RISK BEARING AND THE INSURANCE MARKET

Haxs BUnLyvany AND Hans U GERBER

I. INTRODUCTION

Stimulated by Karl Borch’s paper (3] we have tried to analyze
the paper written by K. Arrow [1] in 1953. Contrary to Borch’'s
opinion we have some doubt whether this work contains a theory
of insurance as a special case. Nevertheless, it has inspired us to this
note, which tries to develop a somewhat more realistic model. As
a matter of fact, our development is more in the spirit of another
paper by Arrow [2]. We, however, have chosen a more general
setup, and we believe that our treatment is also different.

2. ARROW’S MODEL (INTERPRETED T'REELY)

Arrow considers an economv of exchange with C commodities
(labelled ¢ = 1, ..., C) and a “world” that will be in one of S dif-
ferent states (s =1, ..., S). The problem is to distribute the total
supply of cach commodity ¢ in state s among I individuals in a
Pareto-optimal fashion. According to a standard result in economic
equilibrium theory every Parcto-optimal allocation can be realized
by a system of perfectly competitive markets. The latter means
that there are prices ps. (the price for a unit of commodity ¢ 1f
state s occurs) and that each individual has a certain amount of
money, which he then will spend to maximize his own utility. The
beauty of this approach lies in its simplicity: Each individual has
his own maximization problem (irrespective of the others). Thus it
is enough to focus our attention on a particular individual. T.ct y
denote his spendable money, let vy > o denote the amount of
commodily ¢ contingent to the occurrence of state s purchased, and
let V(xn, ..., xs¢) denote the “value” (or utility) of this decision.

Then the problem is to

maximize V{xn, ..., vse)
s [
subject to ¥ I g Pae < . (1)

c 1

Arrow’s idea is to replace this market by a two stage market.
Let ¢1 >0, ..., 95 >0 be arbitrary numbers with ¢ 4+ ... +
+ gs = 1. Here gy is the price of a security (“policy” in insurance
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terminology) of type s, which pays one monetary unit if state s
occurs and nothing otherwise. Let pg be the price of commodity
¢ when state s has occurred. For consistency set

Pse = ﬁsc/(/s- (2)

The two decisions are now:

a) choice of the securities. Buy vs > o sccuritics of type s{s =1,
., S)such that 2 ysgs < .

b) Purchase of comumodities aftcr the state s has occurred. Let xg,
denote the amount of commodity ¢ that is purchased after the state
,,.

S

s has occurred. We must have X xgpee <vs+v— 2 vy,

c 1 i1

Again, we make our decision in a) and b) to maximize the resulting
utility. Obviously, this two stage problem is equivalent to the orig-
inal problem (1), equivalence mcaning that the same commodity
bundles can be bought with the same original moncy amount.

FFrom now on let us assume that the function V is of the form
{according to the axioms of vonNcumann-Morgenstern)

V(.’\?u, A xsc) = X Ts Vs(xsl, ey xsc). (3)

Here =y is the individual’s subjective probability for state s, and
Vs is the utility function that applies when state s occurs. Let

Us(w) = maximum Vg(xg, ..., %s¢)
C
subject to x5 2= 0, L %gp Psc < W. (4)

€=l

Thus Us(w) is the utility of w monctary units in state s, With
these definitions and assumptions problem a) (optimal choice of
the securities) can be isolated as follows:

maximize L wsUs(y + v5 — Z y141)
1 {1

subject to vy = 0, X y,0; < v. (5)

i1

3. THrE ProsrLeEMS oF OpTiMAL COVERAGE

We shall study in detail the solutions of problems of the type (5).
Our assumptions are as follows. a) The S utility functions Us(y)
are twice differentiable, such that U,(y) > o and U, (y) < 0. Thus
we assume that the utility functions are risk adverse. b) g1 + ...
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+ gs = 1. If p5 15 the probability that the market assigns to state
s, certainly ¢gs > ps. Summation over s yields the inequality above.
If¢1 + ... 4+ ¢s = 1, (as in Arrows model) we can assume that

Z yiq: = y without loss of generality in (5). However, in the more
[
interesting case where g1 + ... 4 ¢s > I, this is not true anymorec.

