make the rather natural assumption 

n,(x) =Wjd, (x) ,  (1 = 1, 2 . . . . .  k),  

where the d e m a n d  function de(x) (that we, for sake of simplicity, shall treat as 
a real-valued function) represents the fraction of individuals of the class % that 
insure themselves at the annual premium x and therefore it expresses the 
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sensitivity of ~ to the price that is charged. If one were to represent this function 
(for given/)  as a set of random variables {d~ (x); x ~ 0}, with probabihty distribu- 
tions that are chosen based on statistical observations, besides procedural and 
estimative complications, the highly significant relation between demand function 
and risk aversion would be mistreated. 

Instead of strictly describing the function dl(x), it therefore appears more 
significant to refer to a deterministic model characterized by 

I 1, for 0 ~< x < Xf{X},  

Xt* - -  X 
(2.2) d / ( x ) = ]  I,* ; f°rArE{X}~<x~<x'*' 

/ 
[0 ,  fo rx  >x~*, 

with xj* = A~{X}+I~*, l,* I>0, (I = 1, 2 . . . . .  k). Evidently x,* can be seen as a 
measure of the risk aversion of the class ~ as a whole. It is interesting to note 
that the function dr(x) can be interpreted as the probability that an individual 
of ~'j chosen at random insures himself, provided that the decisions of the 
individuals are stochastically independent;  in this case n,(x) is to be understood 
as the expected number. 

If we accept the assumption that the risk to which an individual is exposed is 
small relative to his wealth c, i.e., E{S(1)}<< c, if his utility function u(z) can be 
expanded in a Taylor series around c and if we limit ourselves to a second-order 
approximation, then we obtain a quadratic utility function 

u(c +z) = z -½r(c)z 2, 

where r(c)=-u"(c)/u'(c) is the Arrow-Prat t  (local) risk aversion, or, in other 
terms, the (local) propension to insurance (in the actuarial applications r is 
generally supposed as a decreasing function of c). If all the individuals of the 
class ~1 have the same value r~ of risk aversion, then x,* and l~* represent 
respectively the maximum acceptable premium and the maximum acceptable 
loading by each one of them. 

Because of the Poisson assumptions on the risk process, one can prove that 

(2.3) l j* --~ ½r, A~E{X2}; 

by expressing l~* according to the variance principle, i.e., l~* =3,* Var {S,(1)}, 
relation (2.3) gives: 3j* = ½r,. 

The foregoing considerations suggest, among other things, that it includes in 
the model the possibility of a stratification more refined than the one obtained 
solely based on the characteristics of the risk process S(t), since one can take 
in consideration classes that differ only for the risk aversion (without contradicting 
the hypotheses made in (2.2)). 

The introduction of the functions nj(x) brings about that all the variables 
endogenous to the risk come to depend upon the choice of the vector x of the 
prices charged to the classes. From relation (2.1) one can, for example, derive 
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the expression of the expected return on the portfolio 

(2.4) M(x, t )=E{Y(x ,  t)} = N,l,d,(x,) t 
I 1 

and that of the variance of the portfolio return 

[' ] (2.5) V(x, t) = Var {Y(x, t)} = ~1 3'~,~,d,(x~) E{X2}t. 
I 

2.5. The Probability of Ruin 

Because of the form of the demand curves that we have assumed, the charging 
of a premium xj >x~* is entirely equivalent to a refusal by the company of the 
risks belonging to the class %; the choice of the price vector thus seems to be 
a significant and reliable means for the portfolio selection. 

The process Y(x, t) can be evaluated in terms of risk-return, that is by defining 
a performance criterion explicitly in terms of expected return and of portfolio 
risk and by choosing the best composition according to this criterion. 

Many and plausible measures of risk can be proposed and adopted, but in 
our case it is natural to consider the probability of ruin before time t, q(w, t), 
which moreover is the most investigated stability criterion in the actuarial 
literature and is also widely adopted in the administrative policy of the insurance 
companies. As can be seen, for example, in Seal (1979), it is generally rather 
complicated to evaluate q(w, t) and this is also the case in models based on 
Poisson assumptions. It is instead rather easy to obtain useful results in the 
asymptotic case, i.e., for q(w) = lim,~o q(w, t). 

