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ABSTRACT. 

The problem of distribution-free parameter estimation in recent credibility 
theory is discussed in the papers [I], [3] and [4] of the bibliography. Here, 
we consider a multiclass model with rcgresmon assumption. In  that  case, 
already treated by Ch. Hachemelster, [3], this author obtmns an unsym- 
metrical matrix as an estunator of a covanance matrix. Of course, for 
practical use, this matrix is symmetrized in the obvious way. We show that  
this procedure can be avoided and that  a lot of symmetrical unbiased 
estimators can be obtained at once. 

By parhcularisations to the I-rank model, we find the estimators given 
by Buhlmann and Straub, [I], [4]. 

In the mulhrank case, a generahzation of the minimumvariance principle 
(mimmization of the trace of the covariance matrix) leads to an optimal 
estamator of the mean regression vector. A noteworthy conclusion of our 
discussion is that  there is no difference at all between the various credibility 
formulae (the inhomogenous formula, the homogeneous formula, the mean- 
free formula) if the mean regression vector is estimated optimally. 

Finally we show that  it must not be hoped to find, in a large set of un- 
biased estimators of the covariance matrix, one estinaator furnishing, 
ahvays, a semidefinitc positive estimate 

i .  THE MULTICLASS 'MODEL WITH REGRESSION ASSUMPTION. 

I . I .  Descriplion of  the model 

We cons ider  the  a r r a y  of o b s e r v a b l e  r a n d o m  va r i a b l e s  

1X1 2X1 . . .  i X 1  . . .  kX1  

t X ~  2X2 . . .  i X 2  . . .  k X 2  

~Xs ~Xs . . .  j X s  . . .  ~Xs 

aXt 2Xt . . .  j X t  . . .  k X t  

I n  the  n o t a t i o n  j X s  ( j  = x, 2 . . . . .  k; s = x, 2 . . . . .  t ) ,  t he  lef t  i n d e x  

j is the  class index ,  the  r igh t  i ndex  s is the  y e a r  index .  F o r  e x a m p l e  

j X s  m i g h t  be the  c la im r a t e  of t r e a t y  j in  y e a r  s in  a r e i n s u r e r ' s  

portfol io,  b u t  o the r  i n t e r p r e t a t i o n s  are possible.  The  c o l u m n  

j X  = (iX1, jX~ . . . .  , jX t ) ' ,  will be  ca l led  the  class j .  To j X  is assoeia  

t ed  the  s t r u c t u r e  v a r i a b l e  jO. We  a b b r e v i a t e :  

0 = (~0, ~0 . . . . .  ~0). 
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The numbers  k (nm-nber of classes) and t (number of observat ion 
years) are fixed. As variable class-indices we use i, j = I, 2 . . . . .  k 
and as variable t ime indices r, s = I, 2, . . . ,  t. 

Before we specify the assumptions relating the observable and 
s t ruc ture  variables, we make some general remarks about  the 
mat r ix  notat ion used th roughout  the text .  A n matr ix  is one with 
m rows and n columns. Then n is the dime~s,io,a of the matr ix.  

Rows, columns, scalars are par t icular  matrices. The dimension } is 
also denoted  more simply by  I. Some relations are completed by 
the dimensions of the displayed matrices.  The same symbol (without 
indices) is used for a mat r ix  and for its elements (with indices). 
The inferior right index is the row-index. The superior right index 
is the column-index.  M a l r i x  rules are applied to indices wrilten on 
the right only. 

The following assumptions are made. 

(i) Independence  of classes: ~X, 2X . . . . .  eX are independent .  
(ii) In each class, i r re levancy of other  parameter  values than tha t  

one of the given class: For  each class-index j and function 

f(.) ,  
E ( f O X ) / ®  ) = E ( f O X ) / j ®  ). 

(iii) Independence  of parameters :  ~®, 20, . . . ,  e@ are independent .  
(iv) Equidis t r ibut ion  of the parameters  1@, ~0, . . . ,  a.O. 
(v) There  exist functions ~s ( . ) sa t i s fy ing  

EOX~hO) = ~,(jO). 

(The assumption is in the fact tha t  g.,(. ) does not depend 
on j.) 

(vi) There  exist  symmetr ica l  definite positive ~ matrices jv and 
a scalar funct ion ,2 ( .  ) satisfying 

C O V ( . / X  v jXr/ jO ) = 62(yO) yv~. 