This suggests that we distinguish the following two problems.

Problem A
For a fixed z, 0 <z <y, maximize Z ns Us(y + ys— z) subject

PR
~

to the constraints that v; > o and X v, = 2.

Problem B
Maximize £ m Us(y + ys— ¥ yiqs) subject to ys; > o, and

s 1

% ysqs X .

s 1

Thus in Problem A the total amount spent for premiums, 2, is
prescribed, while in Problem B it is variable, subject only to the
upper bound y.

In either case the existence of an optimal solution is clear: The
quantity to be maximized is a continuous function of the decision
variables y1, ..., ys, which (in both cases) vary over a compact set.

4. SOLUTION OF PROBLEM A,

Theorem 1
For any z(0 < z < ) there is a unique vector i, ..., ys sat-
isfying
&
(1) X Ysgs=2,9s > o0 foralls

T ’ -~ ~
(ii) _q_a Uy(y + y,— 2) < K for all s, such that y; = 0 whenever
8
this inequality is strict.

This vector, and only this vector, solves problem A,

Proof

For z = o, the theorem is trivially truc. Hence assume z > o.
To show the necessity of condition (ii), consider a vector yi, ..., ys
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for which it is violated. Then there are indices s, ¢ such that y, > o,
yg > 0 and

T, T,
- Ut(y + fvt—z) < = Us(y + ys T Z). (6)
s s
Then, by increasing v, and decreasing v¢ (such that the total
premium remains z) the expected utility could be increased. (Note
that for this part of the proof we did not nced the assumption that
the utility functions are risk averse.)
The necessity (and the existence of an optimal solution) show

that there is at least onc vector yy, ..., ¥ that satisfies conditions
(1) and (ii) above. Let y1, ..., ¥s be any other vector that satisfies

(). First using concavity from bclow of the function Us, and then
(ii), we obtain the following cstimate:

Us(y_" ys—Z) < Us(y —}-—:’;S——Z) + U.;'(,V +3"3_z) : (ys_.a;s)

~ . q ~
S Uy +5—2) + K * (y,— 3y). (7)

Note that the first incquality is strict unless y; = y,; By sum-
ming (7) over s we see that

T omUsly +vs—2) < I m Ug(y + ys—2), (8)

with a strict inequalhity holding unless ys = 95 for all s. This
completes the proof of Theorem 1.

5. SOLUTION Oor PROBLEM B.

s

If ¥ gs= 1, solve Problem A with z = y. Otherwise, the fol-

lowing result holds.

Theorem 2

S

Suppose that X ¢, > 1. Then Problem B has a unique solution,
which we dellote'i;l3f Y1, ..., vg a) I EI Ysgs = ¥, it can be char-
acterized by conditions (i) and (ii) in l’l:llleorem 1 with z = 4. b) If

g‘.;sqs < v, it i1s the only vector }1, ..., Vs that satisfies

i) ¥s > o for all s and

TL' ) - i - As‘ , ~ "‘ ~
ii) éﬁ Uy + ¥s— £ yig) < 2 7 Usly + 9, — £ y49)
s i I U

for all s, such that y, = o whenever the inequality is strict.
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Proof
v with T }sqs < 4, it has to

[

a) If there is an optimal 3, ...
s 01

satisfy condition (ii) above. For, if it did not, there would either be
an idex s such that

7T ¥ S ~ cL
SU Y Eve) > 2 Uy + 3 — X g (9)
s 1 1 LI
in which case the expected utility could be increased by increasing
Vs, or there would be an index s such that 35 > o and the inequality
in (ii} is strict, in which case the expected utility could be increased
by a reduction of y;. (For the necessity of (ii) we again did not need
the assumption that the utility functions are risk averse).

