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O P T I M A L  R I S K  E X C H A N G E S *  

HANS BUHLMANN AND \WILLIAM S, JEW.ELL 

The determinatton of optmml rules for sharing risks and constructing reinsurance 
treaties has important practmal and theoretmal interest. ,X{edolaghi, de Finetti, and 
Ottavianl developed the first linear reciprocal reinsurance treaties based upon 
mimmizmg indlwdual and aggregate varmnce of risk. Borch then used the economic 
concept o[ utlhty to justify choosing Pareto-optitnal Iorms of risk exchange; in 
lnany cases, this leads to falrfiliar linear quota-sharing of total pooled losses, or to 
stop-loss arrangelnents. }-Iowever, this approach does not give a unique, risk-sharing 
agreement, and may lead to substantial fixed side payments. Gerber showed how 
to constrain a Pareto-optimal risk exchange to avoid invasion of reserves. 

To these ideas, the authors have added the actuarial concept of long-run fairness 
to each participant m the risk exchange; the result is a unique, Pareto-optimal 
risk pool, with "quota-sharing-by-layers" of the total losses. There are many 
interesting special cases, especially when all individual utility functions are of 
exponentml form, giving linear quota-sharing-by-layers. Algorithms and numerical 
examples are given. 

1. INTRODUCTION 

Insurance  companies  and  other  f inancial  r isk-bear ing enti t ies m a y  enter  into 
formal  r isk-shar ing agreements  for a va r i e ty  of reasons, the mos t  i m p o r t a n t  
of which is the s imul taneous  reduct ion of risk for all par t ic ipants .  For  example ,  
it is well known tha t  two companies  can bo th  reduce the  var iance  of thei r  
risk portfolios by agreeing to cover  fixed quotas  (~3, l--~3) of thei r  pooled losses 
(and perhaps  mak ing  a side p a y m e n t  to keep the pool "on  fair t e rms" ) ;  this 
joint  i m p r o v e m e n t  occurs for some in terva l  of values of [3 in (o, 1), so the 
ac tual  quo ta  mus t  be negot ia ted  b y  other  considerations.  

Other  corpora te  objectives,  such as m a r k e t  pene t ra t ion  or f inancial  s tabi l i ty  
m a y  lead to different,  non-l inear  forms of exchange,  in which ext reme,  catas-  
t rophic  losses are real located to the t r e a t y  m e m b e r s  in different ways  to 
" spread  the r isk".  In fact ,  there is no diff iculty in including under  risk ex- 
changes such "one-s ided"  a r r angemen t s  as a re insurance t rea ty ,  in which one 
of the par t i c ipan t s  brings no risks to the pool, bu t  agrees to t ake  a por t ion of 
the excess losses above  some re tent ion  limit, in exchange for a fixed fee. 
Clearly it would be desirable to develop a theory  which would explain the 
va r ie ty  of actual  r isk-shar ing agreements  observed  in the real world. 

Given tha t  a g roup  of insurance companies  has  agreed to enter  into a risk 
pool, this pape r  explores the general  forms of exchange t ha t  result  in simul- 
taneous  i m p r o v e m e n t  of risk for all part ies,  under  the following assumpt ions :  

* Presented at the I4th ASTIN Colloquium, Taornlina, October 1978. 
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1. All companies share the same information about the statistical nature of 
the individual, possibly dependent,  risks to be shared. We formalize this 
by assuming tha t  all companies work with the same probabil i ty distributions 
of the risks concerned. 

2. Each company measures the risk of its portfolio by an individual utili ty 
function that  is unaffected by the negotiations, i.e. there is no effort to 
change att i tudes.  

3. The companies may  also agree, through mechanisms not considered here, 
on certain individual or joint side conditions, such as limits on losses paid, 
or on side payments .  

In a series of impor tant  papers (t96oa, 196ob. ,962), Borch showed tha t  the 
use of uti l i ty functions leads to the economic concept of Pareto-optimal risk ex- 
changes, in which the form of the agreements is determined by the individual 
uti l i ty functions (however "not by the probabili ty distribution!). Solution 
parameters  are still open to competit ive negotiations. In this paper we shall 
add the assumption tha t  

4- all companies wish the exchange to be fair, in the sense that,  according to 
a commonly accepted premium principle, all companies agree that ,  over 
the long run, no company in the pool should profit at the expense of the 
others. 

We shall see that  adding this insurance concept of fairness will lead to a 
unique Pareto optimal risk-sharing agreement. Many familiar forms of ex- 
changes then follow under special assumptions about ut i l i ty functions, volume 
of business, individual participation constraints,  etc. 

I t  is interesting tha t  so far all authors have tried to arrive at a specific 
element within the set of Pareto Optima by game theoretic considerations 
(BORCH (196ob), I.EMAIRE (1977)). Our paper achieves unicity by introducing 
the actuarial  concept of fairness. 

2. THE MODEl. 

2.1. General Considerations 

Consider n insurance companies, indexed i = 1, 2 . . . . .  n, each with a risk 
portfolio characterized by 

- -  a fixed premium income, 11,/> o; 
- -  a random loss (,possible claims), S,/> o ; 

over some common exposure period. The set of all losses [S~] is defined over 
some probabil i ty space f~ with known joint distribution P(~o) of possible out- 
comes oo. Set II = Xlrli and S = ESi. 
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By a risk exchange or risk pool we mean any  formal mutual  agreement 
among the n companies that ,  operating as an en t i ty  

'l. accepts the responsibility for paying for an input Xt = f~(S,, lit) 
from company i, where f ,  is a fixed but  arbi t rary function ; 

2. charges company i an ou tput  Yi for accepting the input,  according 
(2.1) to the agreed-upon rule for sharing risks; 

3. Operates on a zero-balance conservation principle 

zy,( o) = z x t ( o o ) =  

for all outcomes ~ ~ ~. 

