Astin Bulletin 11 (1980) 17-28

AN ILLUSTRATION OF THE DUALITY TECHNIQUE IN
SEMI-CONTINUOUS LINEAR PROGRAMMING*

. DE VYLDER

We give a complete parametric solution of the following problem Find a claim
size distribution F on the finite interval [0, @], maximzing the stop-loss premium
corresponding to a given excess ¢, under the constraints that the first moment of F
be at most cqual to p and the second at most equal to v The method used 1s the
duality technmique m semi-continuouns lincar programm:ng described in Dz VYLDER
(1978) This techmque 1s summarized, without proofs, 1n the first part of the paper

1. THE DUALITY TECHNIQUE IN SEMI-CONTINUOUS LINEAR PROGRAMMING
1.1 Generalized Malrices

Let A7 be defined forz el = {1,2,...,m}and x € K C R. In most situations
K is a finite interval, but in many considerations 1t might be a rather general
set in K We consider A as a generalized matrix, with the set I of row-indices
and the set I of column-indices. The augmented matrix A.= (A, 1) is formed
by the matrix A followed by the umt matrix 1 of dimension m We suppose
that the columns of this unit matrix arc indexed by any indices o1, 52, . .., o
(not necessarily numbers), of coursc nonc 1 K. These indices are called slack
tndices. Let we denote by S the set of slack indices. If M = (x1, x5, ..., %)
1s any finite sequence of elements in K + S, we denote by A# the usual matnx

with columns A%, 4%, ..., A%, to be defined in a moment. If xy=x € K,
then A% 1s the column (A7, A%, ..., A})". If x5 is a slack index, say %, =0,
(1 < &k < m), then the column A% is the column with m elements (o, o, ...,
0,1,0,...,0,0), where the 1 is at the %-th place.

Simuilarly, 1f 4% 1s defined for x € K, we consider b as a generalized row with
the set K as column-indices The awugmented row b.= (b, 0) is formed by b
followed by m zero’s. The usual row #* 1s the row

BM = (5%, 1%, ..., b,
where b%1 = 0 if x5 is a slack index.

In the sequel, the scquence M will have exactly m elements. Thus A will
be a square matnx. The order of the elements in A is irrelevant, but usually
we shall suppose that the indices in K are written first, in the natural order,
followed by the slack mndices in the order induced by their subscripts.

* Presented at the 14th ASTIN Colloquium, Taormina, October 1978.
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1.2. Problems in Semi-Continuous Linear Programwming

In the sequel K is always fixed. F is an unknown distribution function on R
(not necessarily a probability distribution function. the total mass induced
by F on R may be different from 1, but it must be finite, for simplicity). In
fact, the mass induced by I on R-K is completely nrelevant, since all integrals
considered in the sequel will be taken over K (then this set is generally not
indicated) or over a subset of K, relatively to the distribution function F.

Let A, b be defined as 1in 1.1. and lct a be the column & = (a4, @z, ..., an)'-
Then the problem noted (4, a, b, F, MAX) 1s to find a distribution function
F maxmmizing [ b% dF, under the constraints | A7 dF; < a4 (¢ € I). The dual
problem is to find a row y= (¥, ¥2, ..., y™) mimmizing y a = X ¥ a; under
the constraints y* > o (1 €1), Ty A? > b* (x € K).

i

1.3. A Fundamental Theorem

If F satisfies the constraints of the problem (4, a, b, F, MAX), if y satisfies
the constraints of the dual problem and if

(1) [b2dF; = Z ytay,

then F, y are solutions of the problem and its dual respectively.

1.4. The Duality Technique

Various tests have proved that the following technique for solving the problem
(4, a, b, F, MAX) works in rather general circumstances, provided step 1 can
be executed. It would be highly interesting to know the most general condi-
tions on K, A4, a, b for the technique to succeed.

STEP 1. Find a solution ¥ of the dual problem.

STEP 2. Find M = (x1, %2, ..., %n) satisfying y 4™ = M. The indices x;
(slack or not) can be searched for the one after the other. Each %
satisfying ¥y A% = 5% may be an element of the sequence M. In view
of the following step try to find as many different indices as possible.
Ideal, but not always realizable (nor necessary) is that AM be
inversible.

STEP 3. Find a column z=(z, 22, ..., zm)" satisfying 4¥ z = a, 2z 2 0
(4 € I). Then define the discrete distribution F in the following way.
For each x; in M, x; € K (thus x; not a slack index), place the mass
z; at the point x;. If e.g. %1 = %2, then the mass z1 + 2z must be placed
at x1 = xz and similarly if more indices are equal.