In fact, with the assumptions of our model, the following classical result holds 

(2.6) q(w )~< e -Tw, 

-~- being the negative root of 

(2.7) E{e "v")} = 1. 

The inequality (2.6) was derived by F. Lundberg (1909) and by de Finetti 
(1939) using different methods, z, known as safety index, is also called adjustment 
coefficient, e.g., by Gerber  (1981), who proposed a martingale theoretic approach 
to the ruin problem. 

Generally, the right-hand side of (2.6) does not represent the ruin probability 
but provides an upper bound for it. However we are dealing with an "efficient" 
bound, because relation (2.6) becomes an equality when the graph of the 
realizations of the process Y(t) can not jump the barrier -w ,  that is if at the 
time of ruin there remains no margin of insolvency (Dubourdieu (1952)). 
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From equations (2.1) and (2.7), - r  is the negative root of 

EL1 x,n,(x,) 
(2.8) x ( - u ) - I  = - u  E~=, a,n,(x,)" 

Because of the independence of such an expression from the time variable it 
is therefore sufficient to refer to a single-period model, as it was reasonable to 
expect, due to the fact that Y(t) is a process with independent increments. All 
the endogenous quantities characteristic to the model will then be single-period 
(annual) quantities. 

It is interesting to derive a quadratic approximation by using the property 
X(-u) = 1 - E { X } +  u2E{X2}/2 +o(u2).  From (2.8) we then obtain 

E,~o~ x,n,(x,) 
u E { X } -  E { X  2}-~ u Z~ ' X,n,(x,)' 

which provides 

1 Ejk=~ ~lfl ,  (x,) = 2 M (x), 
(2.9) r -~ 2 E{X2 } k 

Z,=x Y,A,d, (x,) V(x) 

where we denote M(x)=M(x,  1) and V(x)= V(x, 1). It should be pointed out 
that since the approximation is valid near the origin, then the less the quantity 
~=1 x,n,/~,k=] a,n, exceeds the value of the derivative of X(u) at the point u = 0, 
the better  the approximation is. This means that the results which we shall obtain 
will be much better, the closer we get to the fairness condition in the whole 
portfolio. 

REMARK. The evaluation of the stability of an insurance company with an 
infinite planning horizon can raise doubts of a conceptual nature and in fact, in 
the past, the suitability of using the ultimate ruin probability has been widely 
debated (for a review, see Ammeter ,  Depoid and de Finetti (1957, p. 59)). The 
question has not remained limited strictly to the actuarial setting; for example, 
Mass6 (1964) has made use of the index q(w) to compare the two notions of 
complete strategy and incomplete strategy. More recently, Ammeter  (1970) has 
applied the ultimate ruin probability criterion in the study of the solvency problem 
of the european life insurance companies. 

The parameter r has been used even lately by Amsler (1978), who introduced 
it in his "general equilibrium equation of a collective risk", obtaining from it 
the definition of a solvency index. 

3. SELECTING THE OPTIMAL INSURANCE PORTFOLIO 

3.1. The Programming Problem 

In the foregoing model the main problem faced by the company is to choose 
the price vector x so as to constitute an efficient portfolio, which has the maximum 
safety index for a given level M of the expected return. It has then to solve the 
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following programming problem 

max r(x)  

(3.1) M(x) = M  I>0 

x, ~A,, (j = 1, 2 . . . . .  k), 

where the lower bounds on the x~ are due to the fact that we have excluded 
negative loadings. 

Since the factor 1/E{X 2} seems to be irrelevant in the optimization problem, 
one can put this quantity equal to 1, as for example would be the case if S(t) 
were an ordinary Poisson process (unit jumps, X (u) = e u). For sake of simplicity 
we shall indeed confine ourselves to this case, from now on, by putting moreover  
E{X} = 1. Obviously, with these hmitations the expected value principle and the 
variance principle turn out to coincide and we shall write l~ = rhAr It can be noted 
that in this case n, directly represents the Arrow-Pra t t  risk aversion in so far 
as, within the limits of the quadratic approximation of the utility function, one 
has ~1 = ½ r/. 

