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F U R T H E R  R E S U L T S  ON R E C U R S I V E  E V A L U A T I O N  
OF C O M P O U N D  D I S T R I B U T I O N S *  

BJORN S U N D r  a n d  ~ / iLLIAM S. J E W E L L  

A recent result by Partier provKles a recurmve algorithm for the compound 
distribution of aggregate claims when the counting law belongs to a special recur- 
slve family In the present paper we first g~ve a characterlzatmn of thts recursive 
family, then descrtbe some generahzatmns of Panler's result 

1 INTRODUCTION 

Let a be the Lebesgue or the count ing  measure  on (o, co), and let x~, x2 . . . .  
be independent ,  identical ly dlntr ibuted r andom  var iables  (the independent  
severitms) with c u m u l a t w e  dis t r ibut ion F and general ized dens i ty  f .  

F(x) = f f (y)  da(y). 
O. ,] 

Let  n be a r andom var iable  (the claim number) ,  independent  of the  x~s, 
defined on the non-nega t ive  integers with probabi l i t ies :  

p,~ = Pr (n= n). 

Then the generahzed densi ty  g of the r a n d o m  sum (the aggrega te  claims) 

S -~  

(we tac i t ly  assume s is zero if n is) 

has an a tom 

(1.1) 

at  zero, and  for s > o the form 

(1.2) g(s) = 

r t  

E x, 

g(o) = Po 

pnfn*(s), 
n - - I  

where /n*  denotes  the n- th  convolut ion o f f .  This  formula  is ex t r eme ly  difficult 

to compu te  because of the high-order  convolut ions;  only a few closed-form 
solutions arc known.  

* "l.'lus research was suppo r t ed  by the  Norwegmn Research  Council  for Science and  
the  l '{unmnltms,  the  Assocla.tlorl o[ Norweg ian  I n s u r a n c e  Comp~xmes, and  the  Forschungs -  
m s t t t u t  fur  M a t h e m a t l k ,  ETI--1 Zur ich  
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(1.3) 

then 

(,.4) 

PANJER (1981) has  shown  t h a t ,  if t he re  exis t  c o n s t a n t s  a and  b such  t h a t  

p,,  = p,~-I a + - ~  , (n = 1 ,2  . . . .  ) 

g(s) = p , / ( ~ )  + 
(o. ,) 

(s > o) 

T h e  i m p o r t a n c e  of this  resul t  is t h a t ,  when  f is d iscrete ,  the  success ive  va lues  
of g can be r ecu r s ive ly  ca lcu la ted .  We  now cons ider  va r ious  a spec t s  of t h e  

re la t ion  b e t w e e n  the  r ecur s ions  (1.3) and  ( ' .4 ) ,  and  t hen  p r o v i d e  a v a r i e t y  of 
genera l i za t ions .  

2. CHARACTERIZATION OF THE COUNTING DISTRIBUTION 

T h e  following theorem characterizes the class of counting densities Pn sat- 
isfying (t 3)" it is essentially given in JOIINSON & KOTZ 0969). 

Theorem 1 

Assume that (I 3) holds. Then we must  have one of the four cases. 

o (,, = o) 
(2 . , )  p .  = 

t 1  (,~ > o) 

Xn 
= - -  e-~  (x > o)  (2 .2 )  p ,z  1~ f 

(2.3) p,~ (~+'~-h = ,~ , p n ( i - p ) ~  (~ > 0 , 0  < p  < 1) 

(2.4) p,~ = ( ~ ) p r ~ ( l _ p ) N - n  (0 < p  < t , N  = 1 ,2  . . . .  ) 

Proof 

To a v o i d  n e g a t i v e  p robab i l i t i e s  we m u s t  h a v e  a + b >1 o. F o r  a +  b = 0 we 

get  the  d e g e n e r a t e  case  (2.1). F o r  the  res t  of the  p roof  we a s s u m e  a + b > 0 
I f  a = o, we get  the  Poisson  d e n s i t y  (2.2) wi th  X = b. F o r  a > 0 we i n t r o d u c e  
o: = (a~+ b)/a a n d  ge t  f r o m  (1 3) 

Pn = pc (~+'~-h an. 

