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ABSTRACT 

Tile paper  discusses the  p rob lem of e s t ima t ing  the  mean of a long-tai led 
claim size d is t r ibu t ion  when the inves t iga tor ' s  knowledge of the  d is t r ibu t ion  
is only vague 

One method of deahng with this problem, the method developed by 
Jolmson and Hey, is examined and found to produce strongly biased esti- 
nlators  

The s i tua t ion  in which a su fhc ien t  s ta t is t ic  (but  no th ing  else) for the  claim 
size d is t r ibu t ion  is known is examined ,  and an a p p r o x i m a t e l y  unbiased  
es t imator  developed This es t imator  is subs tan t i a l ly  more efficient t h a n  the  
a r i thmet ic  mean in some cases. I t  appears  to be qui te  successful when  the  
su fhc ien t  s ta t is t ic  is real-valued.  I t  is of hmi t ed  use when the  suff icient  
s ta t i s t ic  is vector-valued.  

I .  THE PROBLEM OF LONG-TAILED CLAIM SIZE DISTRIBUTIONS 

For the purposes of this paper we can take a lo~zg-tailed distri- 
bulion to be one whose density converges to zero less rapidly than 
the simple exponential family. Such distributions occur relatively 
frequently in the field of nonlife insurance. They are particularly 
prevalent among the distributions of individual claim sizes in 
respect of fire policies and liability policies. 

Since the mean of a distribution is one of its most important  
propert ies--and indeed in the context of claim size distributions, 
usually the most important  p roper ty- - i t  is necessary that  one have 
as reliable a method as possible for the estimation of this parameter. 

In nonlife insurance this estimating problem can prove quite 
troublesome, because of the fact that standard statistical tech- 
niques are of limited applicability. This s tatement deserves some 
explanation particularly as the majority of this paper is concerned 
with methods which lie outside the scope of "s tandard"  methods. 

The statistician faced with the problem of estimating the mean 
of a long-tailed (or any other) distribution would begin by defining 
the family of likelihoods which are admissible as a representation 
of the distribution under consideration. He would then select 
estimates of the unknown parameters according to some opti- 
mization criterion, e.g. maximum likelihood, minimum-variance 
unbiasedness, etc. 
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The difficulty for the actuary involved with nonlife insurance 
arises at the very first stage, i.e. in deciding the admissible likelihood 
functions. In practice, he may have only the vaguest notion of the 
shape of the distribution. For example, he may be prepared to as- 
sert that it is within the exponential family of likelihoods. The 
exponential family is an extremely large one, so that although the 
requirement of delimiting the admissible likelihoods has been 
satisfied technically, the practical benefit of this stage of the 
procedure is doubtful. 

It  is basically for this reason that alternative methods of ap- 
proaching the estimation of mean claim size are necessary. Of 
course, one can estimate this parameter with the sample mean. 
This has the advantage of ensuring unbiasedness, but, as is well- 
known, the sample mean from some long-tailed distributions has 
rather a large variance. Since unbiasedness and small variance are 
properties which one would usually like an estinaator to possess 
simultaneously, the need for considering estimators other than the 
sample mean is immediate. 

2. TIlE JOIINSON-t-IEY 1V[ETHOD OF WEIGHTED AVERAGES 

Hey (I97O), concerned by the disturbance to the sample mean of 
claim sizes resulting from a few but substantial large claims, sug- 
gested that the difficulty might be alleviated by using a weighted  

average of the sample claim sizes, the weights tending to decrease 
with increasing claim size. This suggestion was followed up by 
Jolmson and Hey (1972). 

To state this in mathematical terms, they were concerned that 
the sample mean claim size, though an unbiased estimator of the 
true mean, had too large a variance. Their solution was to estimate 
the true mean claim size m by means of the statistic: 

n 

71/I . = ( ~.~ S ( C i ) / J l . )  X G, (I) 
i I 

where 

C1, C.o . . . .  , C.,~ are the sample values of claim size: 
S(.) is a weight function which is nondccreasing but whose 
first derivative is nonincreasing; 
G is a "grossing-up factor" which is so chosen that 
M is an unbiased estimate of m. 
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3. PURPOSE OF THE PAPER 

The purpose of the present  paper  ~s three-fold:  

(i) to indicate certain dangers arising from use of the Johnson-  
He y  ( I -H)  method;  

(ii) to point  out tha t  there are sound theoretical  reasons for 
introducing the t ransformat ion S; 

(iii) to invest igate  ways other  than the J - H  method  of producing 
an est imate of m from the statistics Ct, . • . ,  C~. 

