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ABSTRACT 
 

This paper presents a universal framework for pricing financial and 
insurance risks. Examples are given for pricing contingent payoffs, where 
the underlying asset or liability can be either traded or not traded. The 
paper also outlines an application of the framework to prescribe capital 
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INTRODUCTION 
 
Currently there is a pressing need for a universal framework for the determination of the 
fair value of financial and insurance risks.  In the insurance industry, this need is evident 
in the Society of Actuaries’ “Symposium on Fair Value of Liabilities”, and in the 
Casualty Actuarial Society’s “Risk Premium Project” and “Task Force on Fair Valuing 
P/C Insurance Liabilities”.  
 
In the financial services industry, this pressing need is evidenced by the recent Basel 
Accords on regulatory risk management that require fair value, analogous to market 
prices, to be applied to all assets or liabilities, whether traded or not, on or off the balance 
sheet. In light of all these current events, this paper addresses a very timely subject. 
 
The paper is comprised of three parts, summarized as follows: 
 
Part One: The Framework introduces a new transform and correlation measure that 
extends CAPM to pricing all kinds of assets and liabilities, having any type of probability 
distribution, whether traded or underwritten, in finance or insurance. This transform is 
just as easily applied to contingent payoffs that are co-monotone with their underlying 
assets or liabilities. 
 
In its simplest form, the new transform relies on a parameter called the “market price of 
risk”, extending a familiar concept in CAPM to risks with non-normal distributions. The 
“market price of risk” can either be applied to, or implied from, a distribution, in order to 
arrive at a “risk-adjusted price” for the underlying risk in question. The “market price of 
risk” increases continuously with duration, and is consistent at each horizon date between 
an underlying and its co-monotone contingent payoff.  
 
When the return for an underlying asset has a normal distribution, the new transform 
replicates the CAPM price for that underlying asset, and recovers the Black-Scholes price 
for options on that underlying asset. 
 
Part Two: Examples of Pricing Contingent Payoffs illustrates the application of the 
new framework to pricing call options on traded stocks, and to pricing weather 
derivatives. 
 
Part Three: Capital Allocation & Fair Values of Liabilities illustrates the application 
of the new framework to insurance company capital allocations, and to the determination 
of fair values of insurance liabilities. In particular, it addresses a challenging issue 
concerning the long-term duration of liabilities. Also, the framework is equally applicable 
to primary insurance business and excess-of-loss reinsurance when calculating fair values 
of liabilities. 
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PART ONE. THE FRAMEWORK 
 
Capital Asset Pricing Model 
 
CAPM is a set of predictions concerning equilibrium expected returns on assets. Classic 
CAPM assumes that all investors have the same one-period horizon, and asset returns 
have multivariate normal distributions. For a fixed time horizon, let Ri and RM be the rate-
of-return for asset i and the market portfolio M, respectively. Classic CAPM asserts that 
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where r is the risk-free rate-of-return and  
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is the beta of asset i. 
 
Assuming that asset returns are normally distributed and the time horizon is one period 
(e.g., one year), a key concept in financial economics is the market price of risk: 
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In asset portfolio management, this is also called the Sharpe Ratio, after William Sharpe. 
 
In terms of market price of risk, CAPM can be restated as follows: 
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where Mi ,ρ is the linear correlation coefficient between Ri and RM. In other words, the 
market price of risk for asset i is directly proportional to the correlation coefficient 
between asset i and the market portfolio M.  
 
CAPM provides powerful insight regarding the risk-return relationship, where only 
systematic risk deserves an extra risk premium in an efficient market. However, CAPM 
and the concept of “market price of risk” were developed under the assumption of 
multivariate normal distributions for asset returns. CAPM has serious limitations when 
applied to insurance pricing when loss distributions are not normally distributed. In the 
absence of an active market for insurance liabilities, the underwriting beta by line of 
business has been difficult to estimate. 
 
Option Pricing Theory 
 
Besides CAPM, another major financial pricing paradigm is modern option pricing 
theory, first developed by Fischer Black and Myron Scholes (1973).  
 
Some actuarial researchers have noted that the payoff functions of a European call option 
and a stop-loss reinsurance contract are similar, and have proposed an “option-pricing” 
approach to pricing insurance risks. Unfortunately, the Black-Scholes formula only 
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applies to lognormal distributions of market returns, whereas actuaries work with a large 
array of distributional forms.  
 
Furthermore, there are subtle differences between option pricing and actuarial pricing (see 
Mildenhall, 2000). One way to better appreciate the difference between “financial asset 
pricing” and “insurance pricing,” is to recognize the difference in types of data available 
for pricing.   
 
Options pricing is performed in a world of Q-measure (using risk-adjusted probabilities), 
where the available data consists of observed market prices for related financial assets. 
On the other hand, actuarial pricing is conducted in a world of P-measure (using objective 
probabilities), where the available data consists of projected losses, whose amounts and 
likelihood need to be converted to a “fair value” price (see Panjer et al, 1998).  
 
Because of this difference, the price of an option is determined from the minimal cost of 
setting up a hedging portfolio, whereas the price of insurance is based on the actuarial 
present value of costs, plus an additional risk premium for correlation risk, parameter 
uncertainty and cost of capital.  
 
A Universal Pricing Method 
 
Consider a financial asset or liability over a time horizon [0,T]. Let X=XT denote its future 
value at time t=T, with a cumulative distribution function (cdf) F(x)=Pr{X≤x}. In Wang 
(2000), the author proposed a universal pricing method based on the following transform:  

[ ]λ+ΦΦ= − ))(()(* 1 xFxF ,                        (1) 
where Φ is the standard normal cumulative distribution. The key parameter λ is called the 
market price of risk, reflecting the level of systematic risk. The transform (1) is now 
better known as the Wang transform among financial engineers and risk managers. The 
Wang transform was partly inspired by the work of several prominent actuarial 
researchers, including Gary Venter (1991, 1998) and Robert Butsic (1999).  
 
