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I NTROD UCTION 

When the distribution of the number of claims in an interval of 
time of length t is mixed Poisson and the moments of the inde- 
pendent distribution of individual claim amounts are known, the 
moments of the distribution of aggregate claims through el)och l 
can be calculated (O. Lundberg, 194o, ch. V[). Several approxmla- 
tions to the corresponding distribution function, .F(., t), are 
available (see, e.g., Seal, t969, ch. 2) and, in particular, a simple 
gamma (Pearson Type IIl) based on the first three moments has 
proved definitely superior to the widely accepted "Normal Power" 
approximation (Seal, z976 ). Briefly, 

I ~+zV~ 
F(t + I b, + 14) 

where the P-notation for the incomplete gamma ratio is now 
standard and ~, a function of t, is to be found from 

4 4 
2 3 ~ 2 

the kappas being the cumulants of F( . ,  t). An excellent table of 
the incomplete gamma ratio is that  of Khamis (1965). 

The problem that is solved in this paper is the production of an 
approxilnation to U(w, t), the probability of non-ruin in an interval 
of time of length t, by using the above mentioned gamma ap- 
proximation to F( . ,  t). 

THE P R O B A B I L I T Y  O F  N O N - R U I N  I N  A PERIOD OF LENGTH T 

In Seal (1974) it was shown that when the distribution of the 
number of claims in an arbitrary interval of time is generated by 
a stationary point process the probability of non-ruin in an in- 
terval which the insurance company enters with a risk-reserve of 
w and operates throughout with a risk-premium loading of -q, is 
U(w, l) given by 

t 

U(w, ~) = F(w + r~t, l) -- =~ I U(o, ~) f ( w  + r:,l -- .r, l -- .r) d.~ (2) 
o 
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where rtt is the risk-loaded pure premium rate and f ( . ,  t) is the 
densi ty corresponding to F( . ,  t). This is the formula which we will 
use for our numerical  approximat ions.  

The only s ta t ionary  point  processes tha t  have been utilized by 
actuaries in practical  applications are those that  lead to ordinary 
or mixed Poisson distr ibutions (0. Lundberg,  l.c.) and in these 
circumstances the Prabhu-Benes-Tak~.cs formula (Seal, I974) 

U(o, ~) = ~,~ [ F(y, t) ay (3) 

m a y  be used to produce the first factor  in the integrand of (2). 

APPLICATION OF RELATION (I) 

Considering (I) as applied to (2) we note tha t  if the distr ibution 
of the numher  of claims is Poisson with mean t and the densi ty  of 
individual claim amounts ,  b(.), has mean 

= I S0 tha t  ~ = I + Q, F ( w  + I +--~. t, t) ~ P(~ ,  ~. + z 

where 

4 ×~ 4(@@ 4lP.~ =_ ~(t) - , - 
×~ ( 0 ~ )  ~ -  p~ 

p-. and p ,  being the second and third moments  about  zero of the 
b( . )-distribution of indiviclual claim amounts  (Seal, 1969, 2.41 ). In  
order to evaluate  z we have 

t + z l / 2~_=  t + z l / ( 0 2 )  = w + (I + -~)t 

so tha t  

z = (w + -,~t) ( O o J -  Y~- 

Fur ther ,  by differentiat ion of (t) with respect to z, 

+ e x p [ -  + (4) 

where 

and, when T + z]/×~_ = w + (I + ~) .~, 

z = ( w + ~ ) ( ~ p 2 ) -  ~-' o < ~ < t  
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Finally, by (3), 

I (~+~)T 
g ( o ,  ,1 - (~ + ~),: ,,f f ( y , - : )  dy 

l / ~  ~,tv~ 
- f F(~  + z I/G, . )  dz 

(~ + "~)': _:f~,v P(o~, o~ + z l/~) dz by (~) 

f P(o~, u) du 
(~ + "~)~. ~_,v~,~.~ 

( I  -I- "q)"r~ ol x~-lc-Xd": 
Ct --  T [~ 

I ct ~ nvi3 

o 

I 

- -  (~ - -  ~ )  P(~ ,  ~ - -  ,~)  + ~ P ( ~  + z, ~ - -  -~)] (5) 

where 

= I/[~TE) a n d  ~ = ~( , ) .  

