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A NUMERICAL ILLUSTRATION OF OPTIMAL SEMILINEAR 
CREDIBILITY* 

FL.  D E  VYLDER AND Y .  BALLEGEER 

INTRODUCTION 

The homogeneous (in time) model of credibility theory is defined by a sequence 
®, X1, X2 . . . .  of random variables, where for ® = 0 fixed, the variables 
X1, X2 . . . .  are independent and equidistributed. The structure variable 0 
may be interpreted as the parameter of a contract chosen at random in a 
fixed portfolio, the variable X~ as the total cost (or number) of the claims of 
the kth year of that  contract. 

Bzihlmann's linear credibility premium of the year t + 1 may be written in 
the form 

(1) f ( x l )  + . . .  + 

where f is a linear function. In optimal semilinear credibility, we look for an 
optimal f, not necessarily linear, such that  (1) is closest to Xt+~ in the least 
squares sense. In the first section we prove that  this optimal f, denoted by f*,  
is solution of an integral equation of Fredhohn type, which reduces to a system 
of linear equations in the case of a finite portfolio. That is a portfolio in which 
® and Xk can assume only a finite number of values. 

In the second section we see that  the structure of such a portfolio is closely 
connected with the decomposition of a quadratic form in a sum of squares of 
linear forms. 

In the last section we calculate numerically the optimal premium for a 
concrete portfolio in automobile insurance. We limit ourselves to the considera- 
tion of the number of claims. The optimal premium is compared with the usual 
linear premium. The difference is far from negligible. 

As basic statistics we need the probabilities 

p~ = P(X~=i ,  X~=j)  

In the third section we give a simple general solution to the subsidiary 
problem of adjusting the matrLx pq of such probabilities. 

1. THE FUNDAMENTAL RESULT 

I.I. Hypotheses. Notations. Definitions 

We consider a sequence ®, X~, X2 . . . .  of random variables such that  for ® = 0 fix- 
ed, the variables X1, X2 . . . .  are conditionally independent and equidistributed. 

* P r e s e n t e d  a t  the  I 2 t h  A S T I N  Colloqium, Por t im~o,  Oc tobe r  1975. 
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All variables considered are supposed to have finite second order moments .  
The risk premium of each year  is defined by  

m o -- E ( X 1  I 0 ) .  

Here,  and also hereaf ter  in similar situations, the index 1 could be replaced 
by  another  one. The variables X~, X2 . . . .  are exchangeable in the sense of 
De Finelti. More generally, for each function f of one variable, we denote  by  
fo  the random variable 

fo  = E f f (X~)  l O) 

Hereaf te r  t will be a fixed posit ive integer. I t  is the number  of years tha t  we 
have  already observed our portfolio. We have to make forecasts for the year  
t + 1. Since t is fixed, the dependence on t is not  always indicated in our nota-  
tions. 

1.2. Lemma 

(I) For  each couple f ,  g of functions of one variable:  

(2) E(f (X~)  g(X2)) = E(fog(X2))  = E( f (X~)go)  = E ( f o g o )  

(II) For  each function f of one variable and each function q~ of t variables:  

(3) E(9(X~ . . . . .  X~) f (X t~ t )  ) = E(q?(Xi, . .  Xt) fo) 

( I l i )  For  each funct ion f of one variable:  

(4) E(f (Xt+t )  [ X t ,  X2 . . . .  , Xt)  = E ( fo  I X t  . . . .  X,) 

Demonst ra t ion .  

(i) Using the condit ional  independence of Xz, X2 for fixed ® 

E( f (X~)  g(X2) ) = EE( f (X~)  g(X2) [ ®) = 

E(E( f (X~)  I ®) E(g(Xz) ®)) = E(f~go) 

Also 

E(fog(X~))  = EE( fog(X2)  [O) = ECfoE(g(X2) l®)) = E(fogo)  

and similarly 

E ( f ( X t )  go) = E( fogo)  

(ii) Wri t ing 

, o  = E ( ~ ( x l  . . . . .  x , )  I o ) ,  

we have in a similar way the more general result  

E(q~(X1, . . ., Xt)  f (Xt+l)  ) = E(q~ofo) = E(9(X1, . . . , X ~ ) f o )  
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(iii) From the conditional independence of X~, X2 . . . .  , Xt+l ,  for fixed O, it 
follows tha t  

f o  = E( f (X t+~)  I O) = E ( f ( X t + i )  [@, X~ . . . . .  Xt) 

Then, by applying the operator E ( .  ]X~  . . . . .  X t )  and using a general 
property of conditional expectations: 

E ( f o  i Xx  . . . . .  X t )  = E ( E ( f ( X t + i )  I ®, X~ . . . . .  X~) t X~ . . . . .  X t )  = 

E( f (X t+a)  [ X~ . . . . .  X t )  