Since risk pools are intended to redistribute only actual losses (and possibly 
the associated premiums), but  not the individual wealth of the company,  one 
would typically include in the exchange protocol side constraints of the form 

(2.2) l " ~ > A t  (i = l ,  2 . . . . .  J~) 

where Ai is a constant  (or random variable At(co)), designed to limit negative 
charges (payouts) to company i. 

The risk agreements might also include constraints of the type 

(2.3) Yt ~< A / +  B, ,  (i = l ,  2 . . . . .  1,), 

designed to directly protect the l iquidity of the individual companies. I t  is 
clear tha t  we must have 13, >/o. We shall not consider pools in which coalition 
constraints,  relating to subsets of the Y,, arc possible. The importance of side 
constraints is mentioned by Borch (1968), and first incorporated in an ex- 
change model by Gerber (1978). 

2.2 The Claims Pool; Linear and Quota Exchanges 

An important  special case is the claims pool in which companies keep their 
prerniums and share all their losses: 

(2.4) X t = S t '  Yi>1o, (i = 1 ,2 ,  . . . , n ) .  

One possible risk-sharing rule is a linear exchange, ill which ~a2 constants  
0t~ are given, so tha t  

(2.5) Y, = Z 0,jXj, (i = l, 2 . . . . .  ~z). 
J 1 

To satisfy the clearing condition ZY, = ZX,, we must  have 

(2.6) £ 0 , / =  1, ( j  = 1 , 2  . . . . .  ,a), 

so tha t  a feasible linear exchange has only n2---n free constants,  o ~< 0,j ~< I. 
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If  the losses Xl are uncorrelated,  it is easy to show (for n =2,  see BEARD 
(1969)) tha t  the variance of all ou tpu t  losses V[Y,} can be reduced by  adjust ing 
the constrained 0,j until  a Pare to-opt imal  frontier  is reached at which a variance 
reduct ion for one company  must  be t raded-off  against a variance increase for 
another .  On this frontier,  there are only n exchange constants,  0,~= 0,, and 

(2 ' 7 )  Y t =  OIX; o ~  0 t ~  1 ; 2 0 l =  1. 

This a r rangement  is called a quota  claims pool ; the quota  fraction (h, taken by 
the i th  company  of the total  losses S, is often fixed on the basis of "vo lume" ,  e.g., 

(2.8) 0, = [ ld l l .  

Note tha t  one could add conservat ive side payments  to (2.5) to make  
E{Y,} = E{X~} without  changing the variances of the quota  claims pool. The 
first models of linear quota  pools were developed by  P. Medolaghi, B. de 
Finett i ,  and G. Ot taviani ;  references are given in SEAL (1969). 

2. 3 . The Business Pool 

Another  impor tan t  special case is when companies agree to share both pre- 
miums and claims: 

(2.9) X,  -~- S t  - I-I~; Y.L/> - l-i, ( i  ~- 1, 2 . . . . .  ~.b). 

Notice the lower limit to p revent  the invasion of reserves. 
The t radi t ional  quota business pool is a linear exchange of this type,  in which 

(2.10) Y, = 0~(S - II) ; 0 < 0, ~< 1 ; Z0, = 1. 

Observe tha t  if these quotas  are set on the basis of "vo lume"  (2.8), then 
the quota  claims and quota  business pools coincide, in the sense tha t  the net 
charge to company  i, Y , -  X,, is the same in both  cases. 

2.4. The Canonical Risk Exchange (REX) 

I t  is easy to see tha t  if bo th  X,  and Yl are changed by the same (possibly 
random) amount ,  the net  charges of a risk pool remain the same. To simplify 
exposit ion in the sequel, we shall subt rac t  out any A, appearing in (2.2) from 
the definitions of X,  and Y, in (2.t), giving Xl = fi(S,, H , ) - A i  and Y,~> o. 
This will also affect any other  side conditions, such as (2.3). 

Our canonical definit ion will then be: 

A risk exchange (REX) (X, Y) is a formal rule for changing a random vector  
X = (X1, X2 . . . . .  Xn) into a random vector  Y = (Y1, Y2 . . . . .  Yn) so tha t  

(2. l la) t. ZY~ = ZX~. 
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(2. l i b )  2. Y , ~ > o ,  (i = 1 , 2 ,  . . . , ' ~ ) .  

(2 .11c)  3. Y i ~ < B i ,  (i = 1 , 2  . . . . .  n) .  

3. TH]£ FAIR RISK EXCHANGE (FAIRREX) 

Most insurance business is carried out using a measure of risk called premium. 
If Z is any random variable defined on fl, we may  define a premium principle 
for Z as follows: 

(3.1) Premium [Z] = I Z(co)G(o~)dP(¢o). 
a 

G(oo) > o is a loading factor that  weighs Z in a predetermined maimer over 
the possible outcomes. If G is the random variable with values G(oo), we can 
also write Premium [Z] = ]C{ZG}. Typically, E{G}~> 1; for later purposes, wc 
require G >  o on the support of Z. Fina[l$:, if G =  1 for all o~, then (3.1) gives 
the usual fair premiuna E{Z}. 

[n establishing a risk pool, particularly a mutual  agreement among similar 
coml)anies, we argue that  no company should profit  from any other ill the long 
run, no mat ter  what  form of agreement is mutua l ly  best for the outcomes in 
each exposure period. This implies tha t  each company,  using a commonly 
accepted premium principle, would judge tha t  the premium of its input  to the 
pool should be identical with the premiuln of the ou tpu t  it actual ly pays, in 
order that  the pool is perceived to be equitable in the long run. 

Therefore we define. 

A R E X  (X, Y) is a F A I R R E X  if it satisfies the fairness condition 

(3.2) Premium [Y,] = Premium [X,] 

for each company (i = I, 2, . . . ,  ,;a), using a common premium principle (3.1). 
Note tha t  for all values of 0i the quota business pool (2.9) is a F A I R R E X  
if l-I, is the premium calculated on a fair premium basis. Unfor tuna te ly  the 
linear form of exchange is not usually optimal in the sense described in the 
next  section. 