4. SOME COMMENTS ON TIIE JOHNSON-HEY METHOI) 

It  is clear from a brief scrut iny of fo lmula  (I) tha t  the 1)rob- 
lematic factor is G. Hey  himself 097  o, p. 8I) noted tha t  "we have 
no knowledge of the sensi t ivi ty of the grossing-up factor" .  Other  
difficulties arising from the manner  in which G is es t imated arc, 
ment ioned by Johnson and Hey (1972, pp. 227-8 ). 

In this section, however,  we shall ignore these difficulties by 
assuming that ,  for a single given m, it is possible to choose G 
exact ly  correctly.  We shall see that  difficulties still arise in the use 
of es t imator  M. 

Let  us deal with nonzero claims only and assume that  their 
sizes are sampled from a lognormal distribution.  It is to be em- 
phasised that  this part icular  distr ibution has been chosen for 
i l lustrat ive purposes only, though,  as Hey  (197o, pp. 62-3) and 
others remark,  it is not far from the t ru th  for some classes of motor  
insurance. 

Thus,  we assume that  C~, C % . . . ,  C~ is a random saml)le in 
which each log Ci has a normal distr ibution with mean ~ and 
variance ~2. Then, as in well-known (see e g. Kendall  and Stuar t ,  
I96I,  p. 68), 

m = E[Ci] = exp {g. + ~ c~}. (2) 
Also n 

E[ Z log Cd,~] = ~. (3) 
i .  I 

Thus, if we choose S( . )  as log (.), then it follows from (I), (2) 
and (3) that ,  for sl:/" to be unbiased, it is necessary that  

= ~- ,  exp {~ + ~ ~}. (4) 

A difficulty arises here due to tile fact tha t  G is dependent  (often 
quite strongly) on ~ and ~ .  This means that ,  if G is appropr ia te  to 
some par t icular  p. and ~2, it may  not be appropr ia te  to softie o ther  
choice of these parameters .  This is the reason for the l)henomcnon 
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R i s k  
Care -  V c2 exp{tz + .,.,2} * s a m p l e  s a m p l e  s a m p l e  s a m p l e  
g o r y  s ize  =- i o s .  = 5 ° s. = 250 s. -- i o  

1 4.000 t 2o 99 94 99 99 I28  
2 4 .250  1 . i o  122 t27 123 t 2o  t37  
3 4.500 I o o  t48 t39  I46  ~49 144 
4 4.625 o 9 5  164 I64  ~62 t65  148 
5 4.75 o o.9o I8L ~88 t 7 9  I83 154 

* s a m p l e  s ize  m e a c h  r i s k  c a t e g o r y  

noted by Johnson and Hey  (1972, p. 228) tha t  G appears to vary  
between different risk categories. 

In order to appreciate  the ex ten t  of the difficulty, it is necessary 
to unders tand  tha t  the f -H  method  provides tha t  G be calculated 
from the aggregation of data from all risk categories in such a way 
that  the est imate  of m for the risk ca tegory of an individual chosen 
at random from the whole portfolio is unbiased. Note  that ,  despite 
this type  of unbiasedness, the resulting est imators  may  be biased in 
respect of each separate  risk category,  and the bias will of course be 
worse for the more ex t reme categories. 

A number  of simulations were carried out  to i l lustrate this point  
and some of the results are given in Tables i and 2. The sampling 
distr ibution for claim size was taken to be lognormal with para- 
meters ~ and ~2, though,  as is fairly obvious, the point  being il- 
lus t ra ted here is valid for o ther  distr ibutions too. This was con- 
f i rmed by other  simulations whose results are not reproduced here. 
The portfolio was assumed to consist of five different risk cate- 
gories. In each case S( . )  was taken as log (-). 