STEP 4. Verify (1). Then, by the fundamental theorem, it follows that I¥ and
y are solutions (for y this is in fact a confirmation) since the rclations
AM z = a, z; > o (iel) imply that F satisfies the constraints of
the given problem.
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2. THE MAIN PROBLEM CONSIDERED IN THIS PAPER
1. Original Problem

Iind a claim size probability distribution ¥ on K = [0, ®] maximizing the
stop-loss premium

(2) Jx—e)d
corresponding to the exccss ¢, under the constraints

2.2. Equivalent Problem

Find a distnibution I' on K maximizing (2) under the constraints
(4) [dF, < 1, [xdFy < p, [%2dF, < v

That this problem 1s equivalent results from the fact that the first members
in the relations (3) do not depend on the probability mass at the origin of K.
If we have a distribution F, solution of the second problem, we can make a
probability distribution of it by placing, if necessary, the missing probability
at the origin. (It will turn out that this modification will not even be necessary.)

Thus, our main problem is the problem

(5) (A,a,b F, MAX), where I = {1,2,3}, K = [0, o]
A¥ 1 1
o foro< x < ¢
(6) AZ)= |z |(xeK),a=|p ] b* = .
- < x <
4z 2 v x—efore € x € o
2.3. Dual Problem
The dual problem is to find y = (%, v, w) minmmizing # + vu + w@v under
the constraints
(7) %2 0,02 0w 2= 0, %+ vx + wx2 = 07 (0 € ¥ € ).
Of course, these constraints are equivalent to
(8) % 2> 0,7 =2 0,w = 0, u + 9% + wat > x — ¢efe € ¥ € o).

2.4. The Parameters of the Problem

The problem is one with four parameters w, ¢, @, v and we shall give its solu-
tion whatever be the relations among these parameters. For the sake of com-
pleteness, unrcalistic cases have been included. Evidently, we always assume

(9) g > 0, v > 0, 0L e < o
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and also, until section 5, the relations

(10) _o< Py, v < pe
implying
(11) v < g p < .

Suppose for a moment that we have not the first relation (10), i.e. that we
have v < p. Then it follows from the last relation (4) that

(12) [xdFy < [[x2dF)% < v <

and the second constraint (4) becomes superfluous. Thus, the case )v <
lcads to a simpler problem that shall be considered separately. Note that the
first relation (12), well-known when F is a probability distribution, is also
vahid if I is defective.

Similarly, suppose for a moment that we have not the last relation (10),
i.e. that we have pow < v. Then it follows from the second relation (4) that

(13) J'xzde < o)_[xde < op € v

and then the last constraint (4) 1s superfluous. Again we are faced with a
simpler problem, in fact a problem equivalent to the GAGLIARDI-STRAUB

{1974) problem.

3. STEP 1. SOLUTION OF THE DUAL PROBLEM

Forcachx(¢e € » < o), considered as parameter, we imagine that we represent
the part of the plane # + vx + wx®=x — ¢ situated in the positive octant of
the (u, v, w) space (fig. 1).

Let

0 X=e x—e
PZ= (X—e,0,0),Qx= ’—x_’ ;R.’L': 0,0, «2
be the intersection with the %, v, w-axis respectively.

When x increases from e to o, P, and @, remove monotonously from the
origin. For Ry, two cases must be considered:

w—¢

Case C1: 2¢ 2 w. Then R gocs up from the height o to the height o
Case Cz: 2¢ < w. Then R, goes up from the height o to the height 1/4e
w—-¢

w2

(for x = 2¢), then comes down to the height
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Fig. 1

Fig. 2
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3.1. Study of Case C1

It 1s clear, in the case C1, that the minimum of # + vu + wv, subject to the given
constraints, is obtained for (u, v, w) in the triangle P,Q,R,. For reasons of
linearity it must be obtained at one of the corners. IFrom (10), (11) it is im-
mediate that the minimum is obtained at R,. Thus we have the solution and
corresponding minimum :

w—¢ v
MIN = (w—¢) —

w?’

w? '

3.2. Study of Case C2

Since R, goes up and down when x increases from e to o, the triangles P,0,R,
have a superior envelope. We can find its equation by eliminating x between
the relation # + vx + wx2=x — ¢ and its denivative in x. The equation of the
envelope is

(1—v)

!
4 (u+te)

(14) w =

Of course, only the part in the positive octant must be used, and even not
completely, beccause we have the restriction ¥ < . It 15 calculated that the
triangle P,Q.R., corresponding to the maximum value of x, is tangent to the
envelope along the straight segment T U (fig. 2), where

® 1 2¢ ¢
I'=|——9¢090 —},U=l0o1-——].
2 2w W w2

Then the mmimum of # + vu + wv, under the given constraints, is obtamned
for (%, v, @) in the part STU of the envelope, or for (», v, w) in the planc
portion P,Q,UT.