A remarkable feature of the approximation (I) is that  only the 
first three moments of the distribution of individual claim anaounts 
are involved. If, therefore, a two-parameter distribution is success- 
fully fitted to the observational distribution of claim amounts by 
means of the mean and variance it implies that the appropriateness 
of the chosen functional form has been deterlnined by the ap- 
proximate equivalence of the third moments of the observational 
and theoretical distributions of individual claims. For example, if 
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the gamma distr ibution ( johnson & Kotz,  I97O, ch. 17) were 
f i t ted the third central  momen t  (or cumulant)  would necessarily 
be twice the variance. 

Now only two functional  forms for b(.), the densi ty function of 
individual claim amounts ,  result in explicit  results for F(x, t) when 
the distr ibution of the nurnber of claims in an interval  of length t is 
Poisson with mean t (Seal, 1969, p. 3 z, referring to Hadwiger,  
1942 ). These are the gamma and the inverse Gaussian distr ibutions 
and it would be convenient  to use one or other  of these forms for 
b(.) so tha t  direct checks may  be made of our numerical  approx-  
imations using (I). 

THE INVERSE GAUSSIAN DISTRIBUTION 

According to Seal (1969 , p. 30) by  far the greatest  number  of 
graduat ions  of observed individual claim amounts  have been based 
on the lognormal distr ibution,  namely  where the logari thm of the 
claim amount  (the la t ter  possibly increased or decreased by some 
constant)  has a Normal  distr ibution.  

On the other  hand the inverse Gaussian densi ty  (Tweedie, 1957) 

[ 1 b(x) = \2~xa /  exp - -  x > 0 ,  g. > 0 ,  X > 0  (6) 
2 g}x J 

which has the distr ibution function 

x 

as shown by Shuster  (1968) (but misprinted in Johnson & Kotz,  
197o ), where O(-) is the s tandardized Normal  distr ibution function, 
can be made  to s ta r t  at  the same claim amount  (which we take as 
the origin) as the lognormal and be given the same mean ~ and 
variance ~3/X. Although the inverse  Gaussian has never  been used 
to gradua te  a set of individual  claim amounts  it may  produce 
near ly  the same yt-value as tha t  possessed by  the corresponding 
lognormal distr ibution and would then lead to al)proximately the 
same distr ibution of aggregate claims as l)rovided by (I). 

When individual  claims are dis t r ibuted according to the inverse 
Gaussian, 

f(x,  t) = e- t  ~ \2=xa/ e x p  - -  2M2£ - ]  (8) 
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where A = k2X and M = kp., and from (6) and (7) 

F ( x , l )  = e - t  + e '. ~ ¢ " el--~-- + e.~AIM 
J, I 

I - -  (1) X " .M- -~- I (9) 

We mention tha t  13(s), the Laplace transform of (6), is given by 

' + - 7 - /  I 

C HOIC E  OF P A R A M E T E R S  

Upwards of 5 ° actual individual claim distributions have been 
f i t ted by the lognormal (Seal, 1969, p. 30). The Tl-values for 45 
of these were calculated *, using the formulas provided by .Johnson 
& Kotz (197o) applicable to the constants of the linear transform, 
and compared with the corresponding yl 's calculated for (6) using 
the calculated mean and variance. 60% of the y, pairs were ap- 
l)roximately equal implying tha t  tile lognormal and inverse Gaus- 
sian distributions would produce nearly the same value for (I). 
A m o n g  tile 27 distributions was Cannella's (1963) costs of 124, 279 
"specia l ty"  pharmaceutical  prescriptions in tile province of Rome 
during 196o. Tile two yl 's were '355 and "354, respectively, but  the 
mean and variance of the distribution were s ta ted to be 786.4 and 
28o582.o 9 after lognormal fitting. Unfor tuna te ly  this mean and 
variance produce yl 's  of 2.326 and 2.o21, respectively, for the 
lognormal and inverse Gaussian indicating that ,  in fact, tile lat ter  
distr ibution is not in this case a very good approximation to the 
lognormal. This error of Cannella was not discovered until  too late 
and we had already chosen p. = I and X = (786.4)~/28o582.o9 = 
2.2o408 for the inverse Gaussian. In order to apply this to (1) we 
have (Tweedie, loc. cir.) po = p 2 +  ~ Z ) - l =  1.4537o4 and ~bz = 
p.z + 3pAX -t + 3p.sX -"- = 2.978654 so that  ~(t) = 1.384993 t. 