b) Suppose now that yi, ..., ys is a vector that satisfics con-
ditions (i) and (ii) of part b) in Theorem 2. Any other decision, say
vi, ..., ¥s {where X g;y; = v is also permissible), can be compared

with it as follows: For any s,

Us(y + 9s—2) S Usly +3s—2) + Uy + ¥o—3) - (35— Vs +2—2)
, ~ o~ 7

SUly +¥— 2 + =

s

(vs —“R;s) z Tij;(," + “71—‘3) +
+ Uy +¥s—32) - (F—2),  (10)
with the convenient notation z = X yq4, 2 = ¥ v,q4. Multiplying
both sides by =, and summing over s, we get
Y om Usly +9s—2) < X m Ugly + s —2). (11)
Furthermore, this inequality is sirict unless y; = ys for all s,

which shows the uniqueness of any optimal solution satisfying (ii).

6. How 1O FIND THE SOLUTIONS.

To find the solution of Problem A, first relabel the states such
that

T b1 , .,
LUy —2) >~ Uplv—2z) > ...> = Ugly—2). (12)
71 q2 qs
Now we choose y: such that
T, Ta .,
— Uiy + yo—2) = - Usly —2). (13)

4 ds
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Then we increase y; and choose y: such that

T U’ o

ot ) = %

o Wy + vi—2) g
etc. Thus, gradually we increase the coverage, from left to right,
until the total premium rcaches the level z. Clearly, the resulting
coverage will satisfy properties (i) and (it) of Theorem 1.

For the further discussion, let ¥, ..., '373 denote the optimal
coverage if the premium equals z, hence

, Ty .,
Us(ly + y2—2) = q_3 Us(y —z) (14)

Ul) = £ =, Ugly + 3, —2) (15)

1s the maximal utility at premium level z, and let K = K(z) denote
the upper bound in (ii) of Theorem 1. Finally, set

[\,v(z) = X Ts Uls(y + ’)7_9-—2). (16)

81
Theorem 3

U'(z) equals K(2) — Ky(2) and is a non-increasing function.

Proof

Let z1, z2 be any two numbers, and let ¥ denotc the optimal
coverage for state s if the total premium should be z; (z = 1, 2).
Using the concavity from below of U;sand property (ii) in Theorem 1,
we find that

Ugly + ¥ —2) — Uly + 30 — )
S Ugly + 58 —2) - (37 — 9" + 5 — 2) (17)
9s .. ~ ~ . ~
< T Kg) - (FO— ) — Uy + 50 —2) - e —2).
§

Multiply both sides by w5, and summing over s, we obtain the

inequality
U(ze) — U(z) < (K(21) — Kyla1)) - (22— 21). (18)

By interchanging the roles of z; and z., and inverting the sign, a

lower bound is obtained for U(z:) — U(z). Finally, assume 21 < ze.

Then these two inequalities can be written as follows.
U(Zz) —_— U(Zl)

p—— < K{(z1) — Ky(21). (19)

]{(Zg) _— ](v(Zz) <

Monotonicity of K(z} — Ky(2) is seen immediately from (19),

2
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and the rest of theorem 3 follows by taking the limit for zs — 2.
Now observe the following: Let 0 < 7z < 9 be the premium spent in
5

the optimal solution ¥, Vs, ... y5 of problem B (i.e. 2 = X gsys).

a1

For this z problem A must have the same solution as problem B
and we conclude, that the two bounds appcaring in the char-
acterization of the solutions must be the same, hence

K(z) = Ky2).
On the other hand theorem 3 leads to the following

Corollary
If K(0) < Kyo) then z=o0
K(y) = Ky(y) then Z=1y
otherwise let z satisfy
K(z) = Ky(2) then Z=z

Based on this corollary and the monotonicity of K(z) — I{y(2),
o <z <y onc may find z # o by gradually increasing the level z
of premium spent until K(2) — K,(2) = o, or if this does not hap-
pen for z < y, by putting z = v.

