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ABSTRACT 

The insurance process is complex, with numerous factors combining to produce 

both premiums and losses.  While compiling rates, actuaries often aggregate data from 

more than one source, while at the same time stratifying the data to achieve homogeneity.  

However, such exercises may lead to biased and sometimes even surprising results, called 

Simpson’s paradox, because the variables involved in the aggregation process or the 

stratification process are confounded by the presence of other variables.  In this paper, we 

will describe Simpson’s paradox and confounding and the statistical underpinning 

associated with those phenomena.  We will further discuss how such bias may exist in 

P&C actuarial rating applications and solutions that can resolve the bias. 
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1. INTRODUCTION 

An actuary is asked by the CEO for a small insurance company to examine the 

good student discount that the company is offering.  The discount is currently fifteen 

percent, but several competitors offer a twenty percent discount for qualifying youthful 

operators.  As usual, the CEO is in a hurry, so the actuary compiles the experience and 

develops a relativity based on the pure premiums for all youthful operators (Age 15 to 

25).  Imagine the actuary’s shock when the experience indicates, not the twenty percent 

discount for which the CEO had been hoping, but a twenty percent surcharge.  The loss 

experience appears in TABLE 1. 

TABLE 1 

Without Good Student Discount
Exposures % Losses Pure Premium
      18,980  86.3%  $44,210,062           $2,329   

       
With Good Student Discount

Exposures % Losses Pure Premium Relativity 
        3,020  13.7%    $8,475,292           $2,806 20% 

 

The actuary knows of the problems incumbent with pure premiums, but certainly 

they can’t cause this magnitude of a disparity.  The actuary decides to review the 

experience by driver age that is available from the company’s class plan.  TABLE 2 

displays that experience. 

TABLE 2 

Without Good Student Discount
  Exposures % Losses Pure Premium   

Age 15-18         5,500  68.8%  $21,661,344           $3,938   
Age 19-21         5,580  93.0%  $12,488,608           $2,238   
Age 22-25         7,900  98.8%  $10,060,110           $1,273   
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Total       18,980    $44,210,062           $2,329   
With Good Student Discount

  Exposures % Losses Pure Premium Relativity 
Age 15-18         2,500  31.3%   $7,653,680           $3,061 -22% 
Age 19-21           420  7.0%       $705,002           $1,679 -25% 
Age 22-25           100  1.3%       $116,610           $1,166 -8% 

Total         3,020       $8,475,292           $2,806 20% 
 

The relativities by class appear more reasonable, but the actuary still has a 

concern.  How can the “average” of these three discounts produce a surcharge?  The 

actuary is also concerned about the variation in the indicated relativities.  The actuary 

requests data by driver age from the company’s IS department and reviews the 

experience, which is displayed in TABLE 3. 

TABLE 3 

Without Good Student Discount
Age Exposures % Losses Pure Premium   

15         1,300  65.0%    $6,500,000           $5,000   
16         1,300  65.0%    $5,525,000           $4,250   
17         1,350  67.5%    $4,876,875           $3,613   
18         1,550  77.5%    $4,759,469           $3,071   
19         1,860  93.0%    $4,854,658           $2,610   
20         1,860  93.0%    $4,126,459           $2,219   
21         1,860  93.0%    $3,507,490           $1,886   
22         1,920  96.0%    $3,077,540           $1,603   
23         1,980  99.0%    $2,697,656           $1,362   
24         2,000  100.0%    $2,316,169           $1,158   
25         2,000  100.0%    $1,968,744              $984   

Total       18,980    $44,210,062           $2,329   
With Good Student Discount

Age Exposures % Losses Pure Premium Relativity 
15           700  35.0%    $2,625,000           $3,750 -25% 
16           700  35.0%    $2,231,250           $3,187 -25% 
17           650  32.5%    $1,761,094           $2,709 -25% 
18           450  22.5%    $1,036,336           $2,303 -25% 
19           140  7.0%       $274,053           $1,958 -25% 
20           140  7.0%       $232,945           $1,664 -25% 
21           140  7.0%       $198,003           $1,414 -25% 
22             80  4.0%         $96,173           $1,202 -25% 
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23             20  1.0%         $20,437           $1,022 -25% 
24              -   0.0%               -                       -   0% 
25              -                -                 -                       -   0% 

Total         3,020       $8,475,292           $2,806 20% 
 

By further stratifying the data, even more precision appears to be achieved and it 

appears that an even higher discount is justified.  In addition, the same discount seems to 

be supported for all driver ages.  Nevertheless, the question remains: “How does the 

accumulation of all these discounts produce a surcharge?”  The answer is Simpson’s 

paradox. 