(vii) Regression assumpt ion:  For  each j,  the ~ column V(j®) of 
elements V, s0@), can be wri t ten  as 

= y (jo), 

1 ~ g 

vector of elements where y is a known ~ mat r ix  and ~( . ) a g 
}~o( - )" I t  is assumed moreover  tha t  y is of rank g and tha t  

g < t .  
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1.2. Special assumplions 

Occasionally, (vi), (vii) will be specified in the following manner.  

(BS): jv is a diagonal matr ix with diagonal elements 

(BSI):  (BS) is true and moreover,  y is the ~ column y = (1, I . . . . .  
z)'. (Of course, then ~3(. ) is a scalar function.) 

The case (BS) is introduced in Bfihhnann and Straub,  [i] and is 
further used in Hachemeis ter  [4]. In [i1, the number  JPs is the 
premium volmne underlying t rea ty  j in year  s in a reinsurer 's  
portfolio. In [4], each class is related to an American s ta te  and jPs 
is a nunlber of claims in s ta te  j in the observat ion period s. 

Assumption (BSI) is a s ta t ionar i ty  in t ime assumption,  since 
then V-s(.) does not depend on s. 

In the sequel we assume (i) to (vii). The matrices jr, y are supposed 
to be known. Assumptions  (BS), (BSI) are ment ioned explicitly 
if they  are used. 

1. 3 . Summary of credibility theory results 

The following credibili ty approximat ions  to the vector  [3(j®) 
are known. 

- -  The inhonlogeneous approximat ion ([3], [5], [2]) 

j B = ( ~ - - j z )  b + j z j ~ .  
1 _ _  g 1 ~ 1 
g - -  g g - [ -  g 

- -  The homogeneous approxinlat ion ([3], [2]) 

j/~ = ( i - - ] z )  b S + jz jB. 
i __ g I g t 
g - -  g g I -@ g g 

- -  The homogeneous mean-free approximat ion ([5], [2]) 

fl~ = ( i - - j z )  B + jz jB. 
1 ~ g i gg I 
g g g ~ g 

In these formulae:  

jz = a y'~d -1 y (I + a y ' j d  - ~ y ) - l ,  

jB = (y' f l - i  y ) - i  y, f l -~  iX, 
t 1 
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B = (X ,z) -~ X ,z ,B,  
t i 

I. ~ = (  ~) g ~  
ff # 

S = E b ' a - l F ~ B / G b ' a - l G b  

_ g g g 1/ f f  g g i 
i -- i g g g 1 9 g ff 

and fu r the r '  

vector  of elements I) b is the g 

b~o = E (~3v0®)), independent  of j. 

2) jd is the ~ mat r ix  of elements 

S 2 8 jd~. = E COV (jXr, iXs/10) = E(cr2(j0)) :~vSr = f r ,  

where 

s 2 = E(cr2(jO)), independent  of j. 

3) a is the gg ma t r ix  of elements 

aq v --  COV(C3v(~® ), ~3q(jO)), independent  of j. 

1. 4 . Problem 

Our problem is to find unbiased est imators  for b, s °-, a. For  brevi ty ,  
these quant i t ies  will be called, respectively,  the mean  veclor, the 
variance, the covariance matr ix .  

2 .  F I X E D - C L A S S  E s r I ~ t A T O R S .  

In this section we consider a fixed class jX and we make  infer- 
ences based only o11 the variables in tha t  class. 

2.1. Es t ima t ion  of  lhe mean  vector 

2 . i . i .  Theorem 

For  the estinaator 

j~ = (y, jv-ly)-,  y . f -1  ix ,  (~g), 
we have 

EOgghO) = ~0o), 

~0~) = b .  

Demonstra t ion.  Follows from the fact tha t  

E O X h O  ) = ~00)  = y ~ ( # )  

and the definit ion of b. 

(I) 

(2) 

(3) 
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2.1.2. Remark .  The arguments  in favor of the es t imator  jb are the 
same as those just ifying the identical ly cons t ruc ted  es t imator  
in mul t ivar ia te  regression theory.  We shall not  repeat  them here, 
but  we note  however  tha t  such an es t imator  can be ob ta ined  as 
well by  least-squares theory  as under  normal assumptions.  

I t  is seen tha t  jb is tB defined in 1. 3 . 