Note
It is sometimes more convenient, to follow the above procedure
K(z
until the quotient K—((z)) reaches 1. To justify this alternative, we
v
| that K(z) L (K(2) d . ) ¢
also prove tha Ko(2) is nonincreasing (K(z) nondecreasing | for
o<z< .
Proof
Let N = N{z) denote the set of indices for which ys = 0. Then
K, (z) = K(2) ( fl 7,) + Z =, Uyly —2), (20)
wN EN
and therefore
K,(2) I w Uy — 2)
g = + &y 000000 . 21
K(2) ; 9s K(2) ( )
. Ty U;(y - Z) . .
Since ———>=—— < ¢, for s € N, this shows that K (2)/K(2) is

K(z)
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a nondecreasing function (the numerator in the last expression is a
nondecreasing function, while K(z) is nonincreasing).
In the following the procedure for finding the optimum in prob-
lem B is explicitly carried out for
exponential utility (Section 7)
quadratic utility (Section 8).

7. EXPONENTIAL UTILITY
Let U (x) = 1 — ¢ %@ ¥ U (x) = ae'?" ¢ *%. You may inter-
pret y; as the ‘“need for money” in state s. Suppose then y suf-
ficiently large, such that the following property holds for the
optimum %1, ¥z, ... ys of problem B (according to theorem 2).

for all s, with strict in-

T -~ ~ « -~ . .
L P ) el e equality only allowedif (22)
9s i } —0 .
s .
With the notation
ny = m, eY7 (23)
and
5 e,
Colyns Yor - 9g) = =2 (24)
’E n; e~ i
(22) becomes
for all s, with strict in-
Cs(y1, ya, ... ys) <1 | equality only allowed if (25)

ys=0.

S
Abbreviate z for Z g¢;5;. (25) may hold for z =0 and then
irt

Zz = 0. Otherwise, increasing gradually the premium level z and
adjusting y1, vz, . .. ys at each level z according to the solution of

problem A, max C; will monotonically decrease until it reaches 1 at
se8
z = 2. (See note after theorem 3.) Observe that in the exponential

case the ordering
Cilyi, y2, --- vs) = Ce{yy, vo, ... ¥s) = ... = Cs(y1, y2. ... V)

never changes during this process.

Let then s be the number of states, which arc insured in the
optimal solution of B (number of variables ¥, diffcrent from o

in (25)).
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From (21) we have

s ~ " S
Ny(z) = 2 mje ™ = K(Z) = G+ 2w
il J=1 Jeam+1
and hence from the corollary of theorem 3

.,, 1 N
I:qu—}—m*) = Ty

1: m4)

I— X g
—_— It
K(2) z i
Jom j
~. TC‘ -~
therefore (recall K(Z) = — ¢™ ¥« for s =1, 2, ... m)
8
. I
~ 8
Wa=log gl 8RS (26)

»
n A

T:S ~ < -
logq— +log(r— X ¢;) —log X m

8 Jj=1 ) m4l

Am

for s < m.

The optimal m 1s found as the first index for which

. I— X g »
Tcm +1 IR . Ttm +1
< 1 or equivalently log

5
Qm+l Z T - m+l

+ Ap <o (27)
] om+1

It is easily checked, that this condition also applies if m = o.
Numerical Examples (In all examples the exponent e = 1072)

First example

s 1 2 3 4 5

Vs 1000 100 50 10 5
T, 0.1 0.2 0.3 0.2 0.2
g5 0.3 0.3 0.3 0.3 0.3
T, 2202.65 .544 0.495 0.221 0.210
% 7342.16 1.813 1.65 0.737 0.7

§
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1 — Xy 1 0.7
Je1

.; 7 2204.12 1.470

check {27) 3.33 0.863

Hence only state 1 is insured and from (26) 31 = 815.95
191 = 244.78.
Second example

Insurance becomes “‘horribly expensive’” for s = 1, otherwise
same as in first example.