1. 3 . Theorem 

Let f*  be a solution of 

(5) E(..,¥2 IX1) = f*(X1) + (t - 1) E ( f * ( X 2 ) [ X 1 )  

Then, for every function f :  

(6) E f m o - f * ( X ~ )  - . . .  - /* (X, ) )  2~< E ( m o - f ( X z )  - . . .  - f ( X t ) )  2 

The mean square error in the approximation of mo by f * ( X ~ )  + . . .  + 

f * ( X t )  is given by 

(7) E ( m o - f * ( X , )  - . . .  - f * ( X t ) )  2 = E(X~X2)  - t E ( X , f * ( X 2 ) )  

If g* also satisfies 

(8) E(X. .  t X , )  = g* (X l )  + ( t -  t) E(g*(X2)  [ X~), 

then 

(9) f * ( X ~ )  = g*(X~) a.e. 

Demonstration. 

Multiplying (5) by f ( X ~ )  and taking the mean value, we have 

(lo) E ( f ( X i )  X2) = E ( f ( X 1 ) f * ( X i ) )  + 

In particular, for f = f * ,  we have 

(t l) E ( f * ( X ~ )  X~) = E ( f * ( X t ) ) ~  + 

Using (2), we have for every f :  

E ( m o - f ( X 1 )  - . . .  

(12) 

(t - 1) .E(f(X1)f*(X2)) 

( t -  1 ) E ( f * ( X i ) f * ( X 2 ) )  

- f ( X t ) ) 2  = 

E(m~)  - 2 t E ( m o f ( X 1 )  ) + E ( f ( X , )  + . . .  + f(X,))2 = 

E ( m ~ )  - 2t E ( m o f ( X , )  ) + t E f 2 ( X i )  + t ( t -  1) E ( f ( X 1 )  f ( X 2 )  ) = 

E ( X i X 2 ) -  2 t E ( f ( X l )  X2))  + t E f 2 ( X ~ )  + t ( t -  1)E(f (X1)f (X2))  
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T a k i n g f = f *  and using (11), we have 

. E ( m o -  f * ( X 1 )  - . . .  - f * ( X , )  )2 = 

E ( X i X 2 )  - 2t E ( f * ( X 1 )  X2) + t [ E ( f * ( X ~ ) )  2 + ( t -  1)E(f*(X~)f*(X2))I  

= E(X~X2)  - 2t E ( f * ( X ~ )  X2) + t .E ( f* (X~)  X2) = 

(13) E(X~X2)  - t E ( f * ( X ~ )  X2) 

Since Xi  and X2 are exchangeable, this proves (7). Neglecting a factor t, 
using (12) and (13), the difference between the second and the first member  of 
(6) equals 

d = E ( f * ( X ~ )  X2) - 2 E ( f ( X ~ )  X2) + E f 2 ( X i )  + ( l -  1) E ( f ( X ~ ) f ( X 2 ) )  

Replacing the first two terms by their  expression given by (1o) and (11) 
and using (2), we have 

d = E ( f * ( X x ) )  2 + ( t -  1)E(f*(X~)f*(X2))  

- 2 E ( f ( X i ) f ' * ( X i ) )  - 2 ( t -  1) E ( f ( X ~ ) f * ( X 2 ) )  

+ E ( f ( X l ) )  2 + ( t -  1) E ( f ( X x ) f ( X ~ ) )  = 

E ( f * ( X ~ ) - f ( X 1 ) )  2 + ( t -  1)[E(f~) 2 - 2 E ( f o f ~ )  + .E(fo)2] = 

E ( f * ( X l ) - f ( X ~ ) ) 2  + ( t -  1) E ( f ~ - f o )  2 1> o 

This proves (6) and it only remains to show that  (9) is true. Writing h* = 
f * - g * ,  we have from (5) and (8)" 

o = h*(x1) + ( t -  1) ~(h*(x2) I x~) 

Multiplying this last relation by h*(X~) and taking the mean value, we have 

o = E(h*(X~) )  2 + ( t -  1) E ( h * ( X i )  h*(X2))  

or, by (2): 

This implies 

and thus (9). 

o = E ( h ( ° X l ) ) 2  + ( t - 1 )  E(h~)  2 

E ( ~ , * ( X l ) ) 2  = o 

1. 4 . Corollary 

Let f *  be solution of (5). Then, for each f :  

(14) E ( X t ÷ l - f * ( X 1 )  - . . .  - f::'(Xt))2 ~< E ( X , + i - f ( X i )  - . . .  - f ( X t ) ) 2  

Demonstrat ion.  

Using (3) it easily follows tha t  for every function $ of t variables we have 

E ( X t + ~ -  ~(X~ . . . . .  X~) )~ : E ( X , + ~ -  mo)~ + E(n,o - ~(Xl  . . . . .  Xt) ) ~ 
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The difference between the members of (14) then is the same as that between 
the members of (6). 