2.2. Est imat ion  of the variance 

2.2.1. L e m m a  

For  an 3, symmetr ica l  ~ mat r ix  r:  

E O X '  r iX~j®) = a20®)lr(r jv) + p.'O®) rb~00 ). 

Demonst ra t ion .  We have,  dropping everywhere  the fixed class- 
index j,  

E ( X ' r X / @ )  = £ r~ E ( X  r Xs /O  ) 
r 8  

- -  + r , r 

- -  £ rSr LE(XrXs /@ ) - -  E ( X r l O  ) E(XsI@)] + ~ r~ E(XrI@)E(XsI@) 
r 8  r 8  

r ,8 = Y., 4 COV (X,, Xs/® ) + £ p.r(®) r, ~,s(®) 
r 8  r 8  

= a2(@) Z r~ vet + p.'(O) rbt(O ) 
r 8  

= a'°(®) tr(rv) + b((O) rv.(® ). 

2.2.2. Theorem 

For  the es t imator  

I O X -  yjb~) ' ~v -~ OX - -  YJb), (4) j,~2 _ l - - g  

we ]lave 

E(d2hO) = ~20o), (5) 

EOs ~) = s2 (6) 

Demonsbration 

We drop everywhere  the class-index j.  Using (I), we have, af ter  
obvious simplifications: 

( t - -  g) 82 = X '  r X ,  

wln ere 

r = v - t  - -  v - l y ( y ' v - l y ) - l y ' v  -1 
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tr(rv) -= tr(I °) - -  t r ( v - [y (y ' v - ' y ) - [y ' )  
= t r ( : )  - -  : r ( y v - l y ( y ' v - [ y ) - , )  

= lr(1 °) - -  t r ( :  °) = t - -  g, 

where I °, I °° are respectively the ~ and the ~ unit  matrix. 

Also, 

/ ( o )  r~(o)  = / ( o )  rye(O) = o, 

since ry = o. Therefore (5) follows from the lemnla. Then (6) is 
evident from the definition of s 2. 

2. 3. Relation, for the covariance malrix 

2.3.1. Remark 

The covariance matr ix  a cannot be est imated from observations 
in one class. However, the following relation (8) is the first step 
in the construction of unbiased estimators for a. Observe that ,  as 
is indicated, the relations (7), (8) are ~ matr ix  relations. 

2.3.2. Theorem 

E ( ( j g -  b)(S g -  b)'ljO ) = ,~(SO) (y' jv ' y ) - '  + 

+ ( ~ ( : o ) -  b)(~(:O)-  b)', (~), (7) 

E ( ( j b  - -  b) ( jb - -  b) t) = S2(y ' .~V-my)- [  + a ,  (~). (8) 

Demonstration 

\Ve drop everywhere j. First we prove: 

E (XX ' /O)  = ~-°(0) v + y~(O)~'(O)y' .  (9) 

Indeed, the s element of the first member of (9) is t" 
: r r r E ( X r X J O  ) = COX (X r, Xs/~) ) + E(Xr/O ) E(xye) 

= : ( O ) v ~  + ~ ( e )  ~ ( o ) .  

s element of the So we have (9) since the last expression is the ,. 
matr ix  

~2(0) v + ~ ( e ) / ( O )  = ~-'(O) v + y~(O)~'(e) y'. 
^^  

By (I): bb' = (y 'v-[y)-~y 'v  -[ X X '  v ~y(y 'v-~y)  -~. 

By an application of E(. /O) ,  using (9)" 

E(bb'/0) = ~(0)  (y'~,-,y)-~ + ~(0) f3'(0). (lO) 
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From (2) and the relation 

(~- ~)(~--b)'= g g ' - - g ' - - ~ b '  + w 

it follows tha t  

E( (~ - -  b) (~ - -  b)'lO) = E ( ~ ' I O  - -  ~,~'(0) - -  ~(0)  b' + bb'. 

Combining this relation with (IO) we have (7). Then ($) follows. 

3' GLOBAL ESTIMATORS. 

Here we use the statistical material  of all the classeq. 

3.1. Estimation, of the mean vector 

3.1.I. Theorem 

Whatever  be the ~ matrices jr: satisfying 2.., j n - -  t, the vector 
I 

! 

i __ g t 
9 ¢ 9 

is an unbiased est imator of b. 

(ii) 

Dcmo~tslration 

Use (3). 