T A B L E  I 

T r u e  M e a n  A r i t h m e t i c  M e a n  ,]-H e s t i m a t e  

T r u e  M e a n  R i s k  
C a t e -  
g o r y  

1 

2 
4.48 ] o o  145 
4-49 l . oo  I47  

3 4.5 ° I o o  I48 
4 4-5 t I o o  ~ 50 
5 4.52 I o o  t 51 

, s a m p l e  ~tze m e a c h  r i s k  

s a m p l e  s a m p l e  
s. -= 5 ° s - 250 

z28 r3o 
136 r38 
I44  146 
I49  15o 
I52 154 

T A B L E  2 

A r i t h m e t m  M e a n  J-ft e s t m l a t e  

~ae} * s a m p l e  s a m p l e  s a m p l e  s a m p l e  s a m p l e  s a m p l e  

s tze  = ] o  s = 5 ° s. - :  250 s. = [o s = 5 ° s. = 250 

149 ~47 I47 15] I49 I48  
147 147 I48  15o 149 I48  
I57  t5o  148 I53  149 I49  
152 z5o 151 152 i 4 9  z49 
152 I 5 [  I5 l  15I 150 149 

c a t e g o r y  

The main effect of the J-H method  appears clearly in Table z 
where it can be seen that ,  a l though the t rue mean varies over risk 
categories by a factor  of z.82, the f -H  estimates va ry  by  a factor of 
the order  of only z.2 approximate ly .  Generally, the J '-H est imates 
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for the various risk categories are "squashed together" ,  with high- 
risk categories underest imated and low-risk categories overesti- 
mated.  

This "squashedness"  of the J-H estimates has obvious impli- 
cations for tariff-splitting. 

The same phenomenon becomes apparent  upon a scrutiny of 
Johnson and Hey 's  own results presented on p. 227 of their paper. 
However, it is not quite so obvious there because their simulated 
portfolio is rather  like tha t  represented in Table 2 of this paper, i.e. 
risk categories are all quite close together. 

Thus, as the portfolio becomes more homogeneous, so is the bias 
in the J - H  method reduced. But  then so also is the need for rec- 
ognizing different risk categories. Regret tably,  we must  conclude 
tha t  the .f-H method  at ta ins  reasonable effecti,.,eness only when it 
is least needed. 

5. THEORETICAl. JUSTIFICATION FOR WEIGHTED AVERAGE 

Let  us consider the family of likelihoods, dependent  upon some 
parameter  0, which have the form: 

f(x I 0) = c(0) exp [ X  j(0) tj(x)]. (5) 
} .I 

This is the so-called exponential family of likelihoods. I t  is very 
rich in the sense that ,  for most of our practically occurring dis- 
tributions, we can find a member  of the family which will serve as a 
good approximation.  

Moreover, the exponential  family has a number  of a t t ract ive  
properties which make it relatively easy to work with. In part icular  
(see e.g. Ferguson (I967, pp. 125-37)): 

n 11 

I. The statistic T = ( X gi(X d . . . . .  X tp(X¢))is a sufficient 
I i , . 1  t i - , l  

statistic, i.e. contains just  as much information as does the 
whole vector of observations X~ . . . .  , Xn in a sample of size n. 

2. The likelihood of .T is also a member  of the exponential  
family, with the same nl 's as in f(x I 0). 

3- Under rather  weak conditions which will usually be met  by an 
insurance portfolio, it is possible to conclude that ,  if g(T) is 
an unbiased est imator of a function of 0, then it has the smal- 
lest variance among all unbiased estimators. 

Since the object of Johnson and Hey 's  quest was stabil i ty of the 
estimator,  Proper ty  3 is part icular ly suggestive, al though it must  
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be ment ioned tha t  this p roper ty  does not preclude the existence of 
more stable but biased estimators.  

Now if a claim size distr ibution is a member  of the exponent ia l  
family, then, by P rope r ty  1, 

n I, 

T = (  z h(Cd . . . . .  x 6(cd)  
~ o l  I , I  

is a sufficient statistic. We thus have in P rope r ty  3 a theoretical  
justification for basing our es t imate  of 0 on the average (or, equi- 
valently,  the sum) of transformed claim sizes. Fur thermore ,  the 
t ransformat ion to be used is by  no means arbi t rary ,  but  is deter- 
mined by (5). 

The usefulness of this observat ion is seen fully when viewed 
against the background of the ac tuary ' s  vague knowledge of the 
shape of the distribution,  as described in Section I. If the si tuat ion 
is slightly be t te r  than described there  and the ac tuary  is willing 
to assert tha t  p = I and h( . )  = log (.), thcn from this none too 
definitive assertion, we may deduce that  0 should be es t imated by  

n 

some function of E log Cl. 
l 1 

6. AN EXAMPLE OF THE USE OF TRANSFORMED CLAIM SIZES 

Suppose tha t  C has a lognormal distr ibution with parameter  
0 = (a, a2), then 

f ( C  I o) = ( V~7 ~ c)  , exp [ - -  (log C - -  ~)~/2.~] 

= c(O) h(C) exp [~t(O) It(C) + ~2(0) &(C)], 

C ( 0 )  = ( l/2"l ' l: ~ )  - 1  exp [ - -  ~212~2], 

h(C) = C- , .  
~.(0) = ~1~. t,(C) = log C. 