1.5. Remark. Notation. Definition 

In DE VYLr~EI~ (1976), the fundamental relation (5) is derived in a geometrical 
way. In that paper the existence o f f*  is proved. 

The optimal semilinear credibility premium of the year t + 1 is defined and 
denoted by 

(15) E*(Xt+~[X~ . . . . .  Xt) =f*(X~)  + . . .  + f*(Xt),  

where f *  is solution of (5). 

1.6. Theorem 

(16) E E*(Xt+~ [ XI . . . . .  Xt) = E(Xt+~) 

Demonstration. 

Follows from (5) and (15) by taking the mean values. 

1.7. Determination of the Optimal Premnium 

If the variables X~ and X2 have a joint density p(x, y), then equation (5) 
becomes 

(17) f y p(x, y) dy = f*(x) f p(x, y) dy + ( t -1 )  ~ /*(y) p(x, y) dy 

This is an integral equation of Fredholm type for the unknown function f*.  
If  X~ can only assume, with probability one, a finite number of values, say 

o, l, 2 . . . .  , n, then (5) becomes the linear system 
t ,  • n 

(18) YE jp,: = f ,  E p,j + ( t - l )  ~ f ; p , j ( i = o  . . . . .  n), 
l - o  I - o  I - o  

where 

(19) 

(20) 

p, j  = P(X1 = i, X2 = j ) ,  

f ;  = f ' ( i ) .  

Equations (17) and (18) may serve as well for theoretical investigations as 
for the numerical computation of the optimal premium. Only the joint distri- 
bution of X1 and X~ is needed. 

1.8. The Linear Credibility Premium 

We shall denote the usual linear credibility premium of the year t + 1 by  

Z 
(21) B ( X t + : I X :  . . . . .  X~) = ( I - Z )  E(X~) + 7 (X1 + . . .  + Xt), 
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where 
l cov(X~, X~) 

(22) Z - 
V(l/" X l .  -l- ( t -  1) cov(X1;X2 i 

The mean square error in the approximat ion  of me by  this premium equals 

(23) (t - Z) coy(X,, X2). 

By what  precedes, it is never  less than the mean square error in the ap- 
proximat ion of m e by  the optimal premium, given by (7). 

2. F I N I T E  P O R T F O L I O S  A N D  Q U A D R A T I C  FORMS 

2.1. Hypolheses. Dcfinitio,. 

From now o11 we assume tha t  the range of values of X,  is a finite set of numbers  
s a y o ,  l , 2 ,  . . . , ~ .  

We use tile nota t ion  (t9) for pej and set 
n 

Pi = 1)(Xt = i) = E Pij (¢ = O, 1, . . . ,  'It) 
j o 

We denote  by Q~ the quadrat ic  form in the variables xo, xt . . . . .  x~: 
u 

(24) Qp = x pi jx tx j  
t , ]  0 

(in the nota t ion Qv, P is of course not  a numerical  index, but  a fixed symbol  
re la ted to the nota t ion  PU.) 

If ® also can only assume a finite numl)er of distinct values, say 0o, Ot . . . . .  0.,, 
we call the portfolio a f i ,  ite porlfolio and we write 

(25) u= = P(O = 0~) " ' ( ~ = 0 ,  1, . . . , V )  
(26) p~/~ = l ' (X t= i [®=O~) .  \ i = o ,  1, . . . , ~  

The numbers  (25) and (26) complete ly  describe our portfolio. For  example:  

(27) PU¢ . . . .  P ( X t = i ,  X 2 = j ,  X a = k ,  . . . )  = 2 u~,pq~pj/~,p¢/~. . .  
OL 0 

Note tha t  it is not  assumed tha t  tile portfolio be finite in the following 
theorem. 

2.2. Theorem 

The (~ + 1) x ('J~ + 1) nlatr ix [)6~j] is semidefinite t)ositive. 

Demonst ra t ion .  

For  every  funct ion f of one variable, we have by  (2) : 

.E ( f (X1) f (X2) )  = E f~  >~ o 
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Wri t ingf ( i )  = x:, this gives 
s t  

i , J  " ,  0 

for every value of xo, xz, . . . ,  x,~ 

2.3. Theorem 

Let  [q,j] be an a rb i t ra ry  (1l + I) x (.1~ + l) symmetr ic  mat r ix  with nonnegat ive  
elements adding up to unity.  Define q,(i = o . . . . .  n) 13 3, 

n 

q, = X qz: 
] . , 0  

Then, if one of the matrices [q,:] or [q~:-q,q:~ is semidefinite positive, so is 
the other.  

Demonstra t ion.  