$ T z 3 4 5
vy 1000 100 50 10 5

L 0.1 0.2 0.3 0.2 0.2
s I 0.3 0.3 0.3 0.3
o 2202.65 0.544 0.495 0.221 0.210
TE.

q—s 2202.65 1.813 1.65 0.737 0.7

8

IR ¢ 2204.12

Joa
check (27) < 1

Hence now #o insurance is bought at all!

Third example

The “insurance need’’ is eliminated in state s = 1, otherwise
still the same as before.

s 2 3 4 5 I

Vi 100 50 10 5 o)

T 0.2 0.3 0.2 0.2 0.1
g, 0.3 0.3 0.3 0.3 0.3
LN 0.544 0.495 0.221 0.210 0.1
gﬁ 1.813 1.65 0.737 0.7 0.333
8

check (27) 1.155 1.126 0.555

2 = 3L.17 a2z = 9.35
s = 21.75 Qa3 = 6.52

Hence insurance on s = 2and 3 ¥
y
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8. QuADRATIC UTILITY

In this section

The condition corresponding to (22) in Section 7 is then
T

ety —yv—Y +Zgy) <a+ % —y—F+ gy (29
i J

s
for all s, with strict inequality only allowed if ¥5 = o

Abbreviations

Redefine
o+ VT —y =y and you obtain

ch‘ x -~ -~
7 (¥s — ¥s + L q595)
: <1 (29)

yr— ?’ + = Qj-j\’j
]
for all s, with strict inequality only allowed if y5s = 0

Observe that as long as the numerator of the left side in (29) is
positive, we are in the region where U, is positive. The numbering
of the sides is defined in decreasing order of

*

y
Cs=—s_—s,henceC1>C2>...>Cs (30)

9s Ys
These quantitics are the inital valuesat vi = y2 = ... = yg =0

of the functions
TCS » ~
7 (¥s— s + Zq59)
Cs(¥1, Yoo - -+ V) =

T = 1
Y —y + Zqy; (31)

We again gradually increase z = X ¢g;y; and for each z adapt
i
v1i, ¥z, ... ¥g according to the solution of problem A; max Cg will

”®s

then again monotonically decrease to I, but unfortunately the
ordering of the Cy{y1, ¥z, -.. ¥s) (for those s which are not yet
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insured) may change! So while it is clear that insurance, if any,

must always be bought on s = 1, we must if necessary try several
combinations of other states to find out the optimum.

Numerical Examples

First example

§ I 2 3 4 5

Vs 1000 100 50 10 5

T 0.1 0.2 0.3 0.2 0.2 y* = 138
75 0.3 0.3 0.3 0.3 0.3

C, 2.415 0.483 0.362  0.048 o0.024

We try to insure state number 1 only. If this does achieve an
optimum we must have
1000 — y1 + 0.3 W1

I
Cl(yl.olo’"'°)=§138—o.1y1+0.3y1=I

from which we find

Y1 = 450.77
q1yr = 135.23
It remains to be checked whether Cyg(v1, 0,0, ...0) <1 for
s§s>2
Cz(y1,0,0, ...0) = g iO_Ozj_Sﬁ.IIBSS_-Z_s_ = 0.69
359 + 135.23

Cs(y1, 0,0, ...0) = = 0.81 (has surpassed Cz!)

3  228.15

As states 4 and 5 have the same probabilities and premiums as
state 2 their C-values must be lower than that of state 2 also.
This shows that just insuring state 1 with the above amounts is
optimal.

Second example

If we change in the first example only ¢: from 0.3 to 1 {insurance
on the state insured in the first example becomes “horribly ex-
pensive”}, then all initial C-values drop below 1 which means that
no insurance should be bought.



