FURTHER RESULTS ON RECURSIVE EVALUATION of COMPOUND DISTRIBUTIONS*

Bjørn Sundr and William S. Jewell

A recent result by Panjer provicles a recursive algorithm for the compound distribution of aggregate claims when the counting law belongs to a special recursive family In the present papet we first give a characterization of this recursive family, then describe some generalizations of Panjer's result

1 INTRODUCTION

Let $\mu \mathrm{bc}$ the Lebesgue or the counting measure on ($0, \infty$), and let $\mathrm{x}_{1}, \mathbf{x}_{2}, \ldots$ be independent, identically distributed random variables (the independent severitıes) with cumulative distribution F and generalized density f.

$$
F(\lambda)=\int_{(0, x]} f(y) d \mu(y) .
$$

Let n be a random variable (the claim number), independent of the $\mathrm{x}_{\mathrm{i}} \mathrm{s}$, defıned on the non-negatıve integers with probabilities:

$$
\rho_{n}=\operatorname{Pr}(\mathrm{n}=n) .
$$

Then the generalized density g of the random sum (the aggregate claims)

$$
s=\sum_{i-1}^{n} x_{i}
$$

(we tacitly assume \mathbf{s} is zero if n is)
has an atom

$$
\begin{equation*}
g(0)=p_{0} \tag{1.1}
\end{equation*}
$$

at zero, and for $s>0$ the form

$$
\begin{equation*}
g(s)=\sum_{n-1}^{\infty} p_{n} f^{n *}(s), \tag{1.2}
\end{equation*}
$$

where $f^{n *}$ denotes the n-th convolution of f. This formula is extremely difficult to compute because of the high-order convolutions; only a few closed-form solutions are known.

[^0]Panjer (1981) has shown that, if there exist constants a and b such that

$$
\begin{equation*}
p_{n}=p_{n-1}\left(a+\frac{b}{n}\right), \quad(n=1,2, \ldots) \tag{1.3}
\end{equation*}
$$

then

$$
\begin{array}{r}
g(s)=p_{1} f(s)+\int_{(0.0)}\left(a+b_{s}^{x}\right) f(x) g(s-x) d \mu(x) \tag{1.4}\\
(s>0)
\end{array}
$$

The importance of this result is that, when f is discrete, the successive values of g can be recursively calculated. We now consider various aspects of the relation between the recursions (1.3) and (1.4), and then provide a varicty of generalizations.

2. Characterization of the counting distribution

The following theorem charactcrizes the class of counting clensities p_{n} satisfying (13); it is essentially given in Johnson \& Kotz (1969).

Theorem 1

Assume that (13) holds. Then we must have one of the four cases.

$$
p_{n}= \begin{cases}0 & (n=0) \tag{2.1}\\ 1 & (n>0)\end{cases}
$$

$$
\begin{equation*}
p_{n}=\frac{\lambda^{n}}{n^{1}} e^{-} \tag{2.2}
\end{equation*}
$$

$$
(\lambda>0)
$$

$$
\begin{array}{ll}
p_{n}=\binom{\alpha+n-1}{n} p^{n}(1-p)^{\alpha} & (\alpha>0,0<p<1) \\
p_{n}=\binom{N}{n} p^{n}(1-p)^{N-n} & (0<p<1, N=1,2, \ldots) \tag{2.4}
\end{array}
$$

Proof

To avoid negative probabilities we must have $a+b \geqslant 0$. For $a+b=0$ we get the degenerate case (2.1). For the rest of the proof we assume $a+b>0$ If $a=0$, we get the Poisson density (2.2) with $\lambda=b$. For $a>0$ we introduce $\alpha=(a+b) / a$ andl get from (13)

$$
p_{n}=p_{0}\left({ }^{\alpha+n-1}\right) a^{n}
$$

In order that $\sum_{-\infty}^{\infty} p_{n}<1$, we must have $a<1$. Then we get the negative binomial (Pascal) density (2.3) with $p=a$.

Finally, assumc $a<0$ Then, to avoid negative probabilities, there must cxist a positive integer N such that $a+b /(N+1)=0$, that is, $N=-(a+b) / a$. $W_{1 \text { th }} p=-a /(1-a)$ we get the binomual density (2.4).

We have now proved the theorem
Q.E.D.