4' THE PARETO-OPTIMAL RISK EXCHANGE (POREX) 

4. i. The Unconstrained Case 

BoRcil (196oa, 196ob, I962 ) observed tha t  the form of t r ea ty  acceptable to all 
parties in a R E X  should depend upon the individual a t t i tudes  towards risk. As- 
stlnling tha t  each company is rational in ordering its preferences (i.e., satisfies 
the 13ernoulli hypothesis), then it is well-known tha t  under weak technical as- 
sumptions this implies the existence of a non-decreasing ut i l i ty  function u, 
for each company (i = l, 2 , . . . ,  ,;~), and the ranking of risky outcomes 
according to its expected ut i l i ty U,. For example, suppose that ,  prior to 
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joining a REX,  company i held capital wealth Wi against a random loss X,. 
I ts  prior expected ut i l i ty  would be 

( 4 . 1 )  = 

Posterior to the R E X  (2. l 1), its expected ut i l i ty  will be 

(4.2) V, = E { u , [ W , -  Y,(X~, X= . . . . .  Xn)l}, 

and so it will perceive the R E X  as advantageous for company i, if U~ > U~. 
Borch argued tha t  if the companies acted rationally and cooperatively, they 

would not agree on a R E X  (X, Y) if there existed another R E X  (X, ~) such 
tha t  the expected ut i l i ty of at  least one company was improved without  
decreasing the expected ut i l i ty of all other participants.  This leads natural ly  
to the idea tha t  the all interesting treaties are Pareto-optimal,  defined as 

A R E X  (X, Y) is a Pareto-Optimal Risk Exchange if there is no other 
R E X  (X, ~') with 

(4.3) E { u i ( W t -  Y~)} 1> E{u~(W~- Yt)} 

for all i, with strict inequali ty for at least one i. 

Since we will be dealing only with non-negative losses, we can simplify our 
formulae by changing to disutil i ty functions v, and expected disutilities V,, 
measured about  the current wealth:  

(4.4) re(x) = - u~(l,V~- x). 

(4.3) then reads E{v,(Y,)} ~< E{v,(Yd}.  Expected disuti l i ty for company i 
(which one wants to keep small!) is denoted by V t. We shall assume v~> o 
and v;' > o for all i (risk aversion). As convenient, we shall make transforma- 
tions of the form a + bye(x), with b > o, which do not affect preference orderings. 

Borch (196oa) observed tha t  Pareto-opt imal i ty  could be obtained for every 
outcome, and therefore, did not depend upon the distribution of the Xl. Work- 
ing with unconstrained REXs (i.e. without  (2.1 lb) ), he characterized these solu- 
tions as follows: 

Theorem 1 

R E X  (X, Y) is an unconstrained P O R E X  if and only if there exist positive 
constants kl, k=, . . . ,  kn for which 

(4.5) ktv~(Y,) = k,v~(Y,), (i = 1, 2 . . . . .  n). 

A proof is given by DuMouchel (I968). Clearly, there are only n--1  effective 
constants tha t  parametrize the possible POREXs.  I t  also follows tha t  the 
P O R E X  treaties Y, = yt(X1, X i  . . . . .  Xn) are scalar functions of the total  
losses X only. The values x of X can replace (o as the "s ta te  of the world",  
and the P O R E X  is hence described by the functions yz(x), (i = I, 2 . . . . .  n). 
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P O R E X s  are pools, in which all losses are first merged, and then divided up. 
Borch (1968) refers to this result as "non olet"  (" l 'argent  n'a pas d'odeur") 
with reference to the Vespasian anecdote  

The form of the unconstrained treaties follows easily from (4.5). For  example,  
if the companies all have uti l i ty functions tha t  are in one of the following 
classes (and their  positive linear transformations) 

(4.6a) u¢(x) = 

I -- C-(I,X 

+ _ (b~ + x)~ 

In (x + d,) 

I ( - , - )  f o r c > l  
( + , + )  f o r o < c <  I 
( - ,+) forc<o  

then the P O R E X  sharing rules are linear in the total losses Borch (1968), 
Wilson (1968) 

(4.6b) yt(x) = 13~x + Yt, Xl3l = I, Eye = o. 

".['he quota  share fractions ~t and the side payments  "Yt are de termined from 
the individual ut i l i ty parameters  in (4.6a) as well as the Pare to  multipliers 
from (4.5). Only in the exponential  ut i l i ty case are the quota-shar ing fractions 
independent  of the ki, and hence the same for all P O R E X s .  

(4.6b) shows a disadvantage of the Borch formulat ion:  because the side 
payments  must  sum to zero, there are some companies making payments  to 
others even when all losses are zero. This phenomenon,  which one wants to 
eliminate in certain cases, leads immediate ly  to constrained opt imizat ion as 
considered in the next  section. 

4.2. The Comtrain, ed Case 

Gerber (t978) was the first to incorporate  a non-invasion side constraint  and 
suggested Yt-% Xt + 1~, where the It are given non-negat ive constants ;  this is 
a special case of our definition of a R E X .  Gerber  also generalized Borch 's  
theorem (4.5) to the constrained case; for our formulat ion (2.1l) it takes the 
following form: 

Theorem. 2 

R E X  (X, Y) is a constrained P O R E X  if and only if there exist positive con- 
s tants  k~, k2 . . . . .  k,~ and a posltive random variable A(to) such that  for ahnost  
all outcomes to and all companies i = I. 2 . . . . .  ,n 

hiv;(Yi(to)) = A(to) if o < Y,(to)</3~(to) 

(4.7) k,v;(Yl(to)) >/ A(oo) if Y , ( ( o ) =  o 

k¢v;(Y,(oo)) ~< A(o~) if Y¢(oo)--  [.3,(~1. 
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kiv}(y), 