Let  Qq and R e be the quadrat ic  forms 
n 

Oa = X q~: x lx: ,  
I , ] '  0 

R e  = 22 (q l : -qzq j )  x~x: = O a - -  ( £ q¢ xda 
I , j  o I o 

Then 
tt 

t O 

and if Rq is semidefinitc positive, so is Qq, 5. fortiorl. 
Conversely, let Qq be semidefinite positive. Define tile couple of random 

variables Y~, Y2 1)3, 

= ( . , , j = , , ,  . . . ,  ,.,.) 

For every  f we have, set t ing f ( i )  = xi: 
n n 

E ( I ( Y  O f ( Y = ) )  = Z f ( z )  f ( j )  q,: = 22 q¢: x ,x:  l> o 
I , J ,  o ¢ ,1 '  o 

since Qq is semidefinite positive. In part icular ,  for the function f - E f ( Y , )  = 
/ -  w e  h a v e  

E ( ( f ( Y t )  - E f ( Y t ) )  ( f ( Y e )  - E l ( Y 2 ) ) )  >1 o 

o r  

n 

R e = X ( q , : -  q~q:) x ,x:  i> o 
l ,  I ' 1 0 
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2. 4 . Theorem 

In the finite portfolio the form Q~ equals 

= £ ,,o( p .o  x,/-. 
or, o { ~ o  

Demonstration. 

By (27): 
n n n 

f , t ~ o  Ct, o d o ~r,.o c t o o  d , . o  

2.5. Theorem 

n 

Let Qq = Z q~j x i x  t be a quadratic form with nonnegative symmetric coeffi- 
d, I .  o 

cients q~l adding up to unity. Then, to every decomposition 

( ,J 0 Ct, ,O t " 0  

of Qq in a sum of squares of linear forms with nonnegative coefficients a~, 
there corresponds a finite portfolio for which 

(29) PO = q,J, 
n 

(30) , ~  = ( x a . ) 2 ,  

n 

(31) p,/~ = a l~/  X a,~, 
t . . O  

( i = o  . . . . .  n; ~ = o  . . . . .  ~) 

Demonstration. 

We suppose of course that no linear form of the decomposition is the zero 
form. 

Define u~ and/b,/~ by (30) and (31). From (31) we have 
tt  

X p , ~ =  1 ( ~ = o  . . . . .  ~ ) .  

By setting xo = x, . . . . .  xn = 1 in (28), we have Z u~ = 1 
o ~ o  

Also 

¢t ,o  ~x o 

by taking the coefficient of x~x~ in (28) and using (30) and (31). 



OPTIMAL S E M I L I N E A R  C R E D I B I L I T Y  139 

2.6. Remarks 

(I) Given the matrix [p,j], every possible finite portfolio for which (19) is 
valid thus results from a decomposition of Q~ in a sum of squares of linear 
forms with nonnegative coefficients. For all such possible portfolios, the 
credible premium (optimal or linear) will be the same. 

(II) By 2.2., a necessary condition on a given matrix [qIj] to be the [Po] 
matrix of some portfolio, finite or not, is that [qIj] be semidefinite positive. 

(III) In the classical theory of decomposition of a quadratic form in a sum 
of squares of linear forms, the latter are generally independent and in 
number not larger than the dimension of the matrix of the quadratic 
form. For a decomposition giving rise to a portfolio, this is no longer 
needed. On the other side, we need linear forms with nonnegative coef- 
ficients, which is not the case in the classical theory. 

(IV) As a simple illustration, we consider the form Q in two variables 

1 

Q = 79 (3x2 + 12xy + 143,2 ) 

Among a lot of others, three possible decompositions are 

+ + 3 /  + ; + 4 , '  

27 _x+ + o x +  ly 
Q= 3 3 

2oo(   
Q = - -  + + i x +  oy 

2o3 10/ 2o3 

To these three decompositions correspond three different finite port- 
folios with same [P*I] matrix equal to 

3/29 6/29] 
6/29 14/29] 

For each of the three portfolios we would find the same optimal premium 
and the same linear credibility premium. 

If we had a decomposition with only one square of a linear form, the 
two variables Xi and X2 should be independent. So the third decomposi- 
tion shows that, in the present case, these variables are "nearly" in- 
dependent. 
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3. ADJUSTMENT OF A [Ptl]  MATRIX 

3.1. The Problem 

In the next  section, we apply  the theory  to a concrete portfolio in automobile  
insurance. We limit ourselves to the consideration of the number  of claims. 
Then Pij is the probabi l i ty  of i claims in one year,  say the first, a n d j  claims in 
ano ther  5,ear, say the second, for a cont rac t  chosen at random in the portfolio. 

Practical ly,  the probabi l i ty  Plj is es t imated  by  an observed f requency qij. 
Excep t  perhaps for est imates f rom very  large samples, the ma t r ix  Eq~Jl, of 
course symmet r ized  in the obvious way, does not fit in the theory  because 
general ly it is not  semidefinite positive. So it must  be t ransformed,  as slightly 
as possible, in a uaable mat r ix  IP~JI. 