I n  o rder  t h a t  l~ P,L < i, we  m u s t  h a v e  a < i. T h e n  we get  t he  n e g a t i v e  
n - - t  

b i nomia l  (Pascal)  d e n s i t y  (2.3) wi th  p = a. 
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Fina l ly ,  a s s u m e  a < o Then ,  to a v o i d  n e g a t i v e  p robab i l i t i e s ,  t h e r e  m u s t  
exis t  a pos i t ive  in t ege r  N such  t h a t  a + b/(N + 1) = O, t h a t  is, N = - (a + b)/a. 
W i t h  p = - a/(I - a) we get  t he  b i n o m m l  dens i t y  (2.4). 

\Ve h a v e  now p r o v e d  the  t h e o r e m  
Q . E . D .  

T h e  a l lowed regions  for (a, b) a re  f l luq t ra ted  m f igure  l, wh ich  is insp i red  b y  

JOHNSON & KOTZ (1969, p. 42). 

A'emark 

For  t he  case a < o JOHNSON & KOTZ (1969, p. 4~) also deve lop  a d i s t r i b u t i o n  
for the  case when  - ( a + b ) / a  is no t  an in teger ,  b y  l e t t i n g p , ,  = o when  a + 
(bN) < o. H o w e v e r ,  t h a t  d i s t r i b u t i o n  does not  sat~qfy (1.4) as we t h e n  m u s t  
h a v e  t h a t  (1.3) ho lds  for  all n > o. A modi f i ed  vers ion  of (1.4) a l lowing  such 
" g e n e r a h z e d  b i n o m i a l "  d i s t r i b u t i o n s  will be  g w e n  in Sec t ion  5 H o w e v e r ,  th is  
vers ion seems  m mos t  cases  to be  m o r e  c o m p h c a t e d  t h a n  d i rec t  c o m p u t a t i o n  

of (1.2) F o r  the  b inomia l  d i s t r i bu t ion  we h a v e  t h a t  Pr(n  > N) = o, b u t  as 
(~) = o for  I~ > N we can let p,, be  def ined  by  (2.4) for  all t he  n o n - n e g a t i v e  

in tegers .  

3'  GENERALIZATIONS 

W e  first i n t r o d u c e  some  n o t a t i o n '  if z~, z2 . . . .  a re  g iven  quan t i t i e s ,  t hen  we let  

Zn~ = ~ Zt 

d e n o t e  the  s u m  of the  f irst  n e l e m e n t s  

A s s u m e  the re  ex is t s  a func t ion  h • {(x, s) • o < x < s} -~- IR, s a t i s fy ing  the  

cond i t i on  t h a t  

(3 t) ~ ( h ( x u  s) l x n ~  = s) = m,, (,~ = 2, 3 . . . .  ) 
are  i n d e p e n d e n t  of s. 

T h e n  we h a v e  the  fo l lowing g e n e r a h z a t l o n  of P a n j e r ' s  r e su l t :  

( n  = 2 ,  3 . . . .  ) 

T]t.¢orcln 2 

I /  
(3 2) p,, = p , ,_ ,  m,,, 

w*lh life sequence {m,,} saEsfy*ng (3.1), then 

(3.3) g(s) -- p l f ( s )  + J" h ( x , s ) f ( x ) g ( s - x ) d v . ( x )  
(o, ,) 

(s > o) 
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Proof 

We have for s > o 

g(s) = p,fn*(s)  = 

pt f (s)  + ~ pn-1 m,,fn*(s) = 
n - I  

ply(s) + ~ :h._~ f h(x, s) /{x) / { . - . *  {s-x)dl4x)  = 
. - 2 O, ,) 

plf(s)  + J" h(x,s) f ( x ) [  Z p n f  n* (s-x)]dlx(x) = 
(o, ,) . - 

p~/(s) + f /~(~, s) /(~) g(~-.~) d~(~) 
{o. ,) 

Q.E.D 

I t  is clear tha t  if the functions h~ and h2 both satlqfy (3 1), then for all 
constants  c~ and c2 the functmn ct h~ + c2 h2 satisfies (3 1). 