For a given asset X with cdf F(x), the Wang transform will produce a “risk-adjusted” cdf 
F*(x). The mean value under F*(x), denoted by E*[X], will define a risk-adjusted “fair 
value” of X at time T, which can be further discounted to time zero, using the risk-free 
interest rate.  
 
The Wang transform is fairly easy to numerically compute.  Many software packages 
have both Φ and Φ−1 as built-in functions.  In Microsoft Excel, Φ(y) can be evaluated by 
NORMSDIST(y) and Φ−1(z) can be evaluated by NORMSINV(z). 
 
One fortunate property of the Wang transform is that normal and lognormal distributions 
are preserved: 

•  If F has a Normal(µ,σ2) distribution, F* is also a normal distribution with µ* = 
µ−λσ and σ* = σ.  

•  If F has a lognormal(µ,σ2) distribution such that ln(X) ~ Normal(µ,σ2), F* is 
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another lognormal distribution with µ* = µ−λσ and σ* = σ. 
 
Stock prices are often modeled by lognormal distributions, which implies that stock 
returns are modeled by normal distributions.  Equivalent results can be obtained by 
applying the Wang transform either to the stock price distribution, or, to the stock return 
distribution. 
 
Consider an asset i on a one-period time horizon. Assume that the return Ri for asset i has 
a normal distribution with a standard deviation of σi. Applying the Wang transform to the 
distribution of Ri we get a risk-adjusted rate-of-return: 

iii RERE λσ−= ][][* . 
In a competitive market, the risk-adjusted return for all assets should be equal to the risk-
free rate, r. Therefore we can infer that λ=(E[Ri]−r)/ σi, which is exactly the same as the 
market price of risk in classic CAPM. With λ being the market price of risk for an asset, 
the Wang transform replicates the classic CAPM. 
 
Unified Treatment of Assets & Liabilities 
 
A liability with loss variable X can be viewed as a negative asset with gain Y= −X, and 
vice versa. Mathematically, if a liability has a market price of risk λ, when treated as a 
negative asset, the market price of risk will be −λ.  That is, the market price of risk will 
have the same value but opposite signs, depending upon whether a risk vehicle is treated 
as an asset or liability.  For a liability with loss variable X, the Wang transform in 
equation (1) has an equivalent representation. 

[ ]λ+ΦΦ= − ))(()(* 1 xSxS ,                        (2) 
where S(x)=1−F(x). 
 
The following operations are equivalent: 
1. Applying transform (1) with λ to the cdf F(x) of a gain variable X , 
2. Applying transform (1) with −λ to the cdf F(y) of the loss variable Y= −X, and 
3. Applying transform (2) with λ to S(y)=1−F(y) of the loss variable Y= −X.  
Their equivalence ensures that the same price is obtained for both sides of a risk 
transaction. 
 
If a loss variable has a Normal(µ,σ2) distribution, the Wang transform (2) will produce 
another normal distribution with µ* = µ+λσ and σ* = σ. Thus, for a loss variable with a 
normal distribution, the Wang transform (2) recovers the traditional standard-deviation 
loading principle, with the parameter λ being the constant multiplier. 
 
A New Measures of Correlation 
 
According to CAPM, the market price of risk λ should reflect the correlation of an asset 
with the overall market portfolio. When we generalize the concept of market price of risk 
to assets and liabilities with non-normal distributions, the Pearson linear correlation 
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coefficient becomes an inadequate measure of correlation. Examples can be constructed 
such that a deterministic relationship has a Pearson correlation coefficient close to zero. 
Such an example was provided in Wang (1998):  

Consider the case where X∼  lognormal(0,1) and Y=(X)σ. Despite this deterministic 
relationship, the linear correlation coefficient between X and Y approaches zero as 
σ increases to infinity. That is, ρX,Y ! 0 as σ !∞.  

 
This also implies that correlation should not be estimated by running linear regression, 
unless all of the variables have normal distributions.  
 
Now we show a new way to extend the Pearson correlation coefficient to variables with 
non-normal distributions. For any pair of variables {X, Y} with distributions FX and FY, 
we transform them into “standard normal variables”: 

U=Φ−1[FX(X)],    and    V=Φ−1[FY(Y)]. 
We next define a new measure of correlation between {X, Y} as the Pearson linear 
correlation coefficient between these transformed “standard normal variables” {U, V}: 
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Now, let us reconsider the case where X∼  lognormal(0,1) and Y=(X)σ. Consistent with this 
deterministic relationship, this new measure of correlation between X and Y is always 1. 
That is, 1*

, =YXρ  for all σ values. 
 
Using this new measure of correlation we may extend classic CAPM as follows: 

MMii λρλ ⋅= *
, , 

where λ i and λM are the respective market prices of risk in the Wang transform, without 
assuming normality. 
 
Pricing of Contingent Payoffs 
 
For an underlying risk X and a function h, we say that Y = h(X) is a derivative (or 
contingent payoff) of X, since the payoff of Y is a function of the outcome of X.  If the 
function h  is monotone, we say that Y is a co-monotone derivative of X. For example, a 
European call option is a co-monotone derivative of the underlying asset; in 
(re)insurance, an excess layer is a co-monotone derivative of the ground-up risk.  
 
Theoretically, the underlying risk X and its co-monotone derivative Y should have the 
same market price of risk, λ, simply because they have the same correlation (as shown by 
using our new measure of correlation) with the market portfolio. 
 
In pricing a contingent payoff Y = h(X), there are two ways of applying the Wang 
transform.  
•  Method I: Apply the Wang transform to the distribution FX of the underlying risk X. 