, ) 
k I v 1 

~3 

~2 

~l ~oA(m) 

l >- 
Cl I=0 C 2 c 3 y,x 

Fig  I l l e v e l o p m c n t  of  a con, , t ra ine( l  P()I~ICX f()r ( - iven  Pa re t o  31ultlplier~,, k~ 

F o r  an expl ic i t  proof ,  the  r eade r  is re fe r red  to B i lhhnann  (1978). Obs( ,rve t h a t  
for  a n o n - d e g e n e r a t e  P O R E X  (i.e. when  no cora l )any  receives  a share  5"1 -: o), 
there  is e x a c t l y  one vec to r  (k~ . . . . .  kT~) (and its pos i t ive  mul t ip les )  sa t i s fy ing  

(4.7). 
In  the  following,  we shall  a lways  a s s u m e  Bl(oo) ~ coo a l t h o u g h  the cast. 

where  the  u p p e r  bound  is e f fec t ive  can be t r e a t e d  by  s imi la r  me thods .  In  

pa r t i cu la r ,  T h e o r e m  3 can also be p r o v e d  for an ef fec t ive  u p p e r  bound  on the  
r a n d o m  v e c t o r  ]" = (Yl, I"o. . . . . .  YT~). 

4.3. T h e  S h a p e  o f  a CoJ~stra~Jled P OICE .V  

Condi t ion  (4-7) gives us an easy  w a y  to v isua l ize  and  coml)u te  the  shape  of 
the  o p t i m a l  t r ea t i e s  yi(x). "['he P a r e t o  mul t ip l i e r s  k, are  f ixed a rb i t r a r i ly ,  and  
the  cu rves  k,vi(y ) are  p lo t t ed  s i m u l t a n e o u s l y  for  y > o  with  the  level line 
X = A(oo), as <hown in F igure  1 for  ~ =  3. The  indices are  r e n u m b e r e d  to give  
inc reas ing  in te rcept>  X, = /eiv~(o ). 

Now th ink  of X as p a r a m e t r i c a l l y  increas ing  f rom zero. If  X< X, < X2 < Xa, 
it is c lear  f rom (4.7) t h a t  all 3'i m u s t  equa l  the  lower  b o u n d  zero, and  hence  
the  to ta l  losses x are also zero. Inc reas ing  X a b o v e  the  first  in te rcep t ,  so t h a t  
? - t<X<Xe<X.~  pe rmi t s  k,v~(y~) = X and 3 ' ~ > ° ,  bu t  still Y 2 = Y a = O ;  in o the r  
word% the first  c o m p a n y  t akes  all the losses v ~ = x .  In  the  nex t  in te rva l ,  
X , < k z < X < X a ,  /qv ; (y t )  = /ey~(3,a) = Z and  bo th  Yt and  y_, are posi t ive ,  
~'~ + ve = x,  but  still y j =  o, and  so for th .  In o the r  words ,  by  p a r a m e t r i c a l l y  
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increasing X, we pass through different layers of risk-sharing in which first 
company  # l, then companies # 1 and # 2, etc., part icipate.  

Fur thermore ,  since at each level X the values of the y, are given direct ly 
from the curves, we can compute  the total losses x =  Zyt by "hor izonta l  
addi t ion" .  The heavy  line in Fig. i shows the resulting parametr ic  ctu've of X 
versus x; note the layering constants  ct = o, co,, Ca, at which each new company  
begins to par t ic ipate  in x. 

- Yi (x) Y2 (x) 

Y3 (x) 

Yl(X) 

} 

Cl=O c 2 c 3 x 

[:lg 2 L a y e r e d  P O R E X  T r e a t i e s  c o r r e s p o n d i n g  to f ig .  i. 

By reading fig. I sideways, we can easily visualize the fractional part icipa- 
tion yt(x)/x at each level X(x); fig. 2 then shows the actual  treaties, ydx) versus 
x, corresponding to fig. i. 

To summarize,  the constrained Pare to-opt imal  treaties consist of layered, 
non-linear functions determined l)arametrically as follows: 

I. Given the Pare to  multipliers {k~} and the disuti l i tv functions {vt}, we 
renumber  the companies so tha t  X , ~ X ~ < . . .  ~<Xn, where )'t = h i ve ( ° ) .  
(TakeX,,4l = +oo) 

2. If X s<x~<xj+t,  then only companies with indices i e J  = {l.22 . . . . .  j }  

part ic ipate  in the losses, so y,(X) > o ( i e J ) ,  and )q(X) -= o ( i~ . ] ) ,  ( j  = 
l ,  .2, . . . ,  ~/.). 

3. The part icipat ions yi and total losses x in layers (Xj, Xs~t ] are found flom 
the inverse w i of v~: 

(4.8a) 

and 

(4.8b) x(x) = x y,(x) .  
iG,] 

4. Since v. I' > o, tiffs inversion is unique, and the constrained P ( ) R E X s  are equal- 
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ly characterized by the ordered layering constants cl = o ~< c2 ~< ca ~< c,~. with 

(4.0) c i  = ~ w Y  , (,' = 2 . . . .  , . ) .  

J ,1 

Thus, in principle, tile participants in a constrained P O R E X  have to 
determine, through bargaining, the u - - I  constants which deterlnine the n 
layers of total  pooled loss at which each company will begin to participate;  
once these values (and their order) are determined, the form of participation 
is uniquely determined by the individual uti l i ty functions. Generally speaking, 
a first company takes all the loss in the lowest layer, and successive companies 
start  in succeeding layers, with relative participation in higher layers usually 
(but not necessarily!) diminishing. 

4-4 The E x p o u e l d i a l  P O R E X  

Because of simplicity and practical importance, we shall concentrate on 
exponential  (dis)utilities in our later examples, for which all companies have 
u, proportional to -e- .z /% and, say, 

(4-1o) vl(x) = cqe+X/=,; vi(x ) = eZI:,. 