3.2. Smoolhing  on a F txed  Ascending  Diagonal  

Suppose, for a moment ,  tha t  the parameter  0 of each fixed cont rac t  is inter- 
pre ted as the mean number  of claims in one year,  and that  the arrivals are 
poissonnian. Then  we should have 

0~ 
(3 2 ) P(X~=iI®=O) = e - °  ~ ( i = o ,  1 , 2  . . . .  ) 

But  since, for practical reasons, we do not  consider a number  of claims in 
one year  greater  than a fixed integer n, we replace (32) by 

0z 
(33)  P ( x ~  = i t o = 0) = c,,,o e - °  ~- ( i  = o , ,  . . . . .  . )  

where Cn,o is the suitable norming factor. 

Denot ing by  U(0) the s t ruc ture  function of the portfolio, we have,  for a 
cont rac t  chosen at randoln 

i o 0 ~+l PiJ = C;,o e-2° - -  dU(O) ( i , j = o ,  I , . .  n) 
i~ j~  " 

o 

For  the probabi l i ty  of k (k = o, 1 . . . . .  2n) claims in two years, we have then 

(34) (z); " , ~  ~ ~ -~ e -'~° 0**J  d g ( 0 )  ~Pe = Ps~ = C,.o T~ ji 
i , t  , 0  ' ,1  0 

t + J  L ~ + J  L t I 

So, for i + j = k (i, j =  o, 1 . . . . .  n), PO and 2pk are related by  

(35)  p~j = a , j  ~p~ 
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where 

(36) 

If we take 

ai j  = 

1 

1 

,.j..o i !  j !  
I ÷ l ~ k  

, ( i , j = o ,  . . . , u ;  i + j = k )  

(37) eqe = ~ q,j 
i , ] , ,o  

t + ] ~ k  

and then use (35) with epe =eqk, We have a first ad jus tment  o[ the ma t r ix  [q*J3- 
Since, for f ixed k, the elements a,j of (36) add up to unity,  it is immedia te  tha t  
the sum of the elements  of each ascending diagonal is the same in the initial 
and the adjus ted  matr ix .  

We reached (35), s tar t ing from a poissonnian hypothesis .  Now we kee t) only 
(35) and abandon the poissonnian hypothesis ,  because this relation is in fact  
true in a more general situation. For  example,  if the factor  cn, o2 e -2° is replaced 
by another  one not  depending on i or j, then (35) remains true with a~j given 

by  (36). 

3.3- Extrapolation for the Last Ascendi'~tg Diagonals 

For  statistics deriving from small samples, the above me thod  does not  ye t  
furnish a semidefinite positive [p,j] matr ix .  So a prel iminary smoothing of the 
eqx's is necessary. 

If, again for one moment ,  we make the poissonnian hypothes is  and do not  
neglect claims in number  greater  than  ,~t in one year,  then we have 

d U ( O ) ,  (k, = O, 1, 2, .) 
(20) e 

( 3 s )  . ,Pc = e - " °  ~ - - ~ -  . .  

0 

Writ  i n g 

(39) 

w e  h a v e  

re = k! epe ( k = o ,  1, 2, . . . )  

re = f e -~° (zO)e dU(O) ( k = o ,  1, 2 . . . .  ) 

From this relation it can be proved tha t  

(40) r~ ~< r k_l re+l, (k= 1, 2, . . . )  

and tha t  equal i ty  for some k can only hold in a portfolio of homogeneous  
composit ion ( that  means:  ® = cons tant  a.e.), in which case it holds for every  
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k. In the case of a binomial  negat ive dis t r ibut ion for the to ta l  number  of claims 
in a fixed period (here 2 years), which amounts  to a gamma densi ty  for 0 ,  it can 
be verif ied that ,  for k--> oo, we have  

Tk-i Tk+l 

Yk 

These considerat ions suggest the following me thod  of ad jus tment .  We take  

r0 = o[ xqo, r: = 1[ 2ql, . . . , r k 0  = k0!2qk0 

and, f rom ko on, t aken  as large as possible, we set 
2 

~v~_ 1 
(41 ) ~k = ( l  + ¢ k , ~ , ~ , . . . )  - -  (k >/ ko+ 1) 

rk-2 

where ~k,~,~,... is a posit ive quant i ty ,  decreasing with increasing k and con- 
taining parameters  c~, ~, . . .  to be de termined  in funct ion of some requirements  
for the adjusted matr ix .  There  is of course some arbitrariness in the choice of 
,e,~,~,..., bu t  as we shall see in our numerical  i l lustrat ion of nex t  section, this 
quant i ty ,  when proper ly  chosen, introcuces only very  smaU probabilities. 

F r om the preceding discussion we only retain (41) and (39), because it  is 
not  difficult to see tha t  (40) is valid in a more general s i tuat ion than  the 
poissonnian from which we started.  