The allowed regions for (a, b) are illustrated in figure 1 , which is inspired by Johnson \& Kotz (1969, p. 42).

liemark

For the case $a<0$ Johnson \& Kotz (1969, p. 41) also develop a distribution for the case when $-(a+b) / a$ is not an integer, by letting $p_{n}=0$ when $a+$ (b/n) < o. However, that distribution does not satisfy (1.4) as we then must have that (1.3) holds for all $n>0$. A modified version of (1.4) allowing such "gencralized binomial" distributions will be given in Section 5 However, this version seems in most cases to be more complicated than direct computation of (1.2) For the binomial distribution we have that $\operatorname{Pr}(\mathrm{n}>N)=0$, but as $\binom{N}{n}=0$ for $n>N$ we can let p_{n} be defmed by (2.4) for all the non-negative integers.

3. generalizations

We first introduce some notation' if z_{1}, z_{2}, \ldots are given quantities, then we let

$$
z_{n \Sigma}=\sum_{i=1}^{n} z_{i}
$$

denote the sum of the first n elemonts
Assume there exists a function $h:\{(x, s): 0<x<s\} \rightarrow \mathbb{R}$, satisfying the condition that

$$
\begin{align*}
& \mathbb{E}\left(h\left(\mathbf{X}_{1}, s\right) \mid \mathbf{x}_{n \Sigma}=s\right)=m_{n} \tag{array}\\
& \text { arc independent of } s .
\end{align*} \quad(n=2,3, \ldots)
$$

Then we have the following generalization of Panjer's result:

Theorem 2

If
(3 2)

$$
p_{n}=p_{n-1} m_{n}, \quad(n=2,3, \ldots)
$$

woth the sequence $\left\{m_{n}\right\}$ satisfying (3.1), then

$$
\begin{equation*}
g(s)=p_{1} f(s)+\int_{(0, r)} h(x, s) f(x) g(s-x) d \mu(x) \quad \cdot \quad(s>0) \tag{3.3}
\end{equation*}
$$

Proof

We have for $s>0$

$$
\begin{aligned}
g(s)= & \sum_{n-1}^{\infty} p_{n} f^{n *}(s)= \\
& p_{1} f(s)+\sum_{n-2}^{\infty} p_{n-1} m_{n} f^{n *}(s)= \\
& p_{1} f(s)+\sum_{n-2}^{\infty} p_{n-1} \int_{(0,0)} h(x, s) f(x) f^{(n-1) *}(s-x) d_{\mu}(x)= \\
& p_{1} f(s)+\int_{(0,0)} h(x, s) f(x)\left[\sum_{n=1}^{\infty} p_{n} f^{n *}(s-x)\right] d_{\mu}(x)= \\
& p_{1} f(s)+\int_{(0,0)} h(x, s) f(x) g(s-x) d_{\mu}(x)
\end{aligned}
$$

Q.E.D

It is clear that if the functions h_{1} and h_{2} both satisfy (31), then for all constants c_{1} and c_{2} the function $c_{1} h_{1}+c_{2} h_{2}$ satisfies (31).

For all constants a and b we clearly have

$$
\begin{equation*}
\mathcal{F}\left(\left.a+b \frac{\mathbf{x}_{1}}{s} \right\rvert\, \mathbf{x}_{n \Sigma}=s\right)=a+\frac{b}{n}, \quad(n=2,3, \ldots) \tag{3.4}
\end{equation*}
$$

independent of s. Hence the kernel in (1.3),

$$
h(x, s)=a+b \frac{x}{s}
$$

is a spectal case of (3 1) with

$$
\begin{equation*}
m_{n}=a+\frac{b}{n} \quad(n=2,3, \ldots) \tag{3.5}
\end{equation*}
$$

The following example gives a distribution satisfying (3) with m_{n} satisfying (35), but not covered by Panjer's result.

Example 1

Consider the logarithmuc counting density

$$
p_{n}=0 \quad(n=0)
$$

$$
\begin{equation*}
(0<p<1) \tag{3.6}
\end{equation*}
$$

$$
\frac{1}{|\ln (1-p)|} \frac{p^{n}}{n} \quad(n=1,2, \ldots) .
$$

Then we have

$$
p_{n}=p_{n-1}\left(1-\frac{1}{n}\right), \quad(n=2,3, \ldots)
$$

that is, $m_{n}=1-(1 / n) ; a=1 ; b=-1$, and for $s>0$ we obtain

$$
g(s)=p_{1} f(s)+\int_{(0, d)}\left(1-\frac{x}{s}\right) f(x) g(s-x) d \mu(x) .
$$

The difference from Panjer's result is that (1.3) does not hold for $n=1$.