Recalling equation (2.9), problem (3.1) is equivalent to 

I min V(x) 

(3.2) IM(x )  = M ~ 0  

[x ,~a , ,  ( j = l , 2  . . . . .  k); 

we are thus led to a mean-variance model. 
Obviously, it is sufficient to study the problem (3.2) within the interval D of 

the Euclidean k-space Rk: 

D =-{xlA, ~<x, ~<x,*;j = 1, 2 . . . . .  k}. 

In fact all the intervals for which x ,>xj* for one or more values of I, that 
correspond to the exclusion of some risk classes, are equivalent to the cases 
x~ = x~* and therefore are represented by intervals on the boundary of D. 

Hence the problem (3.2) takes on the following explicit formulation 

k N I r 1 2 q 
133) z x, +(2 

t ~ 1  771 I_ A t J 

a,~<x,~-,L(l+n,*), ( 1 = 1 , 2  . . . . .  k). 

This programming problem differs from those typical to the mean-variance 
models that are used in the portfolio analysis in that the objective function is 
linear, whereas the constraint is a quadratic function which contains the linear 
terms but in which the mixed terms are missing. The latter characteristic depends 
on the hypothesis of independence among the risks. 
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3.2. Dertving the Efficient Prices 

The constraint equation represents, when M varies in R +, a portion of elliptic 
paraboloid in k + 1 dimensions, whose vertex has the following coordinates 

k 

(3.4a) M* =¼ 2 X,h,rb*, 
I o l  

(3.4b) xl = t l  + % ) A i ,  ( j = l , 2  . . . . .  k). 

Therefore the maximum expected return M* is obtained by choosing x coinciding 
with the center C of D, whose coordinates are just given In (3.4b) (see fig. 1). 
Furthermore, in C we have 

k 

(3.5) v *  = 2 
I=1 

M ~ 

/ 

/ 
/ 

Q3 

f l \ 

\ 

C~Qa 

\ 

O -~ Qo V 

FIGURE 1 Efficient frontier with four risk classes. 

To solve the conditional extremum problem, let us set up the Lagrangian 
function 

L(x, I-~)= V ( x ) + t x [ M - M ( x ) ] .  

From the equations O/Ox I L(x, ~) = 0 we obtain 

(3.6) x , = ~  + rtj* +2 , ( ] = 1 , 2  . . . . .  k). 

These are the parametric equations of a straight hne ~7 which passes through 
the center C of the interval D and coincides with its "upward" diagonal (i.e., 
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( x , , x 2  . . . . .  x~*)) the straight line passing through points (Ai, A2 . . . . .  Ak) and * * 
only if the values of rlj* are all equal. 

By substituting (3.6) in the constraint equation, one has 

(3.7) 
1 M * - M  

• , , . .  

The negative roots of (3.7) are to be discarded because, as it is easy to verify, 
they correspond to points with maximum variance. Therefore  all the points of 
the straight line @ that are lower than C are to be discarded as inefficient. Then 
equation (3.7), modified in this manner, leads to the parametric equations of 6, 
x I =xl (M) .  To obtain the efficient frontier it is sufficient to substitute these 
expressions of x I into the objective function, thus attaining V = V(M)  and 
therefore, passing to the inverse function, the equation 

M =  
(3.8) - -  - - - -  1 = 1  k ~-1 V + M *  1 

E--k N, Ai ~ __YJA I 4 ~ X~A,.~ 
1=1 n,* 1=1 n~* ,=1 n, 

It is to be noted that the qonstant term in (3.8) is nonnegative and vanishes 
if and only if the ~* values are all equal. In fact, by indicating by A({~*}) the 

, . . . k • 

weighted arithmetic mean of the "01, with wmghtmg factors X/hl/~l=l YlAI, ~t 
can be written, keeping in mind (3.4a) 

1 
~ ,~ ~ A i [ A  ({.r/i, }) 1 

A ({1/'0~*})] 

and the conclusion is drawn by observing that the quantity between square 
brackets is the difference between the arithmetic and the harmonic mean. 