In order to study the variation of # + vp + wv on STU, let we take # and v
as independent variables and let we use (14). Then the quantity to be minimized
equals, on ST U :

v (1 —v)2
(15) flu,v) = v + vp + Ao

It is easily calculated that there can be no #, v annulating the partial deri-
vatives f,,, f,. We conclude that there can be no minimum at the interior of
STU. Thercfore, and also for reasons of linearity, the minimum of # + vy + w©v
is only possible for (%, v, w) on ST, on SU, at P, at Q.

3.2.1. Study of the Variation of f(u, v) along ST
We have, for ST:

v o1 ( © )
g(u) = flu, 0} = u+4u+e’ oSu < e,
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v 1

4 (w+e)®’

g'(u) g'(u) = o,

g{u) = oforu = 3 v — e.
Therefore,

- v
if £ Yv — ¢ < o, then: Mimimum on ST = Valueat S = 4;.
- 1
if 0o < L )Yv — e, then: Minimum on ST = Value at (} v — e, 0, 2—~V;)
- ©
= Jv— ¢, because § v — ¢ < z ¢ by (11).

3.2.2. Study of the Variation of f(u, v) along SU
We have, for SU:

v n( 2e>
h(v) = flo,v) = vp + ‘;(1—1/)-, o<V <1 — —),

W) = p — -;—6(1——7)),11,"(1)) > o,

e
W) = oforv =1 ~2 —:—L

Therefore,

e v
Hf1-2 T“ < 0, then: Minimum on SU = Valucat S = 4—6;.
ey, 61.1.2)

. e ..
if o <« 1—2 —, then: Minimum on SU = Value at (0, 1—2 —, —
v v v

( ey.) b o ° L
= p {1 — ) becausel—2 7= < 1-2 — y (10).

3.2.3. We note that the value of s+ vu+wv at P, = (w—¢, 0,0) is (0 —¢)
e
and at Q, = (O,m—;, o) 1t is (o — ) E.

w

3.3. Subclassification of Case C2

The subcases of C; indicated in table 1, with, in the right column the possible
mimmum, result from the discussion in 3.2.1 and 3.2.2. Note that, since
uw/w < 1, the value (0 —¢) at P, can already be abandoened against the value

(0 =€) ufo at Q.
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TABLE 1
Subcases of C3 (26 < w) Possible minimum
Ca: 2 v > a

2 v 42, v 2ep 48,(&)—3)&
Coz® v ge? M i s

22" V< 4€2, v> 2ep 43’“ 1 - " ,(m-—e)w
Caoa® v> 462, v 2 Trrelevant (see discussion)

e

Cea: v> 468, v> 2ep Vv—e, y.(l - —V—H) (0 —e) %

The first relation (10) and the relation v < 2ep appearing twice in table 1,
imply v=2e /v, v< 4¢2. This means that case Ces 1s impossible and that in
case Cq, the condition v £ 462 is superfluous. In case Ca, we can abandon the

. u R
potential mmimum (w — ¢) —, because, by adding the relations — < —, d < &,
® 46 2 o 2

v @ . op n
we have — < (w—e¢)—. The relation pl1 — —}) < (w—e¢) — 15 seen to be
40 w v @
equivalent to v < po. Therefore, by (10), (w—¢) % can also be abandoned
v
in Ce2 and C2a From o < (zew — v)? results that 4; can bc abandoned in Caz.

. % e .
Finally, in case Ca4, let we add the relations —= < 1, — < }. We obtain
v

Vv

2 _ — . -
= (Yv+u) < 1. After multiplication by v—pu > 0, we have a relation equiva-
v

4 —
lent to p.(l — \—iL> < |V — e, showing that /v — ¢ can be abandoned Then
Ce2 and Cz4can be amalgamated in one case, say C'zz, defined by v > 2ep, 2¢ < .
3.4. Final Table

The preceding discussion is resumed in table 2.