3.I.2. Natu.ra! estimator 

[n the (BS) case, the est imator 

g = z jp j~, (12) 
J 

where the scalars jp are clefined by 

jp  = ~ j p , l X  @, ,  (13) 

will be called the natural estimator of b. The natural  est imator is a 
particular est imator (11) obtained by taking for Fv the diagonal 
matr ix with each diagonal element equal to jp. The nulnbers jp 
will be called the natural weighls. The matrmes jr~ in (II) can be 
considered as generalized weights. 

The natural  est imator b is used (at least implicitly) in Buhlmaml 
and Straub,  [I], in the (BS1) case. 
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3.2. Estimation of the variance 

3.2.1. Theorem 

\Vhatever  be the scalar weights .lP satisfying E jp = I, 
I 

g2 = ~ jp j§2 
I 

is an unbiased es t imator  of s 2. 

(14) 

l)emonslralion 

Use (6). 

3.2.2. Natural and ,u,nweighted estimators 

In the (BS) case, the es t imator  

~ = x jp jg~ (15) 
J 

will be called the nalural estimator ors 2. 

In the general case, the es t imator  

I 

g" = ~ X jg" (I6) 
I 

will be called the u.nweighted estimator of s 2. 

The unweighted es t imator  is considered in Bt ihlmann and Straub,  
[I] in the (BSi) case and also in Hachemeis ter ,  [3] in the more general 
(BS) case. 

3.3. Eslimalion of the covariance matrix 

3.3.1. Theorem 

Let  tjk be weights satisfying tjk = j,k, ~ tjk = I and set ~ k  =- 

E,jk. Let  g2 be an unbiased es t imator  of s 2. Then the ~ mat r ix  d 
I 

defined by  the relation 

x ,jk ( , g -  j~) (,~ - jg)' = 
t t  

2 ( r - - . Z  uk) d + 2 ge.x ( , ~ k - - u k )  ( y ' t v - ' y ) - ' ,  (o°), (17) 
i i 

is an unbiased es t imator  of a. 

Demonstration 

(,b -- j?) (~g-- jb)' = ((~g -- b) -- (jb -- b)) ((~g-- b) -- (~ -- b))' -- 

(,~ - -  b) ( , g -  b)' + O g - -  b) O g - -  b)' - -  ( , g - -  b) O g - -  b)' - -  

([b -- o) (,~ -- b)'. 
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Therefore, by the assuml)tion of independence of classes, by 
(3), (8), writing momentar i ly  ~w for s 2 (y'  , v  ly) - 1 : 

.B ~d~(~w + a) + .X ~d~ (m + a) - -  2 ~ ljk a~j (~w + ~) = 
~ j  t j  i ]  

2 ,~ (z - -  X uk )  + 2 X ( ~ k  - -  uk)~w. 
J t 

lgrom this the theorem is clear. 

3.3.2. Nal~tra! eslimator 

In the (BS) case, let .l.lk = , p j p .  Then d defined by (r7) will be 
called the nalural  esgimalor o f  a, for the given ~, even if the lat ter  
est imator ~s not the natural  one. 

If b'is the natural  est imator (12) of b, then 

.X lP .IP (zb ~b' + .jb jb' - -  ~b ~b' - -  jb ~b') = 
i !  

2 E , p , b , b ' - - 2 b b '  = 2 x i p ( t b - - b )  ( , b - - b ) ' .  
t l 

So the natural  estinaator d results from the relation 

z ,b 

( ~ -  x d, ~) d + ~ x  , p ( ~ -  d')(y'  ,v - -b) - ' ,  (9, (~8) 

where b is the natural  esnmator  (12) of b. 

3.4- The (BSz )  case 

3.4.1. Notagio~as 

Here we consider the (BSI) case and use the notat ions 

~P= = £ ~P~, ,=P~ = £ ~P,- = £ aPs. 
. t t .  

"['hen the natural  weights are ~p = ~P~/r,P~. 

We use the abbreviations 

• J I s 

3.4.2. EsHmaHon of  lhe mea~ 

Now ~b, b are scalars denoted by Fh, ,~h.. By  partieularisation 
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of the general results we have j~]z = jXE and the natural  mean 
equals *h = a'XL'. 