For all constants  a and b we clearly have 

x~ ) b 
{3 .4)  ~ a + b - -  ] X n ~ = S  = a +  - ,  (n = 2, 3 . . . .  ) 

S 71 

independent of s. Hence the kernel in (]-3), 

x 
h(x, s) = a + b - ,  

s 

is a.specxal case of (3 1) with 

b 
(3-5) ~,~,~ = a +  - (n = 2, 3 . . . .  ) 

The following example gives a distr ibution satisf3qng (3 l) with mn sat- 
isfying (3 5), but  not covered by Panjer ' s  result. 

Example 2 

Consider the loganthmm counting density 

PTI = 0 

(3.6) 
1 p -  

($/, = O) 

( o < p < l )  

(71 ~ 1, 2 ,  . . . ) .  
I I ' ( I - P )  l I~ 
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As 

b u + l  b u  
7;/u+1. = au+L + - -  a u  + - - ,  

~ +  1 u +  ! 

b,~+x bu 
I;~u+2 : a u + l  + - -  a u + - -  , 

¢ i + 2  U + 2  

we must  have a,,+~ = au and bu+t = bu for all u, that  is, there exist constants 
a and b such tha t  (3 5) is satisfied 

Q.E.D 

Theorem 3 says tha t  If (3-t) is to hold for a class of two-point distr ibutions 
F,  the sequence {ran} must  satisfy (3 5). This result clearly implies tha t  if 
(3 l) is to hold for all distr ibutions on (o, oo), the sequence {mu} must satisfy 
(3.5). Because of thts fact we restate Theorem 2 for this particular clas~ of 
cSunting distributions 

Theorem 2 

i f  

(3.1o) ~,, = p._~ (a+ ~), (n = 2, 3 . . . .  ) 

theu for all sever,ty dzstr, but~ous F we have 

(3.11) g(s) = p l f ( s )  + . a + b ~  f ( x )  g ( s - x ) d ~ ( x ) .  (s > o) 
(o, ,) 

We close this section by comparing the c]ass of counting distributions 
defined by (1.3) (that is, the class given in Theorem 1) to the class defined by 
(3 1o). Clearly the lat ter  class contains the former one. As in the latter class 
the recursion m a y  s tar t  at one, the restriction a + b >/ o may  for a > o be 
replaced by the weaker condition a + b/2 >~ o. Hence, the permit ted para- 
meter  space is now increased by the dot ted region of figure 1 

As po m a y  now be chosen (relatively) freely, the counting distribution is no 
longer uniquely determined by (a, b). For  (a, b) being in the permit ted region 
for recursmn (1.3), excluding the line a + b = o, the penmt t ed  class consists 
of the d i s tnbu tmns  given by 

~p + ( ~ -  p)~o (,, = o) 
(3.12) P" t(~-P)=. ,  ( , , =  ~ , 2  . . . .  ) 

where {r:,~} is a counting dis tr ibutmn satisfying (1 3), and p is chosen such tha t  
p ~< 1 and po /> o. Pn clearly satisfies (3.1o) with the same (a, b) as for ~ .  
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I~ I N O M  | AT 
b 

t~ ~ I 2 3 .4 e t C .  

N ( I I  
P r R M  I'1 l i t [ }  

k . . . . . .  . ¢ , n  

Fig I l 'crm~tted (a, b) pa ramete r  space (oi rccur~on (I 3) (The do t t ed  a~e,x tlcnotes the  
increase obta ined by recurslon (3 lo) )  

In the discrete case (3.11) may  under  the pre~ent cem(htion~ be x~ritten as 

g(s) = (a+b) pF(~) + Z (a+b~)f(x)g(s-.a). 
z - I  

(S > O) 

]Tor a + b = o tile l~ermitted cla~s of count ing dis tr ibut ions it given by 
(3.12), with the obx'lous restrictRms on P," and Pn given 19 3, (3 6). 