~2(0) = - -  z/2a,, h(C) = ( l o g  C) .. 

Thus we lose no information from our claim size observations if 
we reduce them to the two values, 

I .I. " 
2", --  E log C~ and 2"~ -- E (log C~) °" - -  .T~. 

I t  is not immedia te ly  clear how an unbiased es t imator  is to be 
const ructed  from Tt and Te. However ,  in the case of the lognormal 
distr ibution,  it was shown by F inney  (1941 ) tha t  an unbiased 
es t imator  of E[C] is 

cxp (T,) g(~ T=), (6) 
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where 

n- I x2 (n -- i)2 x~ 

~(x)= ~ +x+ ~ + ~ 2! + (.p~ + ~ ) (~ + 3) 3! + .... (7) 

For large ,n,, g(x) does not differ by too much from e z, so that (6) 
becomes apwoximately : 

n 

{ l-t Cd~/- exp [~ 7"0]. (8) 
'i-I 

This is approximately unbiased, and so, by Propcrty 3 above, 
has small variance. 

We have thus constructed an unbiased est imator with small 
variance in terms of t ransformed claim size, where the trans- 
formation is : 

c ~ , -~ ,~  (log c ,  (log c)~). 

7- FURTHER I)EVELOPMENT OF THE USE OF TRANSFORMED CLAIM 

SIZES 

I t  is apparent  tha t  the method  used in the previous section for 
est imating E[C] when C is lognormally distr ibuted differs con- 
siderably from the J - H  method.  It was also pointed out that  the 
methods used there lead to minimum-variance unbiased estimators. 

Unfor tunate ly ,  however, the ac tuary  m a y  not be in a position 
to make as strong an assertion as that  claim size is lognormally 
distributed. Possibly the strongest assertion he can make with any  
confidence is tha t  claim sizes, after some prescribed t ransformat ion 
(e.g. log) are roughly exponentialJy distributed. This really amounts  
to asserting something like the order of convergence of the prob- 
abili ty densi ty of claim size. 

Under these circumstances, it is natural,  to seek some extension 
of the method used in Section 6. This aim is pursued in this section, 
but it should be s tated at  the outset  tha t  the success achieved in 
this direction is limited, and perhaps the main result emerging 
froin the s tudy  is that ,  when knowledge of the claim size distri- 
bution is as vague as above, the simple ar i thmctic  mean is sur- 
prisingly efficient. 

Let  us suppose that  the sample of claim sizes, Ca, C~, . . . ,  C,,, is 
drawn from a distribution belonging to the exponential  family with 
h a one-to-one transform. Henceforth we denote h by just t. The 
statistic, 

I 
Tn-  Z t(C,), (9) 

n t , , l  
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is a minimum-var iance  unbiased es t imator  of E[t(C)], by Propert ies  
2 and 3 given in Section 5. I t  is therefore  reasonable to assume 
that  the statist ic t - ' (Tn) ,  af ter  approximate  correction for bias 
will provide an es t imator  of E[C] of relat ively small variance. 

Let  us write 

F rom Section 2, 

= E[t(C)], a~- = Var [t(C)]. 

m = E [ C ] .  

Now, we know tha t  

EEt - = E [ t ,  l ( t ,  ( C ) ) ]  = m .  

We therefore need to es t imate  the difference, 

E [ t -  *(Tn)] - -  E [ t -  1(T,)], 

occasioned by increase of sample size from I to n. ] 'his change 
represents the bias in l - l (Tn)  as an es t imator  of m. 

Let  us now write Z ,  for the s tandardized  version of Tn, i.e. 

Tn - -  

Let  the d.f. of Zn be expanded  in an Edgewor th  series, 

(z), 
I}" ,o  

where, as usual, (1)(x) is the k-th der ivat ive  of the s tandard  normal 
d.f. Then 

E [ t - t ( r n )  ] = E c~ E (k) [t- ' (n - ½ . Z  n + ~)], ( I I )  

where E (~) [function of Zn] denotes the expected value of the 
a rgument  on the assumption tha t  Zn has "dis t r ibut ion funct ion"  
(b (k). 