Then derive a risk-adjusted distribution *
YF  from *

XF  using Y* = h(X*). 
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•  Method II: First derive its own distribution FY for Y = h(X). Then apply the Wang 
transform to FY directly, using the same λ as in Method I.  

 
Mathematically it can be shown that these two methods are equivalent. This important 
result validates using the Wang transform for risk-neutral valuations of contingent 
payoffs. 
 
Implied λλλλ and the Effect of Duration  
 
For a traded asset, the market price of risk λ can be estimated from observed market data. 
We shall now take a closer look at the implied market price of risk and how it varies with 
the time horizon under consideration. 
  
Consider a continuous time model where asset prices are assumed to follow a geometric 
Brownian motion (GBM).  Consider an individual stock, or a stock index, i.  The asset 
price Xi(t) satisfies the following stochastic differential equation: 
 

iii
i

i dWdt
tX
tdX σµ +=
)(
)( ,         (4) 

 
where dWi is a random variable drawn from a normal distribution with mean equal to zero 
and variance equal to dt.  In equation (4), µi is the expected rate of return for the asset, 
and σi is the volatility of the asset return.  Let Xi(0) be the current asset price at time zero. 
For any future time T, the prospective stock price Xi(T) as defined in equation (4) has a 
lognormal distribution (see Hull, 1997, p. 229): 
 

( )TTTXTX iiiii
22   ,5.0lognormal   ~   )0(/)( σσµ − .       (5) 

 
Next we apply the Wang transform to the distribution of Xi(T) in (5) and we get 
 

( )TTTTXTX iiiiii
22*   ,5.0lognormal   ~   )0(/)( σσλσµ −− .      

 
For any fixed future time T, a “no arbitrage” condition (or simply, the market value 
concept) implies that the risk-adjusted future asset price, when discounted by the risk-free 
rate, must equal the current market price.  In this continuous-time model, the risk-free rate 
r needs to be compounded continuously. 
 
As a result, we have an implied parameter value: 
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The implied λ  in (6) coincides with the market price of risk of asset i as defined in Hull 
(1997, p. 290). This implied λ is also consistent with Robert Merton’s inter-temporal, 
continuous-time CAPM (see Merton, 1973). 



 8

 
It is interesting to note that the market price of risk λ increases as the time horizon 
lengthens.  This makes intuitive sense since the longer the time horizon, the greater the 
exposure to unforeseen changes in the overall market environment. This interesting result 
has applications in pricing long-tailed insurance where losses are not reported or settled 
until many years after the policy period expires.   
 
If the evolution of incurred loss resembles geometric Brownian motion, the parameter λ 
should be proportional to the square root of the time period from policy inception to the 
date of loss settlement. The relationship (6) between λ and duration T is very useful in 
calculating fair values of insurance liabilities (including loss reserve discounting) and 
optimizing capital allocations within an insurance company. 
 
Applying the Wang transform with the λ in equation (6), asset i has a risk-adjusted 
distribution 

( )TTrTXTX iiii
22*  ,5.0logormal   ~   )0(/)( σσ− ,  

where both the market price of risk λ i, and the expected stock return µi have dropped out 
from the transformed distribution F*(x). 
 
Recovery of the Black-Scholes Formula 
 
A European call option on an underlying stock (or stock index) i with a strike price K and 
exercise date T is defined by the following payoff function 
 

Y=
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Being a non-decreasing function of the underlying stock price, the option payoff, Call(K), 
is co-monotone with the terminal stock price, Xi(T); thus it has the same market price of 
risk as the underlying stock i.  Therefore, the same λ as in equation (6) should be used to 
price the option Call(K). In other words, the price of a European call option is the 
expected payoff under the transformed (risk-neutral) stock price distribution F*(x), where 
the expected stock return µi is replaced by the risk-free rate r.  The resulting option price 
is exactly the same as the Black-Scholes formula. 
 
There is an analogy between an unlimited stop-loss cover with retention K, and a 
European call-option with strike price K.  Both are co-monotone derivatives of the 
underlying (liability or asset) variable.  By applying the Wang transform to the stop-loss 
variable, we get a stop-loss premium as the expected stop-loss value under the 
transformed ground-up loss distribution.  
 
Likewise, the price for a European call option can be evaluated as the expected option 
payoff under the transformed (risk-neutral) distribution for the underlying stock price, 
where the expected stock-return µi does not appear in the options pricing model.  Thus the 
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Wang transform adds a new perspective to the well-known risk-neutral valuation 
methodology of options (see Cox and Ross, 1976). 
 
Equilibrium and Replication Perspectives 
 
Recall that CAPM provides an equilibrium perspective of asset prices in light of its 
correlation with the market portfolio. With the equilibrium perspective, a call option is 
co-monotone with the underlying asset, thus have the same market price of risk. Using 
the same market price of risk, the Wang transform produces an option price as the 
expected option payoff under a transformed “risk-neutral” asset distribution where the 
expected rate-of-return is equal to the risk-free rate-of-return. 
 
On the other hand, modern finance presents the Black-Scholes formula via a replication 
perspective. The replication approach relies on the ability to create a continuous riskless 
hedge. If asset prices change in small amounts, it is possible to simultaneously buy an 
option and sell a quantity of the underlying asset, so that the combined portfolio has no 
risk. Note that the instantaneous hedge is possible only because the option is a co-
monotone derivative of the underlying asset.   
 
Emanuel Derman (1996), who had worked closely with Fischer Black, commented that 
“Deep inside, Fischer seemed to rely on the equilibrium approach of the capital asset 
pricing model as the source for his intuition about options pricing. I believe this is the 
way the Black-Scholes equation was originally derived, although the first derivation of 
the options pricing formula in the Black-Scholes article is based on valuation by 
replication.”   
 