4" N U M E R I C A L  I L L U S T R A T I O N  

4.1. Basic Statistics 

The statist ics used are those of Table  1. 

TABLE I : BASIC STATISTICS 

\ J  
i~ o I 2 3 4 5 

o 784 to3 13 2 2 o 
1 119 33 5 1 o o 

2 18 5 3 2 o o 
3 i l o o 1 o 
4 o o o o o o 
5 : o o o o o 

The number  at  the intersection of row i and column j in this table is the 
number  of automobiles  with i claims one year  and j claims the following year  

among lO94 automobiles.  
These statist ics were established by  P. Thyrion and used in THYI~ION (1972) 

and af terwards  in DE VYLDER (1975). 
On dividing by  lO94 and symmetrizing,  we obtain the ma t r ix  [q*JJ of Table  2. 
Most of our following numerical  results were computed  with a precision of 

15 ~t 16 significant digits. Often, however,  we reproduce the in termedia te  
results with 3 significant digits only. 
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TABLE '2." NON ADJUSTED SYMMETRIZED MATRIX [qf]] 

143 

• 717 .2o3 .o585 .0119 .oo64 o 

i = l  
i = 2  
i = 3  
i = 4  
i = 5  

• 7 1 7  .lOl .o142 .oo137 .ooo914 .ooo457 
.lOl .o3o2 .oo457 .ooo914 o o 
.o142 .oo457 .oo274 .00o914 o o 
.oo137 .ooo914 .ooo914 o .ooo457 o 
.ooo914 o o .o0o457 o o 
.ooo457 o o o o o 

.00274 
o 

• ooo9 i 4 
o 
o 
o 

.835 .137 -o224 .00366 .00137 .ooo457 

j = o  j = l  j = 2  ] = 3  J = 4  J = 5  

TABLE 3: ADJUSTED MATRIX [PtJ] 

.717 .2O 3 .O585 .O119 •OO493 

i = o  
i = l  
i = 2  
i = 3  
i = 4  
i = 5  

.717 .lOl .o146 .ool49 .000308 .0000815 

.1Ol .0293 .00446 .00123 .000408 .oooi34 

.o146 .o0446 .o0185 .00o815 .ooo335 .ooo127 

.00149 .oo123 .000815 .ooo447 .000211 .oooo909 

.ooo3o8 .ooo4o8 .ooo335 .ooo211 .000114 .0o00579 

.o0oo815 .ooo134 .ooo127 .00009o 9 .o000579 .0000410 

.oo261 

.o0139 

.o0o676 
000296 

.000116 

.0000410 

• 835 .137 .0222 .00428 .oo143 .ooo532 

j = o  j = l  . /=2 .1=3 J = 4  . /=5 

4.2. Adjustment 
0ux a im is to f ind a semidefini te  posi t ive m a t r i x  (P,J] as close as possible to the  
m a t r i x  [q~]. 

Fol lowing the  m e t h o d  expla ined in the preceding section, we take  

~p0 = q00 = .717 
2pl = q01 + ql0 = .203 

~p2 = q02 + qn + q20 = .0585 
~pa = q03 + q12 + q21 + q30 = .Oll 9 

We tr ied of course to keep  also for ep4 the observed  corresponding f requency  
.oo64o, bu t  this was unsuccessfull.  F r o m  the above  values,  we have  the  value 
of ro, rl, r2, ra by (39). We set 

( g ~ = ~ l  r~-I ( k = 4 ,  5 . . . . .  1o) 
~'k = \ P ] I  + r k - 2  
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because we observed tha t  a q u a n t i t y  ~.~,~,~,... in (41) rap id ly  converging to zero 
gives a 2p4 closer to .oo64o than  one converging more  slowly to zero. F rom the 
values of the r~ (k = 4, 5 . . . . .  1 o) we deduce those of the pe by  (39) and choose 

and  ~ to sat isfy 

lO 

(42) Z 2pk = I 
L 0 

From the values of the 2pk we then deduce those of the Ptj by  (35). 
For  fixed } it is not difficult to de te rmine  ~, wi th  the required precision, 

from (42). So we still dispose of }. For  a previous ly  indicated reason, we t ry  to 
take  t3 as large as possible. Now, by  calculat ing the character is t ic  values, we 
observed  tha t  for 13 = 2, we ob ta ined  a semidefinite posi t ive ma t r ix  [Plj], while 
for 13 = 4, there appeared  one negat ive  character is t ic  value. \,Ve then t r ied the 

values  13 = 2.1, 13 = 2.2 . . . . .  13 = 3.8, 13 = 3.9 and  found tha t  for 13 = 3 all charac-  
teristic were still posit ive,  while for ~3 = 3.1 there appeared  a negat ive  one. In  
fact,  for 13 = 3 there was a character is t ic  value so small  t ha t  we preferred to 
t ake  13 = 2. 9, a l though this was not essential. The corresponding value of oc is 