Now, if D denotes the differentiat ion operator ,  repeated  in- 
tegrat ion by par ts  gives 

E(~) It -' ( -0+n-~  a Z n ) ] = n  -x/°- (----a)# E(°) [Dkt-~(B+n -½ *Zn)], (12) 

under  obvious regular i ty  conditions on the functions l - t ,  Dr-', 
D2t- 1, etc. 

Thus,  by (II)  and (I2), 

E[t-l(Tn)] = X c~ n -kl2 (--a)tcE(°) [Dkt -I ('~ + n -½ aZn) ]. (13) 
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I t  is apparent  from (Io) and (I3) tha t  

E[t-~(r.)]  - ,,~ - -  z (--~)~ { 4 E  (°~ [D~t -1 (7 + oz)] 
k 0 

- -  n-~%~ E I°)[D~t-1(.~ + f~ -~  ~Z)]}, 

where the subscripts on Z have been suppressed since they  are 
made irrelevant by  the distributional assumptions implied by 
E(o). Hence an unbiased est imator of m is 

U,, = t - '  (T.) + E (----a) k {c~ E (°) [DXt -t ('q + aZ)] 
k - 8  

- -  n -k;~ c~ E (°) [ b k t  -~ (7 + n-V~ ~Z)]},  (~4) 

Now it  Is known that 

-'A. 4 '  = I ,  cl' = c&' = o,  4 '  = - -  ~ n y , ,  c2 = ~ . - 1 y ~ ,  

where yt and "t-" are the coefficients of skewness and excess re- 
spectively of Tn. Moreover, 

y l ~  3 = K 3 ,  

where Kj is the j - th  cumulant  of t(C). 

Using these facts, we can simplify (14) somewhat  to give: 

U , ,  = t -  ~ ( T ~ )  

+ {E<0) [t-1 (7 + ~Z)] _E¢o~ [t-~ (7 + --~: ~Z)]} 

+ ~K3{E(Ol [D3t -~ (~ + aZ)] - - n - 2 E ( ° )  [D3t -~ ('~ + n-Y= aZ)]} 

+ ~ 1(4 {E (o) [D4i -1 (7  + a Z ) ]  - - ' ~  - 3 E (o) [D41-t (~l + n-  K, aZ)] } 

. . . .  

Since we do not have true values of V-, g, Kn and 1(4, we replace 
them by estimates. The obvious choices are (see Cramer, 1946, 

352) 
/ 

n 

n - -  I a2, 

K 3  - ~  '//2'2 

( .  - -  I )  ( . - -  2) "~' 

/~4 = (n - -  I )  ( '~l,-- 2) ( ~ t - -  3) (n + I )  ~ - -  3(u - - -  I )  , 

where a~ is the v-th sample central  moment  of t(C). 
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Thus  we finally adop t  as our es t imator  of ¢'a the statl~tic: 

- - l  ,(T.) 

+ it-  , ( r , ,  + taz)  - -  ft- ,(T,, + ' / ;  aZ)]}  
• + ~Ka {E (°) IDa/, -1 (T,, -q- aZ) ] - - ,z-2E(°)  [mal ' (.7"~ -4- ',*-V... aZ)]} 
+ ~4 I¢4{E(o) Cl)q 1 (Tn + aZ)]- - ,z-aE (°) [D4I - '  (T,, + n-'/-.aZ)]} 
+ . . . .  

I t  is of course appa ren t  tha t  In is not ill general  unbiased. How- 
ever, the inclusion of tile correct ive  t e rms  should remove  the 
ma jo r i t y  of the bias which would be present  if t-l(T~,) alone were 
taken as estinaator of m. 

8. N U M E R I C A L  R E S U L T S  

Although the deve lopmen t  of 1~ as an estinaator of m began with 
considerat ions  which rested on sound theory  (see Section 5), a 
number  of subsequen t  app rox i m a t i ons  have  led to the position irl 
which the bias and  s tab i l i ty  of ~ are not ent i rely clear. For  this 
reason, a n u m b e r  of s imulat ions  were carr ied out  in order to com- 

pare the e s t ima to r  ~ir with the simple a r i thmet ic  mean  for bias and  
s tabi l i ty .  The  mos t  in format ive  results  are summar ized  in Tables  
3 and  4 below. 

In  Table  3 the sampl ing  dis t r ibut ion for claim size was t aken  to 
be log-Laplacian,  i.e. log C(= L, say) was taken  to have  a likelihood 
function,  dependen t  upon p a r a m e t e r  k, equal  to 

~ k e x p F - - k  ! L l], - - c o  < L < co. 