The Wang transform takes the equilibrium perspective of CAPM, and yet is able to 
reproduce the Black-Scholes price for options on underlying assets with lognormal 
distributions. The Wang transform thus formalizes an intrinsic relationship between 
CAPM and the Black-Scholes formula, along the lines of Fischer Black’s reported 
insights. 
 
Adjust for Parameter Uncertainty 
 
The foregoing theory on the Wang transform assumes that the true underlying probability 
distribution is known without ambiguity, which is rarely the case in real life applications.  
 
Consider the classic sampling theory in statistics. Assume that we have k independent 
observations from a given population with a Normal(µ,σ2) distribution. Note that µ and σ 
are not directly observable, we can at best estimate µ and σ by the sample mean µ~ and 
sample standard deviation σ~ . As a result, when we make probability assessments 
regarding a future outcome, we effectively need to use a Student-t distribution.  
 
The Student-t distribution with k degrees-of-freedom has a density 
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Following the sampling theory that uses a Student-t distribution in place of a normal 
distribution, we suggest the following technique of adjusting for parameter uncertainty: 

( )))(()( 1* xFQxF −Φ= ,   (7) 
where Q has a Student-t distribution with k degrees-of-freedom. Note that in equation (7), 
no restriction is imposed on the underlying distribution F(x).  
 
It may be arguable whether the adjustment in equation (7) represents a more objective 
view of the risk’s probability distribution, or represents a form of profit loading. 
Regardless of how it is perceived, empirical evidences often suggest that market prices do 
often contain an adjustment for parameter uncertainty.  
  
Let F(x) be the estimated probability distribution, before adjustment for parameter 
uncertainty. The combination of parameter uncertainty adjustment in equation (7) and 
pure risk adjustment using the Wang transform in equation (1) yields the following two-
factor model: 

( )λ+Φ= − ))(()(* 1 yFQyF ,     (8) 
where Q has a Student-t distribution with k degrees-of-freedom. 
 
In a recent empirical study, Wang (2002a) reported that the two-factor model (8) provides 
excellent fit to the CAT-bond and corporate bond yield spreads studied by Lane (2001). 
Without the Student-t adjustment, the one-factor Wang transform (1) would not be able to 
explain the yield spreads in the Cat-bond and corporate bond data. 
 
As an alternative method of adjusting for parameter uncertainty, we can modify the best-
estimate cdf F(x)  as follows: 

[ ]))(()(* 1 xFbxF −Φ⋅Φ= ,                       (9) 
where the multiplicative factor b is a positive-valued function of F(x). In general, the b-
values should be no greater than 1 for both assets and liabilities, indicating that the best-
estimate volatility is being amplified.  
 
The composite of transforms (9) and (1), incorporating both systematic risk and 
parameter uncertainty, produces a two-factor model: 

[ ]λ+Φ⋅Φ= − ))(()(* 1 xFbxF .                       (10) 
 
Consider the special case when b is a constant and F(x) is a lognormal distribution. The 
transform (10) amplifies the volatility parameter by a factor 1/b, after a location shift by 
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λ, along the lines suggested by Butsic (1999). Gary Venter, in a private communication, 
has also informed the author that John Major had fitted transform (10) with constant b to 
empirically observed property CAT treaty prices. 
 
 
 
Note that the Student-t adjustment in equation (8) can also be written in terms of the b-
function in equation (10): 

[ ] [ ]λλ +Φ⋅Φ=+Φ= −− ))(())(()(* 11 xFbxFQxF .               (11) 
With Q being a Student-t distribution in (11), the implied b-function has a “hump” shape 
over the interval 0<F(x)<1, with the highest b-value in the middle when F(x)=1/2, and 
smaller b-values at the tails when F(x) approaches to 0 or 1. This effectively gives higher 
adjustment at the extreme tails, like for deep out-of-money contingent claims, or way 
beyond-a-horizon-date claim settlements, where markets are illiquid, benchmark data 
sparse, negotiations difficult, and the cost of keeping capital reserves is high. 
 
 
Extrapolation of Tail Probabilities 
 
Using equation (8) or (10) to adjust for parameter uncertainty does not always work in all 
situations. For instance, an insurance contract might offer a $100M limit, with no data 
indicating historical losses greater than $50M, even after trending.  
 
In such a case, tail probabilities for losses greater than 50M need to be extrapolated from 
the estimated probabilities for losses below 50M. Extreme value theory may be a useful 
technique for the extrapolation (see Embrechts, et al, 1997). The Wang transform can be 
applied to the extrapolated tail probabilities. 
 
Portfolio Management 
 
Portfolio management involves active selections (deletions) of the most (least) profitable 
business in relation to its incremental risk to the existing portfolio. We can measure the 
incremental risk by applying the Wang transform to the aggregate portfolio profit/loss 
distributions, before and after a risk is being added. The Wang transform can also be used 
by a portfolio manager to identify good/bad risks by comparing their respectively implied 
lambdas (Sharpe Ratios) with their own benchmarks for risk/return tradeoff. 
 
Final Remarks on Part One: 
 
So far we have introduced the Wang transform as an extension to CAPM and the Black-
Scholes formula. In a follow-up paper, Wang (2002b) extends Buhlmann’s (1980) 
equilibrium-pricing model and derives the Wang transform from a set of assumptions on 
the behaviors of market participants.  
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In Part Two and Part Three of this paper we will discuss applications of the Wang 
transform in pricing options, weather derivatives, insurance and in capital allocation. 
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PART TWO. EXAMPLES OF PRICING CONTINGENT PAYOFFS 
 
A contingent payoff is a contractual agreement between counter-parties, whose payment 
trigger and amount are determined by observed outcomes of the underlying variable. A 
contingent payoff is a more general type of financial instrument than an option, since the 
underlying variable can include non-traded assets or liabilities, statistical indices, or even 
physical events. Most underlying variables do not follow a lognormal distribution, 
making the Black-Scholes formula inappropriate for benchmark pricing. In contrast, the 
Wang transform is applicable to any distributional form, and can be used as a universal 
method for pricing all kinds of contingent payoffs.  
 