(This normalization makes Xi = kz.) 

This util i ty function has the great advantage that  the form of the P O R E X  
is independent  of the initial wealth l'Vi (being ahsorbed in the lei or the c~); 

Yl (x) 

a 1 
al+a2+c~3" 

~.___.~ Y3 (x) 

,y / -  

c 1:0 c 2 c 3 x 

IqR 3. I~ORI'-'X TFo~xtios with ICxponentla| Utlhtms 
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this is because the exponential is the only function with constant risk tolerance 
Wilson (1968) ~i is the risk tolerance uni t - - the larger is oq, the more risk- 
tolerant is that company. 

By simple calculations from the previous subsection (using In v; and In X), 
we find that, given an ordering (l, 2 . . . . .  'n) of the conlpanies and the cor- 
responding layering constants c t  = o ~< c2 ~< . . .  4 cn ,  

t~ 

(4.~o) >(x)  = ~ ~ u ( x - c j ) + ,  (¢ = ~,2 . . . . .  ,,.), 
/ t 

with 

t 
o (3 < .z) 

t 

~ / ~  ~ .  (j = i) 
(4-' ' )  ~3u = , , ,  

I J j t 
~ [(  >.., o~k) - '  - ( z o~)-,-] (j  > i) 

L 1 / { '  1 

independent of the c b 

These piecewise-linear treaties are shown in fig. 3. 
Of particular interest are the quota-share fractions ("stock functions" 

Wilson (t968)), ~,(k), showing the incremental participation of company i in 
laver k : 

dy,(x) 
(4.~2) ~ , ( k )  - d x  

I o  (le < i) 

In other words: in the exponential POREX, companies quota-share in 
layers, with their quota-fraction equal to their unit risk tolerance, divided by 
unit tolerances of all other companies participating in that layer. 

5. TI lE .FAIR, PARETO-OPTIMAL RISK EXCIIANGE (I;AIRPOIIEX) 

We turn now, to the heart of our contribution. The basic difficulty of the 
POREX models is that  they are indeterminate and do not completely describe 
the "best" treatms. Rather, they prescribe a subset of possible arrangements 
(which contains any "reasonable" REX), and leave the selection of the 
layering order and constants as the basic issue in the competitive bargaining. 
Borch has suggested the use of the Nash equilibrium point Borch (196oa), a 
market equiIibrium mechanism using Arrow Certificates Borch (196ob, 1962 ) 
and game theory Borch (1962) to resolve this problem, but none of these is 
competely satisfactory. 

As discussed in Section 3, we believe that  mutual exchanges anaong in- 
surance companies are governed both by a desire to modify short-term risk, 
and also by an understanding that, over tim long run, no single company 
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shall profi t  from ano ther  in the sense of modi fy ing  the p r emium of cont r ibuted  
and  assumed losses. Therefore,  it is of interest  to see if the F A I R R E X  require- 
men t  of Section 3 can be SUl)erposed on the P O R E X s  of Section 4 to give one 
or several  risk exchanges t ha t  are bo th  fair and  Pare to-op t imal .  

Fi rs t  we observe tha t  there are effect ively n -  ] fi'ee layering cons tan ts  {ct} 
(if we drop the ordering convention),  since one mus t  be set to zero. 

F rom the 11 F A I R R E X  requi rements  (3.2) we sub t rac t  one because of the 
a l ready satisfied conservat ion condition ,~,Y,= ZX,,  leaving n - 1  effective 
cons t ra in ts  (3.2). Surprisingly,  and very  satisfyingly,  ]t turns  out tha t  this is 
enough to comple te ly  specify a unique F A I R P O R E X !  Mathemat ica l ly ,  this 
is seen as follows: For  any  R E X  (X, Y)  defined in (2.11), let 

n F,I  

(5.1) * ( X , Y )  = Z E { G .  f lnv~(y) dy}. 
d , , 1  .L 

Define a F A I R R E X  as 

(5.2) E { G . y , ( X ) }  = E { G . X , }  = q,, (i = 1,2 . . . . .  n), 

where E {GX} = Zq, = q; 

and define a F A I R P O R E X  as a F A I R R E X  tha t  addi t ional ly  satisfies (4.7). 

Theorem 3 

Suppose q ,>  o and v;(o) > o for all i =  l, 2 , . . . ,  n. 

Then:  For  an 5, bounded  X, 

1. Among  all F A I R R E X s  (X, Y) there is a F A I R R E X  (X, ~)  tha t  
minimizes • ; 

(5.3) 2. The F A I R R E X  (X, Y) is a F A I R P O R E X ;  
3. If a t  least one v~'> o over  its range, then the F A I R P O R E X  is 

unique. 

The proof is based upon a similar result  of Gale (1977) who is concerned with 
the fair dis t r ibut ion of desirable economic goods. The proof, which relies on the 
convex i ty  of qb on the set of R E X s ,  is ra ther  delicate, and  is developed in a 
separa te  paper  Bt ihhnann (1978). There  one finds also an extension in case X 
is not bounded.  

The pract ical  impor t ance  of this result  is tha t  a unique P O R E X  can be 
found which also is fair in the long run, i.e., one can be bo th  a " ra t iona l  
economic m a n "  and a " ra t iona l  a c t u a r y "  in set t ing up a risk exchange.  

6. F A I R P O R E X  ALGORITHMS 

6.1. General ~z Company Algorithm 

In 4.3 we have  seen tha t  a P O R E X  can be character ized by  its mul t ip l ier  
cons tan t s  k = (k~, k2 . . . . .  kn) or equiva lent ly  by  its layer ing cons tan ts  
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c = ( c j ,  c .o , . . . ,  cn). I t  ib evident  tha t  finding a F A I R P O R E X  is a root-  
finding procedure where one tries to find ei ther k or c such tha t  for all i 

(6. l) p.~ (c) = Premiun~ [yz (X/c)] becomes equal to tile input  premiums 
ql = Premium [X~] 

or, equlvalentl>', such that  

(6.2) v~ (k) = Premium [y~ (X/k)]  becomes equal q~. 