In order that equation (3.8) represents an effictent frontier it is necessary to 
bound it to suitable values of V. Above all we shall disregard values greater 
than V*, in so far as they provide levels of expected return less than M*  (and 
in fact they are the points lower than C, which we have discarded because of 
the inversion of V = V(M)).  Values of the variance that are decreasing from 
V* corresponds to points of @ which move upwards away from C, until they reach 
the boundary of D. We shall denote by Ok-~ the intersection point between ff 
and this boundary. If all the rl~* were to be equal, the point Ok-1 would 
coincide with the vertex tx~*, x2* . . . . .  xk*) of D, that we shall indicate by Oo and 
that corr.esponds to values of M and V equal to zero (empty portfolio). Instead, 
in the general case, the first class to be excluded will be the one corresponding 
to the least ~*. 

Let us then consider a permutation q of the subscripts {/} such that 

r/q*1 ~ * * ' l ' i l q 2  ~ • • • _ ~  ~ ~ T 1 q k .  
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The coordinates of the point Qk-1 will then be expressed by 

x , (Qk_ l ) =( lq  r/q*1 +r/~)A,,  (1 = 1, 2 , . .  . ,  k), 
2 

which provide 

r/q*l 
v l o k _ , )  = v *  Z 

- 2 I=1 ~'-~' 
2 

, - 1  ~ " 

The value V(Qk-l)  is the minimum possible variance relative to an efficient 
portfolio made up of k risk classes. For lower values of V we are led in practice 
to a problem in k -  1 dimensions, until the increase of the prices charged will 
not bring to the exclusion of the class cgq2. This wall happen in a point Qk-2 with 
coordinates 

t( ) 
1+ ~q2 ~* A I, f o r j # q l  

x , ( O k - 2 )  = 

Ix,*, for . /=q , .  
The efficient portfolios composed of k -  1 risk classes are represented by the 
points of the line-segment Qk-tQk-2,  laying on the boundary of D and the 
efficient frontier has the same expression as in (3.8), provided that now we bound 
it to the values of V contained between V(Qk-2) and V(Qk-1) and the sums 
range over the remaining k - 1 classes. By continuing to increase the prices, the 
progressive elimination of all the risk classes will be brought about, until one 
reaches, in Qo, the emptying out of the portfolio. 

The complete efficient frontier can be expressed by 

• ~ Y " ' a " ; ~ - ' I - v 2 +  ~ N~,aq,) M--(5, (5, 
1 * .A/'q,a., Nq ,a .m.  J _ 

(3.9) +4  , i nq*, ,=, , 

forV(Ok_. )<V-~-V(Ok-~+t) .  ( s = 1 . 2  . . . . .  k). 

where we denote C = Ok, and the points Ok- .  have coordinates 

i( * ,) 
1+ ~qs ' t -r l l '  Ai, forj#ql,q2,...,q~-~ 

xl(Ok_~) = 2 

[x~*, f o r j  --- ql, q2 . . . . .  q,-1. 

In the space R k the efficient portfolios are represented by the points of the 
broken line COk-I . . .  OlO0. 
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In the plane (V, M)  the efficient frontier has the shape of a "chain" of arcs 
of parabola that are joined together in the points Qk-s and which are ever more 
convex from C to Q0. 

3.3. Maximizing the Expected Utility of the Company 

Once the efficient frontier has been determined,  the analysis of the decision 
problem of the company ~s concluded by choosing the portfolio that represents 
the best trade-off between mean and variance, that is by maximizing a utility 
function of the form u (M, V). By introducing a set of indifference curves in the 
(V, M)  space, the optimal portfolio is represented by the tangency point between 
the efficient frontier and the indifference curve corresponding to the highest 
possible level of the utdity. 

If we suppose, for example,  that the initial free capital w is large relative to 
the expected return on the portfolio, i.e., if w >>M*, then it is possible, 
analogously as was done in sect. (2.4), to approximate  the utility function of the 
company by the quadratic utility function 

u(w +z)=z  -~rc(w)z 2, 

with the related indifference curves 

2 
V = - M  2 + ~ ( M  - U ) ,  

rc~w) 

where U is the level of expected utility corresponding to the curve and re(w) 
represents the Ar row-Pra t t  measure of risk aversion of the insurance company.  