Example 1. Pricing of Options 
 
Asset pricing is based on anticipated future price movements. Historical returns may or 
may not be a good indicator of future price movement. For illustration purposes, we 
assume the availability of a robust stock price projection model utilizing historical price 
data and other available information. Such a stock price projection may be based on a 
GARCH model with due considerations to mean-reversion and other economic factors. 
For our illustration, such a model has produced the following sample of outcomes with 
equal probability weights.  
 
The underlying is a stock index with a current price of $1326.03. Our model has produced 
20 outcomes (partially based on 5-year history of quarterly returns): 
 

1218.71, 1309.51, 1287.08, 1352.47, 1518.84, 1239.06, 1415.00, 1387.64, 
1602.70, 1189.37, 1364.62, 1505.44, 1358.41, 1419.09, 1550.21, 1355.32, 
1429.04, 1359.02, 1377.62, 1363.84. 

 
The stock index return has a mean of 4.08% and a standard deviation of 8.07%. 
Assuming that the 3-month risk-free rate is 1.5%. The empirical “Sharpe Ratio” for the 3-
month time-horizon is 0.32=(4.08%−1.5%)/8.07%. 
 
We want to price a 3-month European call option on this stock with a strike price of 
$1375. Apply the Wang transform to the sample stock index distribution. By using the 
empirical Sharpe Ratio λ=0.32 we do not recover the current stock price, since the sample 
distribution deviates from a lognormal distribution. We first solve for λ=0.342 by 
matching the current stock price of $1326.03. Using the resulting risk-adjusted 
probabilities, we obtain an expected payoff of 25.35 for the 3-month European call option 
with strike price $1375. After risk-free discounting, we get an option price of $24.98. 
 
Further explanation of the computational steps is given in Appendix 1. 
 
Some comments:  

•  The market price of risk, as calculated by (E[R]−r)/σ, is precise only when the 
underlying asset has a normal distribution. The Wang transform, on the other 
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hand, can iterate a precise market price of risk for underlying assets or liabilities 
with any type of distribution. 

•  With the Wang transform, we can take advantage of a good price projection 
model incorporating stochastic volatilities for the underlying asset. 

 
 
Example 2. Pricing of Weather Derivatives 
 
For most weather derivatives, a payoff is contingent upon the number of observed 
Heating-Degree-Days (HDD) for the winter months, or Cooling-Degree-Days (CDD) for 
the summer months, multiplied by some notional amount. The underlying variables of 
weather derivatives, namely HDDs and CDDs, are not traded assets by themselves. This 
is in contrast to equity derivatives, where the underlying stock is usually a traded asset. 
To price a weather derivative, an equilibrium approach is necessary.  
 
In winter months, extreme cold weather drives up the cost for heating. The 1999 U.S. 
energy crisis had boosted the demand for call options on HDDs, in an attempt to hedge 
against rising heating costs. The writers of such options need to set aside capital to fund 
potential payouts. Option-buyers are expected to pay a risk premium to compensate for 
the cost of capital for the option-writers. 
 
We give an example of using the Wang transform to price weather derivatives. Here we 
use Chicago Mercantile Exchange Weather Data --- Monthly Aggregate from 1/1/1979 to 
1/1/2001.  
 
Table 1 is the aggregate HDDs for months of December observed at the Chicago O’Hare 
Station. Note that there are a total of 22 observations with a mean of 1154.7 and a 
standard deviation of 193.4. 
 
Table 1. Monthly Aggregate Data for Chicago O’Hare Station, 1979-2000 
 
Date Dec-79 Dec-80 Dec-81 Dec-82 Dec-83 Dec-84 Dec-85 Dec-86 
HDD 972.5 1147.0 1244.0 901.0 1573.0 1055.0 1488.0 1065.5 
Date Dec-87 Dec-88 Dec-89 Dec-90 Dec-91 Dec-92 Dec-93 Dec-94 
HDD 1018.5 1155.0 1474.5 1129.5 1077.5 1129.5 1090.5 938.5 
Date Dec-95 Dec-96 Dec-97 Dec-98 Dec-99 Dec-00   
HDD 1199.5 1156.0 1040.0 940.5 1090.5 1517.5   
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 Assume a notional amount of $1 for each HDD, and consider a call option on Dec-2001-
HDDs with a strike price of 1350. The payoff function can be expressed mathematically 
as max(HDD−1350, 0). In order to apply the Wang transform, we first sort the annual 
December HDDs in an ascending order and assign objective probabilities. Here we use 
historical data without adjusting for on-going trends or cycles of weather conditions. In 
real life applications such trends and cycles need to be considered. 
 
The key to the application of the Wang transform boils down to the selection of the 
lambda value. Noting that the underlying HDDs themselves are not traded assets, there is 
no price available for of the underlying to infer a lambda value. Nevertheless, option 
writers may have a benchmark “Sharpe Ratio” to target for. For illustration, we assume a 
benchmark Sharpe Ratio of λ=0.25. In order to generate a positive risk premium, we can 
apply the transform in (1) with λ=−0.25. Or equivalently we can apply the transform in 
(2) with λ=0.25. 
 
For the strike level of 1350 Dec-2001-HDDs, the call option has an expected payoff of 
29.68 Dec-2001-HDDs, using objective probabilities. However, the “fair value” of the 
option is 42.70 Dec-2001-HDDs, using transformed probabilities and before any risk-free 
discounting. 
 
With a lambda value of 0.25, call options with different strike prices can be evaluated and 
compared (see Table 2).   
 