In the general ~ company  case one works more easily with the multil)lier 
constants.  The search is then helped by  the following observat ions:  

1. Because of the conservat ion condition E v~ (k) = Z qi for any k. So there 

is no l)roblem of "escaping values"  and if one vi is too large at least one 
other  must  be too small. 

2. If one increases kj, then vt (k) is nondccreasing (strictly increasing) for i #  j ;  
is nonincreasing (strictly decreasing) for i = j .  

The s ta tements  in parenthesis hold as soon as y}a:) is '~zot identically zero. 

Observe tha t  these considerations do not depend on any ordering of the 
lej " constants  , j  = 1,2, . . . , n .  

6.2. Ge,neral Two-Company,  Algori thm 

The search is par t icular ly  simple when n = 2. Then,  for c2 > o, k2t if and only if 
c~. If we pick c o = (o, o) initially then it follows from the above tha t  one tx, (c °) 
is too high, and the other  is too low, and tha t  V4 decreases (increases) if its own 
(the other) layering constant  increases. So the algori thm is simply" 

1. Set c o = (o, o) and compute  the ~**. Renumber ,  if necessary, the company  
with ~., > q, as company  # 2, the other  as company  # I. 

2. Keeping c~ = o, increase c2 until V.2 decreases to q2 (and V-~ increases to q~). 

6.3 Expo~enl ia l  Uti l i ty  Algori lhm 

The computa t ion  of the fair layering constants  is great ly simplified in tile 
exponential  case because the slope of yt (x) in layer k, x E [ca, ck+t), remains 
cons tant  at }~ (k) = =1/(~.1 + 0~2 + . . .  + ~k), and, in the top layer ice,, co), the 
• nth corot)any part ic ipates  only m this layer:  thus, a, (x) = ,on° (n) ( x - c n )  +. 

The key idea of the algori thm below is tha t  the company  which actual ly  
takes on this upper  layer will be the one with largest resulting c~. Because 
Premium [ ( X -  c) +] is decreasing in c, this company  can be found by finding 
the company  i tha t  minimizes ql/o~t. Once this company  is found (and renum- 
bered # n), the losses handled in the topmost  layer are removed from the 
pool, and the process repeated  in the layer  [c~_~, cn), etc. Fur the rmore ,  the 
rankings , , m , -  v, I~*, once made, are stable in every  i terat ion t, so the ordering of 
the companies can be fixed once and for all! The algori thm also contains some 
short-cut  s topping rules. 
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E x p o H e ' n t i a l  U t i l i t y  A l g o r i l h m  

t. Set  t < - n ,  and  index  the  compan ie s  so t h a t :  

ql q2 ql, 
-- >~ --  ~> . . .  ~ > - - .  
0~i ~-2 ~?~ 

Def ineq~)  = q~ = P r e m i u m  [X~j. 

2. At i tera t ion l, ct is the  un ique  so lu t ion  of 

q~O = ~t(l).  { P r e m i u m  L ( X - c t ) + ] -  P r e m i u m  [ ( X - c t + ~ ) ~ ] }  
(Note :  cn+l = oo).  

If  c t =  o ( roundoff  ~), S T O P !  c 1 =  c2 . . . . .  c t - l =  o. . 

4. Define 

q ~ - 1 )  = qp) - 

. 

. 

~t (t) • { P r e m i u m  [ ( X -  ct)+l - P r e m i u m  [ ( X -  ct+t)+]},  

( i  = 1 , 2  . . . . .  l - -  1).  

( N o t e : q ~ - ~ )  = o for  i >/ t) 

I f  q~t-t) = o ( roundof f  ?) for all i < t, S T O P !  There  is no p robab i l i t y  mass  

below X = ct, and  ct = c2 . . . . .  ct_~ = ct. 

Set t , - l -  1. If  1=  1, set c t =  o and  S T O P !  
Otherwise ,  G O T O  Step  2. 

An equiva len t ,  and  s o m e w h a t  s impler  a lgor i thm is as follows: 

A l t e r n a t e  F o r m  

1. S e t  l<-Iz ,  alld index tlle compan ie s  so t h a t :  

ql q2 q3 q~l 
- -  > ~ - -  > ~ - -  >~ . . .  > ~ - - .  
0~1 ~2 0~3 ~lt  

2. A t  i t e ra t ion  1, ct is the  un ique  solut ion of 
n 

q, = ~,. (t) { P r e m i u m  [ ( X  - c , )+ l  - X q,} .  
ILl  

3. I f  ct = o ( roundof f  ?), S T O P ,  c~ = co . . . . .  ct-~ = o. 

4. I f  the  t e rm in braces  is zero for  ct, S T O P !  

There  is no p r o b a b i l i t y  mass  below X = ct, and  ct = c= . . . . .  c t_ t  = ct. 

5. Set  t ~ - - t -  ~. I f  t = 1, set c , =  o and  S T O P !  
Otherwise ,  G O T O  Step 2. 

Tiffs a lgo r i thm has  been i m p l e m e n t e d  in A P L  for  a r b i t r a r y  p (x) over  

X • Io, 1 ,2  . . . .  l ;  a c o p y  of the  p r o g r a m  m a y  be o b t a i n e d  b y  wr i t ing  the  
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authors.  A numeral example, computed according to the first algorithm and 
using a Pareto distribution is given in Appendix A. 

7. INTERPRETATIONS OF SPECIAL CASES 

\Vith the F A 1 R P O R E X  model developed, it is of interest to show how certain 
practical risk pools arise as special cases. Some of these interpretat ions have 
been given previously by Borch (196oa) and Gerber (I978). We shall emphasize 
tile exponential  uti l i ty case. 