Theorem 3

Assume that (3.1) is satisfied for the distributions given by

$$
\operatorname{Pr}\left(\mathbf{x}_{i}=1\right)=1-\operatorname{Pr}\left(\mathbf{x}_{i}=2\right)=p . \quad(0 \leqslant p \leqslant 1)
$$

Then there must exist constants a and b such that (3.5) is satisfied.
Proof
For $p=1$ and $p=0$ we get

$$
\begin{align*}
& m_{n}=h(1, n) \tag{3.7}\\
& m_{n}=h(2,2 n)
\end{align*}
$$

(3.8)
respectively.
Assume $p \varepsilon(0,1) ; u=2,3, \ldots ; n=u, u+1, \ldots, 2 u$. Then

$$
\begin{equation*}
\frac{f(y) f^{(n-1) *}(2 u-y)}{f^{n *}(2 u)}=\frac{\binom{n-1}{2 u-y-n+1}}{\binom{n}{2 u-n}} \quad \quad(y=1,2) \tag{3.9}
\end{equation*}
$$

By using (3.7), (3.8), and (3.9) in

$$
\begin{aligned}
m_{n} & =\frac{f(1) f^{(n-1) *}(2 u-1)}{f^{n *}(2 u)} h(1,2 u) \\
& +\frac{f(2) f^{(n-1) *}(2 u-2)}{f^{n *}(2 u)} h(2,2 u)
\end{aligned}
$$

we obtain

$$
m_{n}=a_{u}+\frac{b_{u}}{n}
$$

with

$$
a_{u}=2 m_{2 u}-m_{u}, \quad b_{u}=2 u\left(m_{u}-m_{\mathrm{u} u}\right)
$$

As

$$
\begin{aligned}
& m_{u+1}=a_{u+1}+\frac{b_{u+1}}{u+1}=a_{u}+\frac{b_{u}}{u+1} \\
& m_{u+2}=a_{u+1}+\frac{b_{u+1}}{u+2}=a_{u}+\frac{b_{u}}{u+2},
\end{aligned}
$$

we must have $a_{u+1}=a_{u}$ and $b_{u+1}=b_{u}$ for all u, that is, there exist constants a and b such that (35) is satisfied

Theorem 3 says that if (3.1) is to hold for a class of two-point distributions F, the sequence $\left\{m_{n}\right\}$ must satisfy (35). This result clearly implics that if (31) is to hold for all distributions on ($0, \infty$), the sequence $\left\{n_{u}\right\}$ must satisfy (3.5). Because of this fact we restate Theorem 2 for this particular class of counting distributions

Theorem 2

If

$$
\begin{equation*}
p_{n}=p_{n-1}\left(a+\frac{b}{n}\right), \quad(n=2,3, \ldots) \tag{3.10}
\end{equation*}
$$

then for all severnty distributions F we have

$$
\begin{equation*}
g(s)=p_{2} f(s)+\int_{(0,0)}\left(a+b \frac{x}{s}\right) f(x) g(s-x) d \mu(x) \tag{3.11}
\end{equation*}
$$

We close this section by companng the class of counting distributions defined by (1.3) (that is, the class given in Theorem 1) to the class defined by (3 10). Clearly the latter class contains the former one. As in the latter class the recursion may start at one, the restriction $a+b \geqslant 0$ may for $a>0$ be replaced by the weaker condition $a+b / 2 \geqslant 0$. Hence, the permitted parameter space is now increased by the dotted region of figure 1

As p_{0} may now be chosen (relatively) freely, the counting distribution is no longer uniquely determined by (a, b). For (a, b) being in the permitted region for recursion (1.3), excluding the line $a+b=0$, the permitted class consists of the distributions given by

$$
p_{n}= \begin{cases}\rho+(1-\rho) \pi_{0} & (n=0) \tag{3.12}\\ (1-\rho) \pi_{n}, & (n=1,2, \ldots)\end{cases}
$$

where $\left\{\pi_{n}\right\}$ is a counting distribution satisfying (13), and ρ is chosen such that $p \leqslant 1$ and $p_{0} \geqslant 0$. p_{n} clearly satisfies (3.10) with the same (a, b) as for π_{n}.