R E S U L T S  

The following Table compares the results obtained for f ( I o  + 
t, t) by (4) and (8) and for F(IO + t, t) by (I) and (9). In the first 
set of comparisons the gamma approximation is only in error by  a 
few units in tile fifth decimal place. In tile second set the galnma 

* I t  is n o t  a h v a y s  e a s y  to  d e c i d e  w h e t h e r  a n  a u t h o r  is u s i n g  n a t u r a l  or  
c o m m o n  l o g a r i t h m s  for  h i s  t r a n s f o r m .  
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a p l ) r o x i m a t i o n  is neve r  more  in error  t h a n  by  two un i t s  in the  

fou r th  dec imal  place. These  are ve ry  good resul ts .  

TABLE I 

Values of f ( Io  + t, t), F(.ro + t, t) and U(zo, t) 

t f ( l o  k t, t) F ( m  + t, t) 

(4) (8) (t) (9) 

I .oooo4 .00003 .99996 -99997 
2 .ooo19 .oooi6 .99978 .99983 
3 .ooo49 .ooo45 .99937 .99945 
4 .00095 .00090 .99866 .99879 
5 .00154 .00150 .99764 ~077~ 

6 .00226 .00222 .9963 .9965 
7 .00305 -00303 -9947 .9948 
8 .oo39o .00390 9927 .992t) 
9 .OO479 .00479 .99o6 .99o8 

to .00569 .00570 .9882 .9884 

tl  .00658 .00661 .9857 .9858 
i2 .00747 .00750 .9830 .983 t 
t 3 .00833 .00837 .98Ol .9803 
14 .oo916 .00921 .9772 .9774 
15 .00997 .OLOO2 9742 .9744 

16 .01074 .01o79 .9711 9713 
~7 01147 .01153 .9680 .9682 
18 .o12I 7 .oI223 .9649 .965I 
19 .01283 .0t289 .9618 .9619 
2o .o1346 .o1352 .9586 .9588 

21 .or4o6 .o1411 .9554 .9556 
22 .o1462 oi467 .9523 .9524 
23 .o1515 .0152o .9491 .9493 
24 .o1564 .o157o .9460 .9462 
25 .01611 .ol6T 7 .0420 .943 t 

U(io, t) 
metholl 

(1) [0 (5) of 1974 
paper 

• 9999 i.oooo 
9997 t.oooo 
999t .9993 
998o .9981 
9964 -9964 

9943 .9943 
99~6 .9915 

.q884 .9883 
9847 .9846 

.0807 .9804 

0702 -9750 
.9715 .971J 
.9665 .966o 
.9613 .96o 7 
• 9559 .9552 

• 95o3 .9495 
.9447 -9438 
• 9369 .938o 
• 9331 .9321 
.9273 .9262 

.9214 .9202 
9155 .9143 

• qo97 .9083 
.9038 .9024 
.8980 .8965 

The  a p p r o x i m a t e  va lues  of f ,  F a n d  U(o, t) (by re la t ion  (5)) were 

t h e n  i n se r t ed  in to  (2) with w = IO a n d  .q = o us ing  r epea t ed  

S impson  at  u n i t  s teps  in t for the  va lue  of tile in tegra l .  \~qmn t was 

odd  the  las t  th ree  pane l s  were a p p r o x i m a t e d  b y  the  t h ree -e igh ths  

ru le ;  U(o, I) was o b t a i n e d  b y  the  t rapezoida l .  There  is no " exac t "  
resul t  for U( io ,  t) b u t  the  Lap lace  t r a n s f o r m  invers ion  m e t h o d s  

descr ibed  in Seal (1974) were used to p roduce  resul t s  s u p p o s e d l y  

correct  to th ree  decimals .  These,  t oge the r  wi th  our  new approx -  

i m a t i o n s  a p p e a r  in the  las t  two colurl lns  of the  Table .  The  new 

m e t h o d  appea r s  to be p r o d u c i n g  va lues  of U ( i o ,  t) " n e a r l y "  cor- 

rect  to th ree  decimals .  
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CONCLUSION 

The proposed new approximation to U(w, l) using the gamma 
approximation to F(x, t) produces reasonably accurate results. Is 
it easy to apply ? The writer confessed in his 1974 paper that steps 
in t at greater intervals than unity tended to harm the efficiency of 
the approximation to the integral in (2). For example, by using 
steps of five instead of umty in (2) we obtained, with the new ap- 
proximations, the following values which are barely correct to two 

U(Io, t) 
t Uni t  steps QutJ~quemuai 

(Table I) steps 

.5 .996 .994 
1o .981 • 977 
I 5 • 956 947 
2o .927 918 
z 5 .898 .887 

decimals. Nevertheless this may be considered sufficient if a 
computer is not being used and desk calculations are the order of 
the day. 
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