o~= 1.723 569 981 73o55o.  The character is t ic  values  of the adjus ted  [P*Jl 
m a t r i x  are .732 .or 5 l .oo J 54 .oooo835 .ooooo96 .ooooooo81. For  the ad jus ted  
mat r ix ,  the mean  value of the n u m b e r  of claims in one year  is .2o26o7, while 

for the original m a t r i x  it is .2oo64o. I n s t ea d  of (42), we could have  used the 
relat ion mak ing  these mean  values equal, bu t  then, unless we in t roduced a 
new pa ramete r ,  we would have  had to change propor t iona l ly  the now kept  
f ixed quant i t ies  2po, ap~, ape, 2p3. Since the difference between the two means 
is small  in our actual  ad jus tmen t ,  we keep it as it is. 

A glance at  Tables  2 and 3 is enough to be convinced of the qua l i ty  of our 
ad jus tmen t ,  especially when one looks a t  the par t ia l  sums indicated in the 
margins .  

A character is t ic  of our a d j u s t m e n t  is tha t  it used only the numbers  _oplc and 
not  the decomposi t ion of such a n u m b e r  on the corresponding ascending 
diagonal.  In  other  words, ins tead of Table  1, we used only the frequencies of k 
claims in two years.  I t  seems tha t  our me thod  can be adap t ed  for the case were 
the  f requency  of h claims in one year  is the only s tat is t ical  mater ia l .  

4.3. A Theorically Possible Portfolio Compatible w~th the [P~Jl Matr ix  

ot  ' I f  we decompose  the quadra t ic  form Qv by  Lagran~e s me thod  (successive 

comple t ion  of squares),  t ak ing  the var iables  in the order  Xo, xl . . . . .  x~, we 
find af ter  some normal isa t ions :  

b 

Qv = z p ~ j x t x j  = 
' l , t , .  0 



OPTIMAL SEMILINEAR CREDIBILITY 145 

.972 (.859x0 + .122x~ + .o175x2 + .oo178xu + .ooo369x4 + .oooo983x~)2 
+ .0237 (.793xt + .127 x2 + .0545 x3 + o194 x4 + .00652 xs) 2 
+ .oo4ol (.54 ° x2 + .287 xa + .125 x4 + .0488 xs) 2 
+ .000285 (.392 x3 + .373 x, + .235 a.~)2 
+ .oo0025 (.32 x4 + .68 x~)~ 
+ 0000032 ( xs) 2 

As explained in section 2, this decomposit ion defines a portfolio for which the 
[Ptj] mat r ix  is our adjus ted  [p,j]. 

This portfolio does not serve in the sequel, but  we calculated it to make sure 
tha t  our adjus ted [P*JI mat r ix  is not a theorical ly impossible one. 

4-4- The Optimal Premi,~m and the Linear Premium 

To make comparisons sensefull, these premiums are of course calculated both 
for the adjusted [p,j] matr ix.  

4.4. I. The  opt imal  13remium 

From (18), we obtain,  in table 4, the values of the f ;  for the indicated values 
o f t + l .  

TABLI2. 4: COMPONENTS OF THE OPTIMAL PREMIUM 
E*(Xt+ ,  I X ,  . . . . .  X t )  = f.~, + f.t.~ + . . .  + f.~', 

t + 1  f ;  f :  .17 f~* / :  f ;  

2 .163922 .322485 .566282 1.285385 t.712988 2.060772 
3 .o70165 .201312 .385665 .938154 1.252583 1.4958o4 
4 .041312 .154117 .301413 -748922 .993612 1-1741o4 
5 -o279~1 .127399 .249519 .624949 822816 962363 
6 .020394 .109677 .213655 .536605 .701129 .812356 
7 015681 .096841 .187171 -470247 .609979 .700767 
8 .o125oo .087009 166728 .418507 539185 .614733 
9 .OLO237 .079179 .15o432 -377009 482654 .546539 

1o .008562 .072763 .137116 .342977 -436504 .491274 
20 oo2613 .041181 .073446 .179860 .219454 .23856o 
3 ° oo129o .029042 .050507 .121616 144603 .155734 
5 ° .oo0526 .018364 .o31328 .073604 .084674 .091804 
99 .000159 .o09688 .016461 .037222 .o4o897 .046423 

loo .0o0156 .009596 .0163o5 .036848 .040458 .045969 

T A B L E  5 :  I~ROI3ABILITY P t  OF i CLAIMS IN ONE Yh~AR 

p0 pl p2 p~ p~ p2 

.834599 .L36944 .022208 004283 ,oot434 ,000532 

IO 
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From this table it follows, for example, that  the optimal semilinear forecast 
of the number of claims in the 4th year, for a driver with 2, 2, o claims in the 
preceding years is 

E ' ( X a t X ~ =  2, X 2= 2, X a=  o) = f ; + f ~  + f ;  = 

.3o1413+.3o1413+.o41312 = .644138 

To make a verification possible of relation (16) which amounts to 

t E(I•,) = E(X1) 
o r  

where 

t Z p , f ;  = E ( X ~ )  

.E(X~) = .202607 

we give, in table 5, the values of p,, the probability of i claims in one year, 
with a precision greater than in Table 3. 