Fig 1 lermitted (n, b) parameter space fon recursion (3) (The dotied anea denotes the merease obtaned by recursion (3 10))

In the discrete case (3.11) may under the present conditions be written as

$$
g(s)=(a+b) \rho F(s)+\sum_{x=1}^{\dot{\infty}}\left(a+b \frac{x}{s}\right) f(x) g(s-x) . \quad(s>0)
$$

For $a+b=0$ the permitted class of counting (istributions is given by (3.12), with the obvous restrictions on p, and p_{n} given by (36).

A counting distribution $\left\{p_{n}\right\}$ of the form (3.12) may be interpeted as a weighted (in a general sense, as p may be negative) diatribution of the distribution $\{\pi n\}$ and a distribution concentuated at zero. 'Then the agge egate claims distrbution must be the analogous weighted distribution of aggregate claims distributions, and if the aggocgate claims distnbution g_{π} comeaponding to π_{n} is known, we
may find the aggregate clams distribution $g p$ corresponding to p_{n} by

$$
g_{p}(s)= \begin{cases}p+(1-p) g_{\pi}(0) & (s=0) \\ (1-p) g_{\pi}(s) & (s>0)\end{cases}
$$

4 Results on specific severity distributions

From (34) and Theorem 3 we sec that if (3.1) is gomg to be satisfied for all F, then the sequence $\left\{m_{n}\right\}$ must satisfy (35). However, for specific classes of F there may enist other m_{n}

The followng obvious result is interesting in tha connection.

Theoren 4

Let v be a function such that $v\left(\mathbf{x}_{1}, \mathbf{x}_{n \mathrm{~s}}\right)$ is independent of $\mathbf{x}_{n \mathrm{~L}}$ for all n. Then (31) holds for any it that can be written $h(\lambda, s)=\kappa(v(x, s))$ with $\mathbb{E}\left(h\left(\mathbf{x}_{1}, \mathbf{x}_{u \Sigma}\right)\right)$ existing for $n=2,3$, .

Example 2

Assume that $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ are gamma-distributed with parameters (α, v) Then $\mathrm{x}_{1} / \mathrm{x}_{n \leq}$ is melependent of $\mathrm{X}_{n \leq}$ and beta-distributed with parameters $(v,(n-1) v)$. Hence, by Theorem 4 , all $h(x, s)=k(x / s)$ with ($\left(k\left(\mathbf{x}_{1} / \mathbf{x}_{n \Sigma}\right)\right)$ existing for all n satisfy (31) In particular, if

$$
k(z)=z^{u}(1-z)^{v} .
$$

we get

$$
m_{n}=\frac{\Gamma(n v) \Gamma(v+u) \Gamma((n-1) v+v)}{\Gamma((n-1) v) \Gamma(v) \Gamma(n v+u+v)}
$$

For $v=0$ and u positive integer this gives

$$
m_{n}=\prod_{i-0}^{u-1} \frac{v+2}{n v v+i}=\sum_{i=0}^{*-1} \frac{a_{i}}{n v+i}
$$

for some a_{0}, \ldots, a_{u-1} independent of n Hence, for any positive integer u there exist constants c_{1}, \ldots, c_{u+1} such that

$$
k(z)=\sum_{i=1}^{n+1} c_{i} z^{i}
$$

gives

$$
m_{n}=\frac{1}{n v+n}
$$

Example 3

Assume that the counting density is hypergeometric

$$
\begin{equation*}
p_{n}=\frac{\binom{m}{n}\binom{M-m}{N-n}}{\binom{M}{N}} \tag{4.1}
\end{equation*}
$$

whese the postave integer parameters (m, M, N) satisfy $N<M, m \leqslant M-N$. For $u>0$ we have

$$
p_{n}=p_{n-1} \frac{(m-n+1)(N-n+1)}{n(M-m-N+n)}
$$

whel may be watten

$$
p_{n}=p_{n-1}\left(a+\frac{b}{n}+\frac{c}{n+M-m-N}\right),
$$

with

$$
\begin{aligned}
& a=1 \\
& b=-\frac{(m+1)}{N-M+m} \frac{(N+1)}{M+m} \\
& c=-\frac{(M-m+1)(N-M-1)}{N-M+m}
\end{aligned}
$$

Now, assume that the x_{i}^{\prime} s are gamma-distributed with parameterc (α, v), where y is a positive integer As we may write

$$
\overline{n+M-n-N}=\frac{c}{n v+(M-m-N) v},
$$

by Example 2 we can fund a function h such that Theorem 2 is satisfied.
The extencion to the eccentric hypergeometric distribution (see Sverdrup (1976), with counting density

$$
p_{n}^{\prime}=\frac{p_{n} \lambda^{n}}{\sum_{n^{\prime}} p_{n^{\prime}} \lambda^{n^{\prime}}}
$$

Where p_{n} is given by (4 1), is obvious
Simblar approaches are possible for the following counting distributions, described in Jomson \& Kotz (1969) the displaced Poisson distribution (p. 113), and the Yule clastribution with generalizations (pp. 244-251)

5. RECURSION ON A LIMITLD RANGE

In the prevous cases we have assumed that the p_{n} can be computed recursively for $n>1$. The following Theorem 5 extends this to the case when the recursion holds only for $n>K$ with $K \geqslant 1$.