Table 2. Option Prices at Various Strike Levels 
 
Strike 1250 1300 1350 1400 1450 1500 
Exp. Payoff  $  47.86   $  38.77   $  29.68   $  20.59   $  11.50   $    4.11  
Price  $  68.21   $  55.45   $  42.70   $  29.94   $  17.18   $    6.59  
Loading 43% 43% 44% 45% 49% 60% 
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PART THREE. CAPITAL ALLOCATION & FAIR VALUES OF LIABILITIES 
 
Next we discuss an application of the Wang transform to insurance capital allocation and 
to the calculation of fair values of liabilities. Consider an insurance company writing 
multiple lines of business. Assume that we already know the overall economic capital for 
the company, or alternatively, we have derived a total required economic capital for the 
company based on industry benchmarks. Our goal is to allocate the cost of capital to 
different lines-of-business and individual contracts. Given the long-tailed nature of 
insurance payment patterns, insurers are required to continuously hold capital to support 
the reserve liabilities. One critical issue is how to appropriately reflect the duration of 
insurance liabilities.  
 
There are diverse opinions on how to quantify the cost of capital for long-tailed business. 
Some actuaries suggest that capital needs to be committed in each year in proportion to 
all remaining unpaid losses, without consideration of the diversification effect among 
development years. The other extreme of opinion is that only a one-time allocation is 
needed in the first year to account for the uncertainties associated with the present value 
of reserves. They have dramatically different implications on pricing and present a 
challenging issue associated with insurance capital allocation (see Venter, 2002). Most 
actuaries would agree that there are diversification benefits between development years; 
the key questions is how to quantify them. The rest of the paper is devoted to tackling this 
issue using the pricing framework in Part One. 
 
Available Data  
 
We first consider ground-up or primary business only. We shall use the following data: 
•  Based on historical accident-year ultimate loss ratios, we have estimates of the loss 

ratio volatility for each line of business, denoted by σAY. 
•  We have estimates of the loss payment pattern for each line of business, with an 

average duration, denoted by DGU. Let R(t) be the portion of losses remaining unpaid 

by time t.  We have ∫
∞

=
0

)( dttRDGU . 

 
Assumptions for the Evolution of Losses 
 
1. The best-estimate of remaining unpaid losses evolves with the passage of time as 

more information becomes available. During each time period (e.g. one-year), the 
revised estimates of loss reserve may go up or go down, with a random nature. 

2. There are two opposing arguments regarding the relative uncertainty of the remaining 
reserve: (a) it should increase with time as more risky claims are settled later; (b) it 
should decrease with time as more information becomes available. Here we assume 
that the relative uncertainty (coefficient of variation) of remaining reserves remains 
constant over time. See Philbrick (1994) for further discussion of this issue. 

3. Based on the above considerations, we assume a geometric Brownian motion process 
for the loss reserve evolution over time. Assuming that the instantaneous per annum 
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volatility is a constant σ1, we have 

GUAY DdttR ⋅=⋅= ∫
∞ 2

10

2
1

2 )( σσσ . 

      Thus we can estimate the per-year volatility as   

GU

AY

D
σσ =1 .      

In practice, the geometric Brownian motion assumption can be relaxed to more accurately 
reflect the true process for loss reserve evolution. For instance, the instantaneous 
volatility σ(t) may change with time. For property risks, σ(t) may be higher for the pricing 
risk (when 0<t<1) than the reserving risk (when t>1), as new information will emerge 
during the contract period regarding catastrophe activities. For casualty risks, σ(t) may be 
higher for IBNR reserves than that for case reserves. For a changing σ(t), an average per 
annum volatility can be calculated by 

∫
∫

∞

∞

=
0

0
1

)(

)()(

dttR

dttRtσ
σ . 

Although the mentioned refinements can be incorporated in the calibration of the 
insurance company capital allocation, here we will restrict ourselves to the geometric 
Brownian motion assumption with σ(t)= σ1. 
 
Risk Measure and Cost of Capital 
 
We define a risk-measure to approximate the cost of capital commitment, based on the 
following assumptions:  
 
(a) For a given line of business, the cost of capital per-year is proportional to the 

underlying per-year volatility σ1, which is estimated from industry data. 
(b) According to the multi-period CAPM, the market price of risk increases with the time 

horizon. Let parameter λ1 be the per-year “market price of risk”. The multi-period 
CAPM says that the market price of risk for time horizon T is: TT ⋅= 1λλ . 
Intuitively this makes sense. For liability insurance, the longer the duration, the higher 
the uncertainty, especially with respect to judicial changes and court rulings. 

(c) For a given line of business, the cost of capital is proportional to the “market price of 
risk” for the underlying business.  

(d) With risk differences by lines of business being reflected in different values of σ1, we 
target the same Sharpe Ratio λ1 per annum for all lines of business. This is because 
the total amount of insurance capital is used to support all insurance contracts and is 
legally indivisible. This is in contrast to the case for an asset portfolio where each 
asset is earmarked with a specific amount of capital. 

 
For each $1 of expected loss for a line of business with per-annum volatility σ1 and 
average duration of DGU, the total risk measure for ground-up insurance coverage is: 
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AYGUGUAYGU
GU

AY
GU DD

D
D σλσλσλσλ ⋅=⋅⋅=⋅⋅=⋅⋅ 1111 ,  

where GUGU D⋅= 1λλ .  
 
Pricing Ground-up Insurance Contracts 
 
For a given line of business, to calculate the insurance premium for each $1 ground-up 
expected loss, we will do the following: 
(1). Calculate the discount factor PVGU(1): Use market risk-free interest rate and the 
ground-up loss payment pattern. 
(2). Apply risk loading to derive a pure premium:  

{ }GUGU DPV 111)1( σλ+⋅ .  (12) 
The factor λ1 in (12) should be calibrated from “total portfolio re-balancing” based on a 
target return-on-equity (TROE). In other words, for the aggregate insurance portfolio, the 
ratio of “the total risk load plus investment return” to the total economic capital should 
produce a target return-on-equity. The total allocated capital over the lifetime of this $1 
liability is  

)/()1(11 rTROErDGU −+σλ , 
For year j, the allocated capital is  

)/()1(11 rTROErPj −+σλ , 
where Pj is the expected percentage of losses to be paid within year j.  
(3). Load for expenses: suppose the total expense factor is θ, we can load the pure 
premium by a factor of 1/(1−θ). 
(4) Knowing the amount of allocated capital, we can calculate the actual return-on-equity 
(ROE) for any given quoted premium rate. 
 