4.4.2. The linear premium 

The credibility factor Z in (21), given in (22), is expressed in Table 6 for 
various values of t + 1. Intermediate values computed from the not printed 
15 digits precise [p,j] matrix are also indicated. 

TABLE 6: CREDZBIL~TY FFAC'rOR Z 
IN LINEAR FORECAST 

E(Xt+~ 
(l--Z) E(X,) 

1 X~ . . . . .  Xt) = 
+ Z/t  ( X , +  . . .  + X t )  

2 .231545 
3 -376024 
4 .474773 
5 .546537 
6 .6OLO48 
7 .643859 
8 .678373 
9 .706788 

•o .730590 
20 .85 t3oo  
30 .897310 
50 .936566 
99 ,967244 

lOO .967564 
E(X1) = .202607 
E ( X I )  = .300577 
.E (XiX2) = .101142 
var(X~) = .259527 
coy(X1, X=) = .o6oo92 

t + l  Z 
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The l inear forecast  for the above considered driver  is 

E(Xs  I 2 1 =  2, X2= 2, X s =  o) = ( 1 - Z )  E(X~) + Z ( 2 + 2 + o ) / 3  = .739445 

4.4.3. The mean quadra t ic  errors 

Table  7 gives, for different  values o. t + 1, the mean square error  in the ap- 
proximat ion  of the risk premium ms  by  the opt imal  p remium and the l inear 
premium.  The formulae used are (7) and (23). 

As expected,  the opt imal  p remium is always closer to too, and thus  to Xt+l, 
than the linear premium.  

T A B L E  7 :  M E A N  S Q U A R E  E R R O R  F O R  T H E  

O P T I M A L  A N D  T H E  L I N E A R  P R E M I U M  

t + 1 O p t i m a l  L i n e a r  

2 .o438 .o462 
3 .o347 .o375 
4 .o288 .o316 
5 .o247 .0272 
6 .o217 .o24o 
7 .o193 .o214 
8 .o175 .oi93 
9 .o164 .o176 

lo .o147 .o162 
20 .oo822 .oo894 
3 ° .00574 .oo617 
5 ° .00359 .00381 
99 .00188 .00197 

loo .00186 .oo:95 

4-4.4- Comparat ive  Tables 

The values of the opt imal  p remium and  the linear one are given in Tables  8 
and 9 for t + 1 = 2 and t + 1 = 3 respectively.  As is seen, these values m a y  differ 
ve ry  much,  even for relat ively small values of X1, X2. Consider, for example  
the case X1 = o, X2 = 3 in Table  9. 

TABLE 8: OPTIMAL AND LINEAR FORECAST 

FOR SECOND rEAR (t + I = 2) 

X i  Optimal  Linear  

o .163922 .155694 
1 .322485 .387239 
2 .566282 .618784 
3 1.285385 .85o329 
4 1.712988 1.o81873 
5 2.o6o772 1.313419 
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T A B L E  9 :  OPTIMAL AND L I N E A R  FORECAST FOR THE T H I R D  Y.EAR ( l +  1 = 3 )  a 

\ X ~  
X l ~  o 1 2 3 4 5 

14o33o .271477 .45583 ° 1.oo8319 1.322748 1.565969 
o .126422 .314434 502446 690458 .878470 i.o66482 

.271477 .402624 .586977 i t39466 1.453895 1 697116 
1 .314434 .5o2446 .690458 .87847o 1.o66482 1 254494 

.45583 ° .586977 77133 o 1.323819 1.638248 x.881469 
2 .502446 .690458 .87847o l o66482 1.254494 1.4425o6 

1.oo8319 1.139466 1.323819 1.8763o8 2.29o737 2.433958 
3 690458 .878470 1.o66482 I 254494 1.4425o6 1.63o518 

i 322748 1 453895 1.638248 2 190737 2.5o5166 2.748387 
4 .878470 1.o66482 1.25449, t i 442506 i 630518 1.818530 

1.565960 1.697116 1.881469 2.433958 2.748387 2 991608 
5 1.o66482 1.254494 1.4425o6 1.63o518 1.818530 2.006542 

a The :first nunlber indicated is the optimal prenmun, the nuinber beneath it, the 
linear one 

In  Table  9, the l inear p r e m i u m  does of course riot ve ry  01"1 an ascending 
diagonal.  This  is not  the case for the op t imal  premium.  For  example ,  3 and  
o claims respect ive ly  in the first and  the second year  is much  worse than  2 
and 1 claim. 
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