Let

$$
g_{K}(s)=\sum_{n-k}^{\infty} p_{n} f^{n *}(s)
$$

Then

$$
g(s)=\sum_{n-0}^{k-1} p_{n} f^{n *}(s)+g_{K}(s)
$$

Theorem 5
Assume that

$$
p_{n}=p_{n-1} m_{n} . \quad(n=K+1, K+2, \ldots)
$$

weith m_{n} given as $2 n$ (3.1). Then

$$
\begin{equation*}
g_{K}(s)=p_{K} f^{K *}(s)+\int_{(0,0)} h(x, s) f(x) g_{K}(s-x) d \mu(x) \tag{5.1}
\end{equation*}
$$

(The proof goes as in Theorem 2 and is omitted.)
The difference from the underlying assumptions of Theorem 2 is that (3.1) and (3 2) do not need to hold for $n \leqslant K$. If (3.1) holds for all $n \geqslant 2$, msertion of

$$
g_{K}(s)=g(s)-\sum_{n=1}^{k-1} p_{n} f^{n *}(s) \quad(s>0)
$$

in (5 1) gives the final recursion.

$$
\begin{array}{rlr}
g(s) & =p_{1} f(s)+\sum_{n-1}^{n}\left(p_{n}-p_{n-2} m_{n}\right) f^{n *}(s) \tag{52}\\
& +\int_{(0,0)} h(x, s) f(x) g(s-x) d \mu(x) . \quad(s>0)
\end{array}
$$

(The summation is zero if $K=1$) Compared to (3.3) we have now got the summation as a correction term, since this would be zero if $p_{n}-p_{n-1} m_{n}=0$ foin $n=2, . ., K$

For the specide case of Theorem 5 with $p_{0}=p_{1}=\ldots=p_{K-1}=0$ (truncation from bclow) $g_{K}(s)=g(s)$, and (5 1) gives

$$
\begin{equation*}
g(s)=p_{K} f^{K *}(s)+\int_{(0,0)} h(x, s) f(x) g(s-x) d \mu(x) \tag{53}
\end{equation*}
$$

We shall now see what happens if the counting distribution is truncated from above Assume

$$
\begin{array}{rlrl}
p_{n} & =0 & & (n=0, \ldots, K-1) \\
& =p_{n-1} m_{n} \quad . \quad & (n=K+1, \ldots, L) \\
& =0 & & (n=L+1, \ldots) .
\end{array}
$$

Then for $s>0$ we get

$$
\begin{align*}
g(s) & =p_{K} f^{K *}(s)-p_{L} m_{L+1} f^{(L+1) *}(s) \tag{54}\\
& +\int_{(0,1)} h(x, s) f(x) g(s-x) d \mu(x) .
\end{align*}
$$

Unfortunately, in this formula we need high-order convolutions of f. These can be rather complicated to compute, except for some cascs where we have simple closed-form expressions (gamma, Porsson, binomial, negative binomial distributions). In some cases the factor $p_{L} m_{L+1}$ makes the correction term negligible. Another possibility is for large L to approximate $f(L+1) *$ by a (possibly discretized) normal density Otherwise it is probably more efficient to compute g from the basic defintion (1.1).