T A B L E  3 

R i sk  /,' T r u e  Meal1 A r i t h m e t i c  Mean  7~ 

Ca te -  h=/(leL- l) s a m p l e  s a m p l e  s a m p l e  s a m p l e  s a m p l e  s a m p l e  
go ry  *s~ze --  ~o size = 5o size =: 250 size - -  io  size = 5 ° size ~ 250 

I i.  IO 5.8 2 3(4.2) 3.7(4 ° I) 4 °(27.5) 6.3(884) 3 . 5 0 0  2) 3.3(I  8) 
2 t ,3o 2. 4 2.6(46.8 ) 2 2(1 7) 2.4(l  4) 5 t(679) 2.2(I,4) 2.2(o.2) 
3 I 49 I 8 1.7(1.8 ) I 8(1 o) I 8(0 t) 2 .1( to .3)  1.8(o.8) I 7(o.1) 
4 t '70  t 5 I 5(0 9) 1.6(O 3) I-5(°.O2) 1.7(3 9) 1.6(O.2) 1.5(O.O'2 ) 
.5 I 89 1. 4 1,4(o .3)  t . 4 (o  1) 1.4(o.o22 ) 1 .5(o .5)  I 4(0 .3)  1 . 4 ( o . o l  ) 

*~amt)le size in each  r isk  c a t e g o r y  

In Table  4, the salnpling dis t r ibut ion was taken  to be lognonnal  
as in Tables  I and 2. As ill Tables  I and  2, the portfol io is assumed 
to consist of five risk categories,  and  t(.) is t aken  to be log (.). 
The  figures for " a r i t hme t i c  mean" and  ~ are s imulated values of 
these es t imators .  The figures in parentheses  are the corresponding 
s imula ted  values of the var iances  of the es t imates .  
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R,.nk 
]ate- V- e2 
gory 

I 4 0 0 0  l 2 0  

2 4'250 1 [ 0 

3 ,I 5 °0 t o o  
4 4 625 o 95 
5 4.75 ° o 90 

True Mean 

99 
1 2 2  

[4S 
[64 
[81 

sample 
* q l Z e  ~ 1 0  

94(18oo) 
127( 3 too) 
t 39(3200) 
164(5600 ) 
188(5900) 

TABLE 4 

Ari thmetm Mean Fz 

sample sample sample sample 
a , z e = 5  ° s i z e = 2 5 o  s i z e = i o  s i z e = 5  ° 

99(55 o) 1 oo(I lO) ,)8(2200) io i  (63o) 
123(7oo ) 12o(1oo) 135(51oo ) 124(75o ) 
146(75o) t49([6o) 143(4too) I47(8oo) 
162(74o) 165(e5o) t 73([oooo) 163(78o) 
1 79(87o ) t83(t4o ) 105(96oo ) 181(93 o) 

sample stze in each risk category 

sample 
size = 250 

I 0 0 ( I  I 0 )  

I2~(1~o) 
149(16o) 
165(15o) 
183(140) 

9' CONCLUSIONS 

The theme of the paper has been the estimation of mean claim 
size in the light of only wtgue iuformation about the claim size 
distribution. \'Vhen this information includes knowledge of a suf- 
ficient statistic, it is tempting to base the estimator on this statistic. 

One such estilnator is provided by the Johnson-Hey method, but 
Section 4, and particularly Table z therein, reveals that  there are 
quite common situations in which this estilnator gives poor results. 

The estimator ~; developed in Section 7 attempts to improve on 
the J -H method. Indeed, Table 3 indicates that  for some long- 
tailed claim size distributions, this estimator is largely unbiased 
and achieves a significant reduction in variance as compared with 
a simple arithmetic mean. The longer the tail, the larger is the 
reduction in variance. 

The usefulness of ~n as an estimator is limited, however, as is 
evidenced 1)y Table 4 where the variance of ~ is slightly greater 
than the variance of the arithmetic mean. The reason for this is, 
presumably, that the sufficient statistic for the distribution involved 
here is an ordered pair rather than a single real value (as in the case 
of Table 3), and in such a case the transformation (9) makes only 
partial use of our knowledge of the sufficient statistic. 

Perhaps the estimator ~ can be refined to make fuller use of the 
sufficient statistic ? 

Perhaps also the main conclusion to be drawn from this investiga- 
tion is that, in the possession of only the vague knowledge outlined 
in Section I, it is often very difficult to improve upon the simple 
arithmetic mean as an estimator of mean claim size. 
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