A count ing dis tr ibut ion {p,~} of the form (3.12) may  be interl)l eted as a weight- 
ed (in a gener,d ~en~c, as p may  be nogalive) diqtribttttoJl of the distr ibution {re,t} 
and a dtstr ibutton concclltt ated ;vt zero. Then the affgt egate claims d,s t r tbut ion 
must be the analogou~ weighted distr ibution o[ aggregate clahns dlstr lbutions,  
and if the agglegate claims distr ibution g~ coiie~l~onding to re,, is known, we 
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may fred the aggregate clanns dls tr lbutmn g~ corresponding to p ,  by 

o + (~ - o ) g . ( o )  (s = o) 
g~(s) 

I (~ - P) g.(s)  (,~ > o) 

4 RESULTS ON SPECIFIC S E VE RITY D I S T R I B U T I O N S  

From (3 4) and Theorem 3 we see tha t  if (3.1) is go ing to  be satlsfmd for all F,  
then the sequence {mR} mu,,t satisfy (3 5). t towever,  for specific classes of F 
there may  exist other m,z 

The following obvmus result is interesting m tins connectmn. 

Theorem 4 

Let  v be a f l~nclwn such tha[ v(x~, x,,x) zs independent  of  x,~z for  all n. Then 
(3 2) holds for  any  h that can be wr, tlen h(a, s) = k(v (x, s) ) wzlh ~(h (xt, x,,~)) 
emstzng for  u = 2, 3, • 

E x a m p l e  2 

Assume that  x,, x.o. . .  are gamnm-d~stributed with parameters (=, v) Then 
x,/xn,_ is independent  of x,a,z and beta-dis tr ibuted with parameters (v, (n - l)v). 
Hence, by Theorem 4, all h(x, s) = k(x/s) with g(h (xdx,~L)) existing for all n 
satisfy (3 l) In palticular,  if 

~(~) = z"(J - z ) v  

w e  get  

For v = o and u posfflve integer this gives 

, ~ + z  a t  

nv + i ~ nv + i 
t - 0  , - o  

for some ao . . . . .  a~- i  independent  of n Hcncc, for any positive integer u 
there exist constants  ct, . . . ,  cu+l such tha t  

gives 

u + |  

k(z) = Z c, z~ 
J - !  

I 
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Example 3 

A s s u m e  t h a t  the  c o u n t i n g  d e n s i t y  is h y p e r g e o m e t r i c  

ii / u / 
( 4 '  1) P,t = (1,~rl 

\ N/ 

whc~c the  p o b m v c  in teger  p a r a m e t e r s  (m, M, N) ~at lsfy N < .M, 
For  it > o we h a v e  

( m - l , +  I) ( N - n +  l) 

P" = P"-~ IT(M-m-N+.) 

whmh may b(, wr i t t en  

wi th  

p,, = p , - I  a + - + 
11 *~ + M - m - 

a ~ 1) 

m ~< M - N .  

b = _ 
(re+l) (N+I) 

N - M + m 

( M - m + 1 )  ( N - M - l )  

N - M + m 

Now,  as.aurae t h a t  the  xls  are g a m m a - d ) s t r i b u t e d  with  p a r a m e t e r a  (~, v), 
where  ,J ~a a po~ i twe  Jntegcr  Aa we m a y  wr~tc 

C C~ 

;~ + M -  m - N ~ + ( M -  m -  N)~ 

by  E x a m p l e  2 we can fred a f u n c t m n  k such t h a t  Theo re ln  2 is sa t is f ied.  