3.4.3. Estimation of the variance 

The j - th  class variance es t imator  is, by part icularisat ion of (4): 

I 

J~" = t - - -~  ".X; jp~ (jX~ - - / G : ) " .  (z9) 

l 'he  unweighted es tmmtor  is 

I 
"~ - le(t - -  1) x jp~ (j~'~ - -  j x ~ ) ~ .  (2o) 

i t  

This is the est imator  considered in Btihlmann ancl Straub,  LI]. 

3.4.4. Estimation of a 

The natural  es t imator  d, a scalar in this case, results from the 
relatmn 

(I - -  X j p 2 )  d = Z j p ( j X E  - - -  E X E )  2 - -  ( k  - -  I) ga/ ,ApX,  (2I)  

obta ined from (18). The B/_lhlmann and Straub,  [I] es t imator  
results from the relation 

^ ~-~ jPs let - -  I 
/ t  x, jp=') a. = ~ ,.p,--i ( j x ~ - - -  ~ .xe)~  "=P'= ~ .  (22) 

I • 

13y the ident i ty  

Z, doe O X , -  EXu) = = X d),( jX,--jXL.)'- '  + ~ H,,_. OXu--  eX~.) ~, 23 
t s  1#  ! 

it is seen that  a = 7, if g" is the unweighted es t imator  (2o). 

4'  OPTIMAL ESTIMATION OF TIlE MI'AN I{.EGRESSION \;ECTOI< 

4.1. Optimal estimator 

An est imator  d in a set E of vector  est imators  shall be called 
opt,mal m E if the trace of the covariance matr ix  of d is minimal,  
in comparison with the traces defined similarly for tile other  ele- 
ments m E. If E is a set of scalar estimators,  the principle invoked 
~s that  of minimum-variance.  

\,Ve leave the question of an ophmal  ~ or ~2 unsettled. \\:e con- 

sider, here, the cake of an optimal  b given by (II).  \,Ve prove that  the 
optimal  sequence (~r:, 2rv, . . . ,  xr~) is the sequence (,z, 2z . . . . .  kz) 
of credibil i ty matrices (see 1.3), except  for the constant  pre-factor  
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4.2. Lomma 

Let ~m, 2m, . . . ,  k m be definite posi t ive symmet r i ca l  g matrices.  
Let  ~x, 2x . . . . .  kx be var iable  ~ matr ices.  Then the min imum of 

the t race  

lr(X ix ira, ix'), (24) 
t 

subject  to the cons t ra in t  .X tx = l ,  is reached for 
i 

jx  = (,_, t m - ~ ) - ' j m - ~ ,  ( j  = , ,  2 . . . . .  le). (25)  
t 

Demonslral.ion 

If ix is fixed and  if 3' is an a rb i t r a ry  ~ vector,  we have  

y' (~x lm ~x') 5' = (Y' ~x)~.m(y' ix)' > o 

since ,m is defini te posit ive.  Therefore  ,x ,m ix' is semidefini te  
pos i t ive  and has a nonnega t ive  trace. Thus,  (24) is _> o. I t  is a 
quadra t i c  form in the hg 2 var iables  ,x~. I f  we el iminate  g2 var iables  
by  the cons t ra in ts  Z,x = I,  we have  a quadra t ic  po lynomia l  in 
( k - - I )ge  independent  var iables  tha t  is never  negat ive.  Such a 

funct ion is m i n i m u m  for finite values of the variables.  (See, for 
example ,  the l e m m a  2.5 in De Vylder,  [2]). Now we shall a p p l y  
Lagrange ' s  me thod  and  we shall find a unique  e x t r e m u m .  F rom 
the preceding discussion it follows tha t  this e x t r e m u m  mus t  be the 
min imum.  

We in t roduce the g2 Lagrange  mult ipl iers  X~ corresponding to the 

cons t ra in ts  

t 

\~Ze minimize 

We must  have  

. a  
L = t r ( X i  x i m t x ' ) - 2  E ),~%, 

t to t~  

= X , x ~ , x : , m ~ - - 2  X X~ix~. 

0 - -  

I ~L 
E jx v 

2 b jX~ 

or, in ma t r i x  form, 

Then,  successively, 

jx = kiln -1, I = ..Xlx = X.Xfl~t -1 , x = ( 2  j ,m- 1 ) - ,  
/ 
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and (25). Note that  the existence of the inverse matr ix of Ejm -x 
results from the assumptions.  