However  it is to be noted that, with our assumptions, the suitability in using 
the variance as a measure of the riskiness of the portfolio does not rely on the 
accuracy of the quadratic approximation of the company 's  utility function, but 
on the goodness of the approximation made for the probability of ruin. 

4. ILLUSTRATION OF RESULTS IN T H E  TWO-CLASSES CASE 

Let us now discuss and illustrate the results obtained in section (3) in the case 
in which the risk market  is made up of only two risk classes qgl and ~2, with 
A1 <A2. Furthermore,  let suppose that ~ t  is characterized by a level of risk 
aversion greater  tl an ~2, i.e., ,!/1" >'OF. 

The problem finds a simple geometric  representat ion in the plane (x~, x2) (see 
fig. 2). We see that the level lines M ( x ) = M  of the expected return constitute 
a set of ellipses with center C (the center of rectangle D) ,  axes parallel to the 
coordinate axes and size decreasing as M increases. The maximum expected 
return will then be attained by choosing the premiums x~ = x~(C). The level lines 
V(x) = V of the variance instead form a set of parallel straight lines with slope 
-N~r /~ /2¢ '2~  that come closer to the origin as V increases. 
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x2~ 

~2 
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T Ol Oo 

l I y 
O ,~1 x* xl 

FIGURE 2. CO~Qo. Efficmnt prices, ROo Market portfohos, RT Propomonal Ioadmgs 

The efficient portfolio relative to the choice of a return level M is therefore 
represented by the tangency point between the ellipse M ( x )  = M and the "high- 
est" possible variance level line. In this manner we obtain the straight line 

Az 1 , 

which passes through C and intersects the boundary xz =x ~  of D in the point 
O1, having abscissa x l(Ol) = [1 + (r/~ - n 1")/2]a 1. Of course, from 6 are to be 
discarded, besides the points above 01, even those below C, that correspond to 
inefficient portfolios (maximum V for given M).  The prices indicated by 01 
generate the mixed portfolio with minimum variance; in order to achieve lesser 
values of V it is necessary to operate with only one class, choosing the prices 
on the line-segment O~Oo. 

If the two classes were to have an equal degree of risk aversion, i.e., if 
r/l* = ~ = ~*, the locus of the efficient solutions would be given by 

( " 
x,=X,  1+-~ -+  , 

with 

7 "  
0~<1<~ T ,  ( / ' = 1 , 2 )  

/z 
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and the points Q1 and Qo would coincide. In this manner a premium-making 
policy of rather intuitive significance would be confirmed, that is the charging 
to both the classes of a loading equal to the same percentage n of the net 
premium. In our case, instead, being '0~ >r/2*, it turns out that the efficient 
choices consist in overloading the more risk averse class Cgl by increasing the 
percent loading r/A~ by the quantity (r/1" -r/2")/2.  

Another  interesting result consists in the fact that a diversification of the 
portfolio is not always efficient, because if small values of the variance (line- 
segment O~O0) are desired, then the expected return is maximized by insuring 
only individuals that are of the more risk averse class. 

Finally, let us compare the policy of the efficient prices with that of the prices 
that determine a natural, or market, portfolio, that is a portfolio that contains 
both the risk classes in the same proportion with which they are present on the 
market. By solving the equations 

n,(x,) :4 
- -  = - -  

k k 

X n, Ix, ) X :4 
I = 1  I ~ 1  

(I = 1, 2), 

one easily obtains the parametric equations 

x, =x,* - dn,*a,,  

0~<d~<l, 

(1 = 1, 2), 

that represent the diagonal of D passing through Oo. As can be seen, it is a 
matter of charging to the two classes a loading which is equal to a same fraction 
( 1 - d )  of the respectwe maximum percent loading 7"/,* and this policy will turn 
out to be efficient if the classes are characterized by a different degree of risk 
aversion. 
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