T h e  ex t cn~mn  to  the  ecccn t rm  h y p c r g e o m e t r m  d l s t n b u t m n  (see Svc]{Drtu? 
(1976), wi th  c o u n t i n g  d e n s l t y  

p ,  X '~, 
P '  - :s p,, ,  z ~''' (x > o) 

n r 

~.helc  P,z is g iven b y  (4 1), Is obviou¢. 

S imi la r  apl~roach( 's  arc  poasd)lc for the  fol lowing c o u n t i n g  d i s t r ibu t ions ,  
ok:scribed m J o h N s o N  & KOTZ (~969) the  d i sp laced  Poisson  d l a t n b u t i o n  

(p. 113), and  the  Yule  ( h a t r l b u t m n  wi th  gene ra l i z a t i ons  (pp. 244-251) 
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5'  RECURSiON ON A LIMITED RANGE 

In  the  p r e v m u s  caaes we have  a s sumed  t h a t  the  15,, can be c o m p u t e d  recur-  
Sl'..,Cly for n > I. The  fol lowing T h e o r e m  5 ex t ends  this  to the  case when the  
recursmn holds on ly  f o r n  > K w i t h  K >/ 1. 

Let 

Then  

Theorem 5 

A ssm~te that 

g1¢(s) = Z pn f n* (s). 
n - g  

g - I  

g(s) = Z p .  /,~* (s) + ga.(s) 
n - o  

with mn gzven as zn (3.1). Then 

(5.1) gl¢(s) = pK fK*(S) + 

(n  = K + 1 ,  K + 2  . . . .  ) 

J" h(x, s) f (x )  g lds  - x) d~(x) 
(o, J) 

(The proof  goes as in T h e o r e m  2 and  is omi t t ed . )  

Tim chffercnce from the  u r lde r lymg a s s u m p t m n s  of Theo rem 2 is t h a t  (3.1) 
and  (3 2) do not  need to hold  for n ~< K. If  (3-1) holds  for all n >t 2, mse r tmn  of 

g . ( s )  = g(s) - p , , /"*(s )  (s > o) 

m (5 1) g ives  the  final recurs ion .  

(5 2) g(s) = pl f ( s )  + Z ( p , ~ - p n - I  '",,) fn*(s) 
n - - t  

+ J" h(x, s) f (x )  g ( s -  x) dD(x). 
(o, ,) 

(S > O) 

(The s u m m a t i o n  is zero if K = 1 ) C o m p a r e d  to (3-3) we have  now got  the  
s u m m a t m n  as :t cor rec t ion  t e rm,  since t ins would  be zero if Pn - Pn-~ mn = o 
f O l n  = o [ (  

For  tlle sl)ccJ,tl case of T h e o r e m  5 wi th  po = p t  . . . . .  p1¢-1 = o ( t run-  

ca t ion  f rom below) gK(s) = g(s), and  (5 1) gives 

(5 3) g(s) = p1~ y~*(s) + f h(x, s) f (x )  g ( s - x )  d~(~). 
(o. ,) 
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We shall now see what happens if tile counting distribution is truncated 
from above Assume 

P*t  = 0 

= P n - 1  m n  

= 0 

( n  = o . . . . .  K -  1) 

(1/, = K + 1 . . . . .  L) 

(n  = L + 1 . . . .  ). 

Then for s > o we get 

(5 4) g(s) = p K  f I~* (s) - P L  mL+l  f ~L+I)* (S) 

+ I h(~,,~)f(x)g(s-x) d~(~). 
(o, ,) 

Unfortunately, in this formula we need high-order convolutions of f .  These 
can be rather comphcated to compute, except for some cases where we have 
simple closed-form expressions (gamma, Poasson, bmomml, negative binomial 
&stributmns). In some cases the factor Pc mL+t makes the correction term 
negligible. Another possibihty is for large L to approximate f(L+~)* by a (pos- 
sibly discretized) normal density Otherwise it is probably more efficmnt to 
compute g from the basic defimtion (1.1). 