4.3. Le.mma 

"File covariance matrix of b, given by (II),  is 

N ,rc (s °- (y" fv t y ) - ,  + a ) , n ' ,  (~). (26) 

Demonstrat ion 

From (8) and from the independence of classes: 

e ( (x ,=  ,gg-- t) (xj~ jgg-- b)') = 

x ,~ E ( ( , ~ - -  b) ( jgg-  b)') j~' ~,j = 
f ]  

2 ,re (s~(y' ~v-~y)-' + a) ~'. 
I 

4.4. Theorem 

The optimal es t imator  b in the class of est imators (II) is 

= Z (E lz)- ~jz jb, (27) 
1 t 

where the :~z are the credibil i ty matrices defined in 1.3. 

Demonstragion 

From the definition of jz  follows the relation 

( y ' j d - J y )  + a = jz -~ a. 

Then, since 

s2(y ' i v - t y ) - ~  = (y, j d - ~ y ) - ,  

the theorem follows from the lemnaa's. 

4.5. Corollary 

If b is es t imated optimally,  there is no difference between the 

credibil i ty approximat ions  j/?, fiT, ji? to {3(j@) given in 1.3. 

4.6. Rem ark s  

It  seems that  we are in a circular si tuation if we t ry  to use the 

optimal b, since this b depends on a and that  b is needed in, for 
example,  the natural  est imator  d of a. 

However ,  this anomaly  is only apparent ,  since the first member  of 

(18) can be wri t ten wi thout  b. In other  words, in (18) b mus t  be the 
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natura l  estinaator and not the opt imal  one. I t  is not  excluded,  
however,  tha t  (I8) can be opt imized in some way  b y  a method  of 

successive approxilnat ions,  using successively improved b ' s  and, 
eventual ly,  redefinitions of the numbers  jPs. 

5" NoN-NEGATIVITY CONSIDERATIONS 

The covariance mat r ix  a is semidefinite positive. In part icular ,  
in the (BSI) case the nmnber  a is non-negative.  I t  is known tha t  

A 

the est imator  a can provide negative values. In such cases, Biihl- 
mann and Straub,  [I] es t imate  a by  o. 

A similar me thod  can be used if a is a matr ix.  For  example,  
suppose that  a ° is an est imate  of a and tha t  a ° is not  semidefinite 
positive. Then make  a ° diagonal by  an or thogonal  t ransformat ion.  
Replace the negat ive diagonal elements (i.e. the negat ive character-  
istic values) by o and apply  the inverse or thogonal  t ransformat ion.  

If all diagonal elements of a ° are posit ive and if a ° is not  semi- 
definite positive the following me thod  can also be used. Mult iply 
all non-diagonal  elements  of a ° by  the same number  x. Then if x 
decreases from I to o the mat r ix  becomes necessarily semidefinite 
positive. Keep the largest possible x. 

Of course, a just if ication of these methods  is difficult to find. 
Moreover, the est imators  redefined in such a way are no longer 
unbiased. Bu t  it  must  be kept  in mind tha t  it is preferable to have  
an est imate tha t  might  be bad, than  no estinaate at all. And also 
tha t  the applicat ion of credibi l i ty formulae  with wrong parameters  
introduces unfairnesses in the different  classes, bu t  tha t  these 
counterba lance  each other ,  at  least if b is es t imated  correctly.  

Finally,  let we go back to the general formula (17) and let we 
consider the following question. Is a reasonable general choice of 
the weights ,jk and .~p (in g2) possible in such a way  that  the resulting 
d always is semidefinite positive ? The  answer is negative.  Indeed,  
let we consider the (BSI) case with each jPs = I. Then our  general 
hypothet ica l  rule for fixing the weights must  lead to equal weights 
jla since we s tar t  from a symmetr ica l  si tuation. For  the same reason, 
we must have 

~jk = o~ (i f j ) ,  . k =  

for some ~ and 13. Since we must  have Etjk = z, there is one in- 
dependent  parameter ,  say ~, left. But  an inspection of (z7) shows 
tha t  this pa rame te r  simplifies in tha t  relation. So we m a y  take  o~ = 
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{3. Then d is the natural  estimator,  given by (2I). The particular 
case /e = 2 ,  I = 2 shows tha t  d < o for the values 

i X l  = I ,  2 X i  = I ,  

13(~ =~ O, a x e  = o. 
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