The first observation is tha t  with exponential  utilities we will have ql/o~1 = 
q2/o~2 . . . . .  qn/o~n when the "volume"  of each company is the same fraction 
of its unit  risk tolerance. In this case, it is easy to see tha t  cl = c2 . . . . .  cn = o, 
and we have a quota  claims pool (2.7), with 0, = 0 q / ( a l + a 2 + . . . + 0 C n )  = 
q i / ( q l  + q2 + . . .  + qn). All companies part icipate in all losses, but  the most 
risk-tolerant (highest premium) takes the greatest share; this justifies (2.8). 
(Of course this result is trivially true if all (general) ut i l i ty functions are 
identical and ql = q2 . . . . .  qn, so 0~ = n-1.) 

If companies have the same premiums qt, but  differing o~,, then they  will 
take higher layers, the larger their risk tolerance is. If  both qi and at vary,  
then it is the ranking of q , /a ,  tha t  selects tile layering order. I t  is difficult 
to give closed formulae for the layers, but  one can show that ,  

(7.1) Premium [ ( X -  ct) +] - Premium [ ( X -  ct+l) ~'] = ~t ~ ~t+lJ 

so the larger ~+~, the wider the t th layer, [ct, ct+,). 
As the ~n of one company becomes very large compared to the risk tolerance 

of other companies, it is clear tha t  it will take up the uppermost  layer, and 
take a larger and larger share of it, reaching finally Y n  = i. ( X - C n )  +, with 
Premium [ ( X - c ~ )  +] = q,. This is, of course, a (full) stop loss cover, with 
this company acting like a reinsurer. However, we shall see in the next  section 
tha t  such a company might  not be interested in part icipating this pool on 
fair terms. 

The opposite case is a highly risk-adverse company,  with =t very small. 
In the limit 0~ = o it takes all the losses in [o, c~), leaving ( X - c t )  + to the 
other companies. 

If there are m a n y  companies participating, then, of course, there are m a n y  
layers. However, in practice similar companies (with comparable qt/c~,) could 
probably share the same layers, and lower-level companies could probably be 
involved in only a few layers (rather than  continuing to the end with very 
small ~31 ( j )) ,  without  seriously violating both Pareto-opt imal i ty  and fairness. 
This would greatly simplify the administrat ion of the pool. On the other 
hand  our model seems to explain the m a n y  practical interlocking hierarchies 
of pools of different sized carriers. 

I7 
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5. THE DESIRABILITY OF FAIRPORIZ~X 

By merging its original loss Xi with the pool. company  i accepts a new loss 
Yl = yi (X), where ut i l i ty  is the "bes t  possible" in the Pare to-opt imal  
sense, i.e. for the gra~zd coalition of all companies.  Also for all values of X, 
the t r ea ty  terms have been adjusted so tha t  the premiums of all companies 
are unchanged in the long run. But,  is it, in the i~dividzml sense, ahvavs 
advantageous  to join a F A I R P O R E X  ? Unfor tunate ly ,  the answer is, no. 

If we re-examine our  development ,  we see that  now here was the range of 
our Pare to-opt imal  fraction restr icted to guarantee  that  Vz = E {v~ (Yi)} ~< 
V~ = E {v, (X0} for each par t ic ipant ;  in fact, there is no reference to the 
original marginal  distr ibution (except for the means qd, and the distr ibution 
of the pooled losses X is used only to set the layering constants.  The strict  
requi rement  of fairness may  select a Pare to-opt imal  solution which has 
Vl > V~ for some company,  who would then prefer to "go it alone".  Typical ly  
this happens to the larger, r isk-tolerant  company,  who is asked to team up 
with a smaller, risk-averse company.  This forces the larger company  to take 
the tail of the total  losses, which mav  appear  worse than not joining the pool. 

eEl(a2) , 
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lqg. 4' Numer ica l  Examp le  w i t h  X~, N.. Geometr ical ly  Dxstrtbuted, q~ = qa = 20, 
and Exponent ia l  (;tilitms, Showing Layer  Values and Cer ta in ty  Equ iva len t  for 

Company # 1. 

Fig. 4 shows the result of several compute r  analyses for two companies 
with exponent ia l  disutilities; al is fixed at  to units, and ~.2 varies parametr i -  
cally from 2 to 3o units. The distr ibutions of X1 and X2 are geometr ic  over 
the integers, with means ql = q2 = 2o units ; X1 and X2 are assumed independent ,  
so the dis tr ibut ion of X is negative binomial. Thus for ~.~ < lo, company  # J 
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takes the upper layer, with the values of Cl shown; for ~0,> lo, company # 2 
takes the upper layer, with the values of c~ shown. (c, on righthand scale). 

Expected disutilities are expressed in terms of certainty equivalents: 

(8.1) v, (CE,) = E {v, (Yt (X))}; v, (CE~) = E {v, (X,)}; 

or, in the case of exponential disutilities: 

(8.2) CE, = o~ In E {exp (y~(X)flh)}; CE~ = ~ In E {exp (X,/o~l) }. 

T0 0 Without a pool, CEl=CE2=34.14,  i.e. then original random losses are 
equivalent to a deterministic loss of 34.14 units. 

In a pool with ~2= ~1 = lo, the certainty equivalents drop to CE1 = CE~= 
24.57, a large improvement for both companies. Now, let ~2 decrease, i.e. let 
company # 2 become more risk-averse. Fig. 4 shows that  CE1 begins to 
increase as it is forced to take a larger fraction of a higher layer; finally, at 
about e2= 4, CE1 = CE~, and company # 1 decides the FAIRPOREX is not 
worth it. 

Conversely, if company # 2 becomes more risk tolerant, then CE1 decreases 
solnewhat from 24.57 as ~,0 increases, until finally at about ~2= 28, company 
# 2 decides to leave the pool. (Calculations not shown.) 