6 E X T E N S I O N  T O  N O N - P O S I T I V E  D I S C R E T E  V A L U E S  

We now leave the assumptmn that  the x~s are distributed on (0, 00) and as- 
sume that  the35, are distributed. Oll tile set of all integers. 

f (x) = P r ( x  = x).  (x . . . .  - 2 ,  - 1 ,0 ,  1 , 2  . . . .  ) 

Then (1.1) must be replaced by 

(6.~) g(o) = po + p, ,  f'~* (o). 
t t - I  

We further assume that tile counting distribution 9atisfies the recursion 
(1.3), and analogously to Theorem 2 we obtain 

+ m  

(6.2) s g(s) = X (as + bx) f (x) g(s - x) 

If xj only takes oll zero plus posmve values, so does s, then fn*(o) = If(o)] n, 
and the sum in (6 1) can be carried out explicitl3; (see tile probabihty generating 
function for the counting distribution in jonNsoN & I<OTZ (1969)). We then 
get the recurs~ve system 
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(6.3) 

_(a+O'~ 

g ( o )  = l 

= e -b[t--t{°)l, (a = o) 

(b  4)  

and we have  

( ) g(S) = 1 -- a f ( o )  ~ a + f ( x )  g ( s - -  X) 
x - I  

(~ >1 ~) 

The caae where the a, can take  on negat ive  values is difficult becaw, e one 
cannot ,  in general,  find sui table  s t a r t ing  values for s ill (6.2). 

However ,  in the case where fl,~ xs l~(u~aon with p a r a m e t e r  ~. (2.2), the (lcnqity 
g can be compu t ed  by  two  apphca tml la  of 0' 3) plus a convolu tmn Let  

4 x, = max  (o, x,) 
(, = 1 , 2 ,  . . )  

x (  = ma~ ,  (o,  - x , ) ,  

(6 5) 

n n 

. 4  S + = ~ X, . S = ~ X r - ,  
t - - l  t - - l  

S =  S +  _ S - 

A n d r 6  D u b e y  has  pointed  out  to us t ha t  when n is Pols~on dis t r ibuted ,  then 
s* and s -  are independent  Let  x [  and x£- have  dens i tmsf*  and f - ,  respectively,  
and s + and s -  have  densi tms g+ and g - ,  respect ively  Then g+ and g-  are 
c o m p u t e d  independent ly ,  using (6 3). with a = o, b = X, and the corre- 
s p o n d i n g f  + o f f - .  Then g for the total  sum 1~ c o m p u t e d  by  the convolu tmn 

(6 6) g(s)  = ~" g+(x)  g - ( x -  s).  
2 - = , ~  (o ,) 

(6.2) can, in prmmple ,  also be solxed for Pn bmoxmal,  if f ( x )  a~ defined over  
( - K ,  - K +  I . . . .  ), for m tha t  case the le  1~ a largest  negat ive  value of the 
sum, s = - N K ,  and (6.2) can be rear ranged  into a t rue  recurslve form. 

R e m e m b e r i n g  t ha t  p = - a/(1 - a) and N = - (a + b)/a,  w e  get the recur- 
slve sys tem : 

(6.7) g(s) = o 

= [ p f ( -  K ) ] ~ "  

( ~ _ p - l )  (s - K )  g ( s  - I ; )  + 

(s  < - N I ( )  

(s  = - N I ( )  

# +  N I ,  

X, [ ( N + l )  x - N I ¢ - s ] f ( x - K ) g ( s - x )  
x - I  

(s + N : C ) / (  - :¢) 
(s  > - N I ( )  
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Of course, if K is very large, there are obvious problenas with round-off  error 

accunlulation, especially if f ( -  K) and the nearby values are very small. We 
remind the reader tha t  this problem can occur with any  recurslve scheme 

described in this paper where the range of chscrete severities is large 
There remains the case of Pn negative binomial (2 3) for whmh it does not 

seem possible to give a simple procedure for negative x,s, Of course, in this and 
m the other cases, one can think of various ,terat~ve schemes for (6.2) which 
would converge to the correct density. 
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