6 extension to non-positive discrete values

We now leave the assumption that the x_{i} s are distributed on ($0, \infty$) and assume that they are distributed on the set of all integers.

$$
f(x)=\operatorname{Pr}(\mathbf{x}=x) . \quad(x=\ldots-2,-1,0,1,2, \ldots)
$$

Then (1.1) must be replaced by

$$
\begin{equation*}
g(0)=p_{0}+\sum_{n-1}^{\infty} p_{n} f^{n *}(0) \tag{6.1}
\end{equation*}
$$

We further assume that the counting distribution satisfies the recursion (1.3), and analogously to Theorem 2 we obtain

$$
\begin{equation*}
s g(s)=\sum_{x--\infty}^{+\infty}(a s+b x) f(x) g(s-x) \tag{6.2}
\end{equation*}
$$

If x_{1} only takes on zero plus positive valucs, so does s , then $f^{n *}(0)=[f(0)]^{n}$, and the sum in (61) can be carricd out explicitly (sce the probability generating function for the counting distribution in Joinsson \& Kotz (1969)). We then get the recursive system

$$
\begin{aligned}
g(0) & =\left[\frac{1-a f(0)}{1-a}\right]^{-\left(\frac{a+b}{a}\right)} & & (a \neq 0) \\
& =c-b[1-f(0)], & & (a=0)
\end{aligned}
$$

(6.3)

$$
\begin{aligned}
g(s)=\left(\frac{1}{1-a} \overline{f(0)}\right) & \sum_{s-1}^{\perp}\left(a+b \frac{\lambda}{s}\right) f(x) g(s-x) \\
& (s \geqslant 1)
\end{aligned}
$$

The case where the λ_{2} can take on negative values is chfficult because one camot, in gencral, find sutable starting values fors in (6.2).

However, in the case where p_{n} is Porsonn with parameter λ. (2.2), the density g can be computed by two apphations of (i) 3) plus a convolution Let

$$
\begin{align*}
& x_{1}^{+}=\max \left(0, x_{1}\right) \\
& x_{i}^{-}=\max \left(0,-x_{2}\right) \tag{04}
\end{align*}
$$

and we have
(65)

$$
\mathbf{s}^{+}=\sum_{i-1}^{n} x_{1}^{1} . \quad \mathbf{s}^{-}=\sum_{i-1}^{n} x_{1}^{-}
$$

$$
\mathbf{s}=\mathbf{s}^{+}-\mathbf{s}^{-}
$$

Andre Dubey has pomted out to us that when n is Poisson diatributed, then \mathbf{s}^{+}and \mathbf{s}^{-}are independent Let \mathbf{x}_{i}^{+}and \mathbf{x}_{2}^{-}have densities f^{+}and f^{-}, respectively, and \mathbf{s}^{+}and \mathbf{s}^{-}have densities g^{+}and g^{-}, respectovely Then g^{+}and g^{-}are computed independently, using (63), with $a=0, b=\lambda$, and the corresponding f^{+}or f^{-}. Then g for the total sum is computed by the convolution

$$
\begin{equation*}
g(s)=\sum_{x-\max (0,0)}^{\infty} g^{+}(x) g-(x-s) \tag{66}
\end{equation*}
$$

(6.2) can, in principle, also be sohed for p_{n} lomomal, if $f(x)$ is defmed over ($-K,-K+1, \ldots$), for in that case thenc is a largest negative value of the sum, $s=-N K$, and (6.2) can be rearranged into a true recursive form.

Remembering that $p=-a /(1-a)$ and $N=-(a+b) / a$, we get the recurslve system:

$$
\text { 7) } \begin{align*}
& g(s)=0(s<-N K) \tag{6.7}\\
&=[p f(-K)]^{N}(s=-N K) \\
&=\frac{\left(1-p^{-1}\right)(s-K) g(s-K)+\sum_{x-1}^{+N h}[(N+1) x-N K-s] f(x-K) g(s-x)}{(s+N K) f(-K)}
\end{align*}
$$

Of course, if K is very large, there are obvious problems with rouncl-off error accumulation, especially if $f(-K)$ and the nearby values are very small. We remind the reader that this problem can occur with any recursive scheme described in this paper where the range of discrete severities is large

There remams the case of p_{n} negative binomial (23) for which it does not seem possible to give a sumple procedure for negative \mathbf{x}_{i} s. Of course, in this and in the other cases, one can think of various zeratue schemes for (6.2) which would converge to the correct density.

REFERENCJS
Joinnson, N L \& Kola, S. (1969) Discrete distrabutions Houghton Miflin, Boston
Panjer, H H (1981) Recursive evaluation of a famly of compound distributions Astin Bulletin 12
Sverdrup, E (1976). Programs on HP-25 desk calculator of mathematical functions for use in statistics Statistical Research Report 1976-7 Institute of Mathematics Untversity of Oslo

[^0]: *This research was supported by the Norwegran Research Council for Science and the Humanities, the Association of Norwegian Insurance Companies, and the Forschungsinstitut fur Mathematik, ETH Zurich

