# RECURSIVE EVALUATION OF A FAMILY OF COMPOUNI) DISTRIBUTIONS* 

Harry h. Panjer<br>University of Waterloo, Ontario, Canada

1 INTRODUCTION
Compound distributions such as the compound Poisson and the compound negative binomial are used extensively in the theory of risk to model the distribution of the total claims incurred in a fixed periocl of time The usual method of evaluating the distribution function requires the computation of many convolutions of the conditional distrobution of the amount of a claim given that a clam has occurred When the expected number of claims is large, the computation can become unwicldy even with modern large scale electronic computers

In this paper, a recursise definition of the distribution of total clams is developed for a family of clam number distributions and arbitrary claim amount distributions When the clam amount is discretc, the recursive definition can be used to compute the distribution of total claims without the use of convolutions. This can reduce the number of required computations by several orders of magnitude for sufficiently large portfolios

Results for some specific distributions have been previously obtained using gencrating functions and Laplace transforms (see PANJIER (1980) including discussion). The simple algebraic proof of this paper yields all the previous results as special cases

## 2. THE FAMILY OF CLAIM NUMBER DISTRIBUTIONS

Consider the family of claim number distributions satisfying the recursion

$$
\begin{equation*}
p_{n}=p_{n-1}(a+b / n), \quad n=1,2,3 \ldots \tag{1}
\end{equation*}
$$

where $p_{n}$ denotes the probability that exactly $n$ clams occur in the fixed time interval. Members of this family are
a) Poisson distribution

1. $p_{n}=\frac{e^{-\lambda \lambda^{n}}}{n^{1}}, \quad n=0,1,2, \ldots$

[^0]2. $p_{n} \mid p_{n-1}=\lambda / n, \quad p_{0}=e^{-\lambda}$
$3 a=0, b=\lambda$
b) Binomal distribution

1. $p_{n}=\binom{N}{n} p^{n}(1-p)^{N-n}, \quad n=0,1,2, \ldots, N$ $p_{n}=0, \quad n=N+1, N+2, \ldots$
$2 p_{n} \mid p_{n-1}=(N-n+1) p /(n(1-p)), \quad p_{0}=(1-p)^{N}$
2. $a=-p /(1-p), \quad b=(N+1) p /(1-p)$
c) Negative binomal clistribution
$1 \quad p_{n}=\left({ }^{\alpha}{ }_{n}^{n-1}\right) p^{n}(1-p)^{\alpha}, \quad n=0,1,2$,
$2 p_{n} \mid p_{n-1}=(\alpha+n-1) p / n, \quad p_{0}=(1-p)^{n}$
$3 a=p, \quad b=(\alpha-1) p$
d) Geometiac distribution (Negatire binomal with $\alpha=1$ ):
3. $p_{n}=(1-p) p^{n}, \quad n=0,1,2, \ldots$
4. $p_{n} \mid p_{n-1}=p, \quad p_{0}=1-p$
5. $a=p, \quad b=0$

Sundi and Jewell (1981) show that these are the only members of this family.

## 3 The recursive formula

Consider the compound distribution with distribution function

$$
\begin{align*}
-G(x) & =\sum_{n=1}^{\infty} p_{n} F^{* n}(\lambda), & & x>0  \tag{2}\\
& =p_{0}, & & r=0
\end{align*}
$$

for arbitrary' clam amount distribution $F(\lambda), x>0$. For notational convenience, assume that $F(x), x>0$, is of the contmuous form Corresponding results will be given for the discrete case. Then the density of total claims is

$$
\begin{align*}
g(x) & =\sum_{n-1}^{\infty} p_{n} f^{* n}(x), & & x>0  \tag{3}\\
& =p_{0}, & & x=0
\end{align*}
$$

when $f(x)$ is the density associated with $F(x)$
In the theorem which follows, the followng two relations will be used:
(I) $\quad \int_{0}^{x} f(y) f^{* n}(x-y) d y=f^{*(n+1)}(x), \quad n=1,2,3, \ldots$

Relation (I) is the usual recursive defmition of convolutions The left side of relation (li) is the conchtional mean of any element of a sum consisting of $n+1$ independent and identically distributed elements, given that the sum is exactly $x$ The mean is $x /(n+1)$ as a result of the symmetry in the clements of the sum. Relation (II) is uscd in Buhlmann and Gcrber's discussion to Panjer (1980) to clevelop an alternate proof of the result described in that paper.