This change in the desirability of a FAIRPOREX can lead to interesting 
questions of coalition stability with three or more companies. For example, 
let companies A, B, C, each have geometric losses with qA = qB=qC = 10, and 
exponential utilities CA= 3, 0~B= 10, and c~ c =  2o. Initially, CE~= 2o.53, 
CE~= 13.71, and CE~= 11.77. 

Now, through the use of the algorithm, one can show that  company A is 
.Jwt acceptable to B, and certainly not acceptable to C in a two-party agreement. 
B and C are compatible, however, and it turns out that:  cB= o, c0=5.19, 
CEB = 1o.84, CEc = 11.48, when they share the sum of two random geometric 
losses. 

And surprisingly, the three-party exchange is also satisfactory to all parties 
concerned since: CA=O, CB=7.07, CC=14.10, CEA=lo.38,  CEB=ll .O8,  
CEc = 11.72, when sharing the sum of three random geometric losses. 

Note that the "outcast" A gained the most over his initial independent 
position in the triad, and that B and C were forced to give up some gains 
from their diad, although they are still better off than going it alone. This 
suggests that a weak partner should always t ry to get in at the beginning of 
the negotiations, and prevent his stronger partners from computing what 
they can do without him! 

We have been unable to form a stable triad from among companies who 
did not wish to form any diads among themselves. 
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9. THE I)OSS1BILITY OF SIDE PAYMENTS 

If a F A I R P O R E X  will not form because of inequities in the sizes of the 
part icipants ,  or because some company  feels tha t  it profits insufficiently, a 
possible generalization of our model is to in t roduce fixed side payments  rot, 
such tha t  company  i actual ly  pays  ~l + Y, (X), with .X~l = o and with 3,, (X) as 
before. For  an exponent ia l  util i ty,  this has the qmck comparison advantage  
of increasing the cer ta in ty  equivalent  by  ~ .  In many  cases there is a range 
of side paymen t s  tha t  will bring recalci trant  members  back into the exchange, 
and still leave an improvement  in ut i l i ty for everyone.  

For  instance, in the example above, A could give 0.24 units to B and 0.24 
units to C to induce them to form a triad, and still have a cer ta in ty  equivalent  
left of CEA= 1o.38 + 0.48 = lO.82, well below being left out at CEA = 20.53. 
In fact, he has 20.53 - lO.82 = 9.71 more units of side payment  left to "sweeten 
the po t"  if B and C prove s tubborn.  

Of course, by introducing side payments  we abandon the basic idea of 
fairness. If you want  so, this is where the snake bites its own tail. We s tar ted 
by construct ing fair risk exchanges and now we modify them to become 
unfair again! 

This just  proves t h a t - - i n  our model as in the real wor ld- - fa i r  pools will 
not  always form! 

A P P E N D I X  A 

Numerical Example (Exponential disutilities) 

1. We demonst ra te  the calculation of the unconstra ined F A I R P O R E X  
(business pool), the constrained F A I R P O R E X  (claims pool), for a total  
input  variable X = Z - 1  where Z has density fz(x)=2x -3, (x>~l), (Z~ 
Pareto  on [1, coo) with pa ramete r  3 to guarantee  a finite mean E[Z1 = 2). 
We also define Premium [Y] = E [Y] for any random variable Y. 

2. For  the unconstrained F A I R P O R E X  we have Fsee (4.6)" 

Yi (x )  - -  n 

Z ej 
] 1  

x +  ¥~ 

where ,(, is computed  from the fairness condition 

E [ Y d =  q*=>'r*= q*-~*. 

3. For  tile constrained F A I R P O R E X  we compute  according to the " E x -  
ponential  Ut i l i ty  Algor i thm" (first version) as explained in 6.3. 
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"rile F A I R P O R I ; X  IS COMPUTED FOR FIVE COMPANIES \VITIt GIVEN ~t AND q t :  

i a, q~') 13}') q~') [3}') q~') ~3} 3) q}') 13~') q~') ~t) 

5 l eo  3 .585 - -  
4 5 ° .2 .292 .050 704 - -  
3 ]5 2 .088 .155 211 . ]4  ° 714 - -  
2 5 2 .o29 . ]85  07]  .18o .238 .133 .833 
1 I ] .006 097 .O14 .096 .048 .087 .167 

M 

.06 ] 

C5 = -95 C4 = "7 l C3 = .28 C~ = .063 C1 = .0007 

Note  t h a t  in ou r  e x a m p l e  

P r e m i u m  [ ( X -  ct)+! - 
Q +  1 

l ] ) ] q~t)  1 

q~t) = ~ t  (~) C t + I Ct , I -t- 1 C l + 1 - -  C~ +I "1- 1 

a n d  for  i ~< t -  ] 

( ,  , ) 
T h e  c o m p u t a t i o n  of c~ se rves  for  check ing ,  of course  we m u s t  h a v e  c~ = o. 

4. T h e  r e su l t s  can  be  r e a r r a n g e d  in the  fo l lowing  f ina l  fo rm:  

Hust hess pool 

c o m p a n y  c l a i m s  q u o t a  f i xed  p a y m e n t  ( + p a m e n t )  
( - -  r ece ip t )  

5 58.5% --28.5% 
4 2 9 . 2 %  - -  9 . 2 %  
3 8.8% +]1.2% 
2 2 . 9 %  + 1 7 . 1 %  
1 o.6% + 9.4% 

Claims pool 

c o m p a n y  l a y e r  5 l a y e r  4 l a y e r  3 l a y e r  2 l a y e r  I 

5 58.8% . . . .  

4 2 9 2 %  7 0 . 4 %  - -  - -  - -  
3 8 . 8 %  2 L . 1 %  7 L . 4 %  - -  - -  
2 2 9 %  7 - ] %  2 3 8 %  8 3 - 3 %  - -  
1 0.6% 1.4% 4.8% 16 .7% IOO% 

l a y e r  
i n t e r v a l  ~.95, co) [-7 i, .95) [.28, .71) [.063, .28) [o, .o63) 
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