Remark: Assume that the ground-up accident-year loss ratio follows a Brownian motion 
process with a total volatility σAY. Formula (12) is an approximation to the resulting 
premium using the Wang transform with GUGU D⋅= 1λλ . Thus, for ground-up business, 
our risk load (and capital allocation) methodology is shown to be an approximate result of 
the Wang transform. 
 
 
Pricing Excess-of-Loss Insurance Contracts 
 
For excess business, we need more data than for ground-up (or primary) business. In 
addition to the required data for ground-up business, we need the following: 
•  A severity curve based on industry data or theoretical loss distributions; 
•  Loss payment pattern for the excess cover with an average duration DXOL, which is 

generally longer than the ground-up payment duration. 
 
From the perspective of a top-down approach, this involves an allocation of overall risk 
load to various layers. We apply the Wang transform, with adjustment for parameter 
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uncertainty, to the severity curve to derive risk load relativity by layer. (An example of 
calculating relative risk loading by layer can be found in Wang, 2000). If we fix our base 
layer as (0, 1M], we can calculate a relativity factor for any layer (a,b] as follows: 
 

layerbaseforloadingrelative
balayerforloadingrelativerelativitylayer

____
],(____ =  

 
In comparison with pricing primary insurance, we price excess-of-loss layers differently 
as follows: 
(1). Calculate the discount factor PVXOL(1) using excess-layer loss payment pattern. 
(2). Apply risk loading to get a pure premium: 

{ })_(1)1( 11 relativitylayerDPV XOLXOL ⋅⋅⋅+⋅ σλ . 
The total allocated capital over the lifetime of this $1 liability is  

)/()1)(_(11 rTROErrelativitylayerDXOL −+σλ , 
For year j, the allocated capital is  

)/()1()_(11 rTROErPrelativitylayer j −+σλ , 
where Pj is the expected percentage of excess-layer losses to be paid in year j.  
 
Remarks: 
•  In most cases we suggest the use of the top-down approach, which utilizes industry 

data by line of business (loss volatility, severity curve, loss payment pattern). The top-
down approach is based on the principle of CAPM. In other words, with the top-down 
approach, only non-diversifiable risks for the industry are priced into the contracts. 
Bault (1995) argued why industry data, rather than individual company data, should 
be used for pricing purposes.  

•  For property catastrophe (CAT) covers, modern CAT modeling techniques often use a 
“bottom-up” perspective. Given geographic concentration and amount of insurance 
data, commercial CAT models can provide us with a final loss exceedance curve for 
any given CAT coverage. This final loss exceedance curve already takes into account 
the potential frequency and severity of CAT events, as well as the correlation 
(concentration) of the book of business. Ideally, pricing of CAT covers should be 
based on such “bottom-up” information. The Wang transform, with adjustment for 
parameter uncertainty, can be applied directly to the loss exceedance curve for the 
CAT cover.  

•  The outlined approach is based on the pricing framework using the Wang transform. 
For pricing ground-up business, the Wang transform extends the classic CAPM in 
that the parameter λ can now be calibrated from overall industry capital requirements. 
For pricing excess-of-loss layers, the Wang transform implies risk-load relativity by 
layer, in parallel to the Black-Scholes formula for pricing options. For both primary 
and excess layers, the Wang transform prescribes a method to account for the duration 
of liabilities. 

 
Loss Reserve Discounting 
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Consider the loss reserve liability for a given line of business. The pricing approach can 
be equally applied to valuation of reserve liabilities. It should be kept in mind that the 
reserving risk, in terms of σ(t), may differ from the pricing risk. Here we provide an 
alternative (and more direct) approach to the discount of loss reserves. 
 
Again we assume that the loss reserve evolution follows a geometric Brownian motion. 
For $1 loss reserve liability, the incurred losses at time T has a distribution 

( )TTTTX 2
1

2
1  ,5.0logormal   ~   )( σσµ − . 

Assume that the risk-free rate is a constant r. The present value of the incurred losses has 
a distribution: 

( )TTTrrTTX 2
1

2
1  ,5.0)(logormal   ~  )exp( )( σσµ −−− . 

 
Let λ1 be the market price of risk for this line of business with one-year time horizon. For 
time horizon T, the market price of risk should be T1λ . Applying the Wang transform 
to the distribution for the discounted reserves, we get another lognormal distribution: 

( )TTTrrTTX 2
1

2
111  ,5.0)(logormal   ~  )exp( )(* σσσλµ −+−− .       (13) 

 
From relation (13) we infer that applying the Wang transform is equivalent to using the 
following discount rate: 

11σλ−= ri .     (14) 
In relation to equation (14) we make the following observations:  
•  The discount rate in equation (14) is the mirror formula of CAPM for assets. It is also 

in line with a reserve-discount formula proposed by Butsic (1988) and D’Arcy (1988). 
•  The per annum volatility σ1 for product liability should be higher than that for 

worker’s compensation. As a result, a lower discount rate should be used for product 
liabilities. 

•  For Worker’s Compensation lifetime-pension cases, the per annum volatility σ1 
should be negligible and the discount rate should be close to the risk-free rate. 