## Theorcm

For $p_{n}$ and $g(x)$ defined by (1) and (3) respectively, and $f(x)$ any distribution of the contmuous type for $x>0$, the following recursion holds.

$$
\begin{equation*}
g(x)=p_{1} f(x)+\int_{0}^{x}(a+b y / x) f\left(y^{\prime}\right) g\left(x-y^{\prime}\right) \overline{d y}, \quad x>0 . \tag{4}
\end{equation*}
$$

## Proof

Substituting (3) into the right side of (4) results in

$$
\begin{aligned}
& p_{1} f(x)+\int_{0}^{x}(a+b y / x) f(y) g\left(x-y^{\prime}\right) d y=p_{1} f(x)+\int_{0}^{x}(a+b y / x) f(y) \\
& \sum_{n-1}^{\infty} p_{n} f^{* n}(x-y) d y \\
& =p_{1} f(x)+\sum_{n=1}^{\infty} p_{n} \int_{0}^{x}(a+b y / x) f(y) f^{* n}(x-y) d y \\
& =p_{1} f(x)+\sum_{n-1}^{\infty} p_{n}\{a+b /(n+1)\} f^{*(n+1)}(x) \\
& \text { (from (I) and (II)) } \\
& =p_{1} f(x)+\sum_{n=1}^{\infty} p_{n+1} f^{*(n+1)}(x) \quad \text { (from (1)) } \\
& =p_{1} f(x)+\sum_{n=1}^{\infty} p_{n} f^{* n}(x) \\
& =\sum_{n-1}^{\infty} p_{n} f^{* n}(x) \quad\left(\text { since } f^{*_{1}}(x)=f(x)\right) \\
& =g(x), \quad \text { the required result. Q.E.D. }
\end{aligned}
$$

If the clam amount distribution is discrete and defined on the positive mtegers, the corresponding recursive defimition of total claims is

$$
\begin{equation*}
g_{i}=\sum_{t=1}^{\dot{i}}(a+b j / t) f_{j} g_{i-3}, \quad t=1,2,3, \ldots \tag{5}
\end{equation*}
$$

with $g_{0}=p_{0}$; whereas the usual form is

$$
\begin{equation*}
g_{i}=\sum_{n=0}^{1} p_{n} f_{i}^{*}, \quad i=0,1,2,3, \cdots \tag{6}
\end{equation*}
$$

The number of computations required to obtain $g_{i}$ is of order $\boldsymbol{r}^{2}$ for formula (6) and of order $i$ for formula (5). Hence, for large values of 2 , the reduction in computations is dramatic.

## 4. results for special cases

The recursive defmitions of the density of total claims for the four distrıbutions considered in Section 2 are given below.

| Conttuuous Model | Discrete Model |
| :---: | :---: |
| $g(x)$ | $g_{i}$ |

a) Polsson

$$
\lambda e^{-\lambda} f(x)+\frac{\lambda}{x} \int_{0}^{x} y f(y) g(x-y) d y \quad \frac{\lambda}{i} \sum_{i=1}^{1} j f_{j} g_{i-j}
$$

b) Binomial

$$
\begin{array}{r}
\frac{p}{1-p}\left[N(1-p)^{N} f(x)+\int_{0}^{x}\{(N+1) y / x-1\} f(y) g(x-y) d y\right] \\
\frac{p}{1-p} \sum_{i=1}^{1}\{(N+1) j / \imath-1\} f_{j} g_{i-1}
\end{array}
$$

c) Negative bmomial

$$
\begin{aligned}
& p\left[\alpha(1-p)^{\alpha} f(x)+\int_{0}^{2}\{1+(\alpha-1) y / x\} f(y) g(x-y) d y\right] \\
& p \sum_{i=1}^{1}\{1+(\alpha-1) j / 2\} f_{j} g_{i-j}
\end{aligned}
$$

d) Geometric

$$
p\left[(1-p) f(x)+\int_{0}^{x} f(y) g(x-y) d y\right] \quad p \sum_{i=1}^{i} f_{f} g_{i-3}
$$

The recursion for the compound Poisson distrıbutıon with discrete claim amount distributıon was originally given by Adelson (1966) in an inventory problem. He used generating functions to obtan his result.

Sundt and Jewell (1981) generalize the results of the present paper. They obtain results for a more general recursion than (1) and obtain results for the case of possibly negatıve claims.

## refrrences

Adelson, R M (1966) Compound Poisson Distributions, Operations Research Quarterly, 17. 73-75

Panjer, H H. (1980) The Aggregate Clams 1)istribution and Stop-Loss Remsurance, Trans of the Soctety of Actuarzes, XXXII.
Sunita, B and Jewrli, W $S$ (1981) Further Results on Recursive Evaluation of Compound Distributions Astin Bulletin 12


[^0]:    * The author is grateful to the ieferec for poining out an crror in the origimal draft This research was supported by the Natural Sciences and Enginecring Rescarch Council of Canada