TABLE 2

Pont (¢, v, w)

giving the
Cases minimum MIN
wW—¢ v
Ci:22> (o, ° —3 ) (m—e);—é
1 v
Cor: 26< 0, v< 28 (o, 0, —) —
4e 4¢

, cp.  eu? 2w
Claz* 26 < , v> 2 o, 1-2-, o plr — —

VE
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4. FURTHER STEPS
4.1. Case C,

STEP 2.
We look for x € K satisfying

w—¢ 1 0 ifx < e
0, 0, - =

w* ¥ x—cifx = e
x‘l

The solutions arc x = o and x = w. Since

( w— 6) 0
0,0, = o,
w? 1
0
the slack index oz can also be used. Then M = (0, o, a2).
STEP 3.
We look for 21, 23, £ (the last is a slack variable corresponding to o) satisfying
1 1 6] 21 1
0 (O} 1 23 = 73
0 w? o 3 v
v v v
The solutionis z1 = 1 — 22 = —, b= p— —.

w?’ w2’ w

Thus, I' has two atoms, onc at o, the other at o, with respective masses

v v
Mo = 1 — ;,mw = E
STEP 4.
f (v — 6)dFy = (0—¢) — = Value MIN in table 2.
2
4.2. Case Ca1
STEP 2.
We look for x & A satisfying
( 1> 1 o ifx<e
0,0, — =
4e x x—cifx = e

x2
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Solutions: x = o and % = 2¢. The slack index 2 can also be used. Thus
M = (o, 2¢, g3).

STEP 3.
We look for z1, 22, £ satisfying

1 1 o 21 1
o 2e 1 22 | = | p
0 4e2 0 13
Sl v v v
olution: z; = 1 — —, 26 = —, £ = -
462 462 & T 2

Here F has the atoms o and 2e with masses

v

W = 1—4_£—2,M2e=4§.
STEP 4.
- v v
f (x—e)dFy =e¢ — = — = Valuc MIN in table 2.
462 4e
4.3. Case C'ss
STEP 2.
We look for x ¢ K satisfying
( 2eu euz) 1 o ifx<e
0, 1 - -, _2 =
v.ov x x—eifx > e
x2
v
Solutions: x = o, ¥ = ; Only the slack index o1 can also be used, but

then we obtain the column (1, 0, 0)" alrcady obtained for x = o. Since the
usc of the first slack index gives a defective distribution, we prefer to try

v v
M = (o,—,—)
woo®

STEP 3.
We search for 21, 22, 23 satisfying

1 1 1 21 1
v

(0] - d Z2
oo ="
v2 v2

0 - —_ 20 v
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: : p p? .
The system is equivalent to: z2 + 22 = ToAa=1 - There is an
v

indetermination in the choice of z:, z3, but the resulting distribution I has
anyway the two atoms o and v/p with corresponding masses

2
Mo = 1 — ~——, 1
v

’

[

33

A

vin

f (x— o)dF, = (1 — e) L, (1 — i“) — Value MIN 1n table 2.
v

5. THE CASES Vv 2 uw AND p2 2 v

These cases in which one constraint disappears are left as cxercices for the
reader. The answers can be found 1n table 3.

TABLE 3
Maximum
Conditions on Maximal stop-loss stop-loss
the parameters distribution premium
v v v
262> My = 1 —&,m,,,:@ (m—e)&
pi<<v<<pw w? w2 ew
2ep<v My = 1 — —, Wlylp= — 1 - —
S ® ’ v V= “ v
2e <
2 262 v m 1 : m M M
= 0 = - = = — -
* 462 T 4 46
p<w My = 1 -—E,mm = (w—e) =
V> poe w «
TR R . My = 1 (0—e)
< o v v v
v 2 WMo = 1 — —, My = — —e) —
26> o % @ 0 o e 3 (o ) of
v > w? Mo = 1 (w—c¢)
2 v v v
wEZ v v < 4e? Mo = 1 — —, My = — —
46° 42 4€
2e<<w (46 < v < W myg = 1 Vo—e

w? < v My = 1 (w—e)
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6. SUMMARY

A complete solution of the original problem in 2.1 is given in table 3. It might
scem surprising that we solved the modified problem in 2.2 and nevertheless
always found a probability distribution This 1s due to the fact, already ob-
served 1n step 2 of the case Cp,, that we never used the first slack index.

It is clear that several cases could be regrouped in table 3. For clearness,
we leave 1t as 1t 15 Indeed, given numerical values of the parameters, the
table permits immediatly to situate the case to be used. Moreover, remind
that the condition v > pw amounts to the absence of the constraint on the
second moment of I and that the condition p? > v amounts to the absence
of the constraint on the first moment of F. Sec the discussion in 2 4.
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