•  With this outlined approach, the key parameter λ1 can be (and should be) calibrated 
from aggregate industry capital allocations for each sector of underwritten business. 
This is in contrast to the traditional CAPM method where underwriting beta is derived 
from running linear regressions of equity prices of insurance firms. The “cost-of-
capital” calibration of λ1 should be more robust than the traditional estimation of 
underwriting beta. 
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Final Comments of Part Three 
 
Most of the applications shown are equally applicable to banks and other financial 
institutions. 
 
Our approach is mainly a top-down approach, which is consistent with CAPM. The top-
down approach uses industry aggregate data, rather than relying solely on individual risk 
distributions. The top-down approach also eliminates any possible inconsistencies related 
to the treatment of frequency/severity (see Venter, 1998).  
 
In the CAS White Paper on Fair Valuing Property/Casualty Insurance Liabilities, several 
methods of estimating risk adjustments are surveyed and compared. The White Paper 
discussed the advantages and disadvantages of the “Distribution Transform Method”,  
including the PH-transform method. The Wang transform can overcome most of the 
disadvantages listed in the White Paper: 

•  As shown earlier, the Wang transform can be used for producing prices or risk 
loads on primary business. In fact, under some common assumptions, the Wang 
transform reproduces the CAPM method and the Risk-Adjusted Discounting 
Method, which have both been used in pricing primary business. 

•  Unlike other transforms including the PH-transform, the Wang transform builds 
directly upon CAPM and Black-Scholes Theory. 

•  In the Wang transform, the parameter -- “market price of risk” -- has been a 
familiar concept to financial economists. The market price of risk can be 
calibrated from industry capital requirements. This calibration is more robust than 
historical estimates of the “underwriting beta”. 
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Appendix 1. Computational Steps for Example 1 of Part Two 
 
 
Detailed steps of the option-pricing example are shown in Table 3. We provide further 
explanations below: 
•  Column 1. Sort the sample of projected outcomes in ascending order. 
•  Column 2. Assign objective probabilities f(x)=1/20 to each projected outcome x. 
•  Column 3. Add up the individual objective probabilities f(x) to yield a series of 

cumulative probabilities F(x). 
•  Column 4. Using the empirical Sharpe Ratio (0.32) as a “starter” lambda value, apply 

the Wang transform to the cumulative probabilities F(x), to yield F*(x).  
•  Column 5. De-cumulate the transformed probabilities F*(x) to recover f*(x). Evaluate 

the mean value of this projected sample using probability weights f*(x). If the 
discounted mean value is greater (or less) than the current market value, adjust 
upward (or downward) the lambda value. Repeat the process of columns 4-5 until the 
discounted mean value matches the current market price. In this example, the “starter” 
lambda value of 0.320 has been tweaked to 0.342, in order to match the current price 
of $1326.03. The values of F*(x) and f*(x) shown in columns 4 and 5 are thus the 
final transformed probabilities using λ=0.342.  Now we proceed to columns 6-8. 

•  Column 6. For a given strike price ($1375 in this example), calculate the option 
payoff for each projected future price for the stock. That is, y(x)=max(x−1375, 0).  

•  Column 7. Calculate the expected payoff by multiplying the values of the option 
payoff function in Column 6 by the objective probabilities in Column 2. In this 
example, the resulting expected payoff is $41.53 before discounting, and $40.93 after 
discounting. 

•  Column 8. Calculate the risk-adjusted payoff using the transformed distribution. We 
do that by multiplying Column (5) by Column (6). The resulting option price is 
$25.35 before discounting, and $24.98 after discounting. 
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Table 3. Pricing of Call-Option Using the Wang transform (λ=0.342) 
 
(1) (2) (3) (4) (5) (6) (7) (8) 
Sorted Objective  Transformed  Contingent Weighted Risk 
Sample Probability  Probability  Payoff Value Adjusted 
x f(x) F(x) F*(x) f*(x) y(x) f(x) y(x) f*(x) y(x) 
   1,189.37  0.05000 0.05000 0.0963 0.0963              -            -                   -   
   1,218.71  0.05000 0.10000 0.1737 0.0774              -            -                   -   
   1,239.06  0.05000 0.15000 0.2437 0.0700              -            -                   -   
   1,287.08  0.05000 0.20000 0.3087 0.0650              -            -                   -   
   1,309.51  0.05000 0.25000 0.3698 0.0611              -            -                   -   
   1,352.47  0.05000 0.30000 0.4276 0.0579              -            -                   -   
   1,355.32  0.05000 0.35000 0.4827 0.0551              -            -                   -   
   1,358.41  0.05000 0.40000 0.5353 0.0526              -            -                   -   
   1,359.02  0.05000 0.45000 0.5856 0.0503              -            -                   -   
   1,363.84  0.05000 0.50000 0.6338 0.0482              -            -                   -   
   1,364.62  0.05000 0.55000 0.6800 0.0462              -            -                   -   
   1,377.62  0.05000 0.60000 0.7242 0.0442           2.62          0.13           0.12 
   1,387.64  0.05000 0.65000 0.7665 0.0423         12.64          0.63           0.53 
   1,415.00  0.05000 0.70000 0.8069 0.0404         40.00          2.00           1.62 
   1,419.09  0.05000 0.75000 0.8453 0.0384         44.09          2.20           1.69 
   1,429.04  0.05000 0.80000 0.8817 0.0364         54.04          2.70           1.97 
   1,505.44  0.05000 0.85000 0.9160 0.0342       130.44          6.52           4.47 
   1,518.84  0.05000 0.90000 0.9478 0.0318       143.84          7.19           4.57 
   1,550.21  0.05000 0.95000 0.9765 0.0288       175.21          8.76           5.04 
   1,602.70  0.05000 1.00000 1.0000 0.0235       227.70        11.38           5.34 
Values        
Expected   1,380.15     1,346.07         41.53         25.35 
Discounted   1,359.60     1,326.03         40.91         24.98 
 
  
 