24 BUHLMANN AND GERBER

Third example

“Insurance need’ in state T is eliminated (i.e. ¥y} = 0). Other-
wise same as first example,

s 2 3 4 5 I

¥y 100 50 10 5 0

T 0.2 0.3 0.2 0.2 0.1 vy =38
75 0.3 0.3 0.3 0.3 0.3

C, 1.75 1.32 0.18  0.09 0

It is obvious that some insurance must be bought, certainly on
s = 2 and probably also on some other states, s = 3 being a very
likely candidate.
We try to find an optimal solution, where y2 and vz are different
from zero
2 100 — ¥2 + 0.3(yz + vs)
Calyz, y3, 0, ... 0) = 3 38—0.2y2—0.3vs + 0.3 (yz + y3) !
or 860 — 1492+ 3ys = 0
50 — ys + 0.3(V2 + ¥a)
Ca(yz, ya,0, ... 0) = 38 —o0.2y2 — 0.3va + 0.3(v2 + ¥3) =
or 120 —7 ¥s + 2y2 = 0

ye = 69.35 v = 36.96
g2ve: = 20.80  qays = 11.09  total premium  31.89

We must check that Ca(ys, ys3, 0, 0,0) < 1. This check suffices since

T ™
q—s < q—d for s =15, 1 (Cs and C: will then automatically be below 1).
8 4

10 + 31.8g ot

2
Cl k: C ".Z, » 0, O) =7 -
hec a(y2, ya 0) 3 38 — 24.96 - 31.89

which proves optimality.
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PARETO-OPTIMAL RISK EXCHANGES AND
RELATED DECISION PROBLEMS

Hans U. GERBER

I. SUMMARY

In various branches of apphed mathematics the problem arnises of making
decisions to reconcile conflicting criteria. Onc example is the classical
statistical problem, where a type 1 error cannot be arbitranlty reduced
without increasing the probability for a type 2 error. Another c¢xample,
quite fanuliar to actuarics, 15 graduation, where a compromisc between
smoothness and it has to be reached This motivates the concept of Pareto-
optimal decisions, which 1s discussed 1 section 2 There s a suimple method,
maximizing a weighted average of the scores, to obtamn certain Parcto-
optimal decistons. In scction 3 a condition 1s given, which 15 satisficd n
most applications, that guarantees that all the Pareto-optimal decisions
can be found by this method This 1s applied 1n section 4, where the problem
of risk exchange betwecen n msurance companies 15 considered. The onginal
model of Borch is gencrahzed: it is assumed that some of the companices
arc not willing to contribute morc than ‘a certam fixed amount towards
the aggregate loss of the other companies The theoremn in section 4 gives
a charactenzation of all the Parclo-optimal risk exchanges Because of the
restrictions, these risk exchanges do not just depend on the combined surplus
(which would amount to pooling) in general, and can be found by an algo-
rithm. One benefit of this generalization of Boreh’s Theorem s that two
scemungly unrelated results (optimality of a stop loss contract, and optimahity
of certain dividend formulas in group insurance) follow from 1l as special
cascs.

2. EvaLuaTioN oF DEecisioNs UNDER CONFLICTING VIEw POINTS

Often one is faced with the situation where a decision has to be
made in the presence of several criteria. Mathematically, the prob-
lem can be formulated as follows.

Let D be the set of all possible decisions. We arc given #n real-
valued functions si(d), . . ., sa(d), d € D. If di, de € D and sy(d1) >
si(d=), this means that decision d, is betler than (or at least as good
as) decision d2 with respect to critevion i. Let

s(d) = (si(d), .. ., sn(d)), deD (1)
and

S = {x/x = s(d) for some d € D} (2)
denote the range of the ‘‘score function” s(*): D — R7. A decision
dy is said to be stricily better than a decision de, if si(di) = si(de)

for + = 1, ..., u, and if at least one of these inequalities is strict.
A decision d is called Pareto-optisnal, if there is not a decision that