2. SIMPSON’S PARADOX 

E.  H.  Simpson first described the paradox in 1951 in a paper titled "The 

Interpretation of Interaction in Contingency Tables" [13].  It is an interesting statistical 

phenomenon that causes a potential bias in certain data analyses.  The paradox occurs 

when a relationship or association between two variables reverses when a third factor, 

called a confounding variable, is introduced.  The paradox also occurs when a 

relationship/association reverses when the data is aggregated over a confounding 

variable.   

2.1. The College Admissions Example  

The classic illustration of the paradox involves college admissions by gender, 

which can be illustrated in the example in TABLE 4 [3].   

TABLE 4 

  Male     Female     
School Applying Accepted % Applying Accepted % 

Engineering 1000 400 40% 200 100 50% 
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Arts 200 20 10% 1000 125 13% 
Total 1200 420 35% 1200 225 19% 

 

In TABLE 4, the overall acceptance ratio for female applicants, 19%, is lower 

than the ratio for the male applicants, 35%.  However, this relationship reverses when the 

factor of the school to which they apply is introduced.  When this variable is considered, 

the acceptance ratio for female applicants is 25% higher than male applicants for both the 

engineering school (50% to 40%) and the art school (13% to 10%).   

The reason why Simpson’s paradox occurs is that more female applicants apply to 

the art school, which has an overall lower acceptance rate than the engineering school.  

The engineering school has a 40% to 50% acceptance rate, while the art school has a 10% 

to 13% acceptance rate.  In the above example, about 83% of female applicants apply to 

the art school, while 83% of male applicants apply to the engineering school. 

Let’s vary the percentage of the female applicants applying to the art school and 

assume all the other parameters in the example remain the same.  Then, calculate the ratio 

of the overall female applicants to the male applicants.   
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FIGURE 1 

Simpson's Paradox
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In FIGURE 1, the solid line represents the ratio of the overall female acceptance rate to 

the overall male acceptance rate by varying the percentage of females applying to the 

engineering school.  We know that the underlying ratio is 1.25 when we analyze the 

acceptance by school, and the dashed line represents the actual ratio of 1.25. 

We can see that only when the percentage of female students applying to the 

engineering school is 83% is the overall ratio is the same as the true ratio.  This 83% is 

the same percentage as the male students applying to the engineering school.  For all the 

other percentages, the overall ratio is different from the true ratio. 

Another interesting point indicated in FIGURE 1 is that when the percentage of 

female students applying to the engineering school is less than 60%, the ratio of the 

overall acceptance rate of female to male is less than 1.00 represented by the dotted line, 

suggesting that the overall female acceptance rate is lower.  This is a reversal of the fact 
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that the female acceptance rate is higher than the male acceptance rate and is Simpson’s 

paradox [11]. 

From the above example, we can see that Simpson’s paradox occurs when the 

distributions of the sample population are not uniform across the two predictive variables.  

When this takes place, the variable of “school” is confounding the acceptance rate and is 

confusing the relationship between the acceptance rate and applicants’ gender.  We will 

discuss the concept of confounding variables in detail later. 

2.2. The Simple Math of Simpson’s Paradox  

Simpson’s paradox arises from one simple mathematical truth.  Given eight real 

numbers: a, b, c, d, A, B, C, D with the following properties: 
B
b

A
a

>  and 
D
d

C
c

> , then it 

is not necessarily true that 
DB
db

CA
ca

+
+

>
+
+ .  In fact, it may be true that: 

DB
db

CA
ca

+
+

<
+
+ .  

This is Simpson’s paradox.  This is an obvious math reality, yet it has significant 

ramifications in Bayesian analysis, medical research, science and engineering studies, 

societal statistical analysis and, yes, insurance ratemaking.  It is of concern for any 

statistical activity involving the calculation and analysis of ratios of two measurements.  

This activity is prevalent in insurance; loss ratios, pure premium, frequency, severity and 

loss development factors are just some of the statistics involving the ratio of two 

measures.   

3. CONFOUNDING VARIABLES 

A variable can confound the results of a statistical analysis only if it is related 

(non-independent) to both the dependent variable and at least one of the other 
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(independent) variables in the analysis.  More specifically, a variable can confound the 

results of an insurance rate structure analysis only if it is related (non-independent) to 

both the experience measure (loss ratio, pure premium, etc.) and at least one of the other 

rating variables in the analysis.    

3.1. Experimental Design  

Confounding and Simpson’s paradox is of great concern in the design of research 

studies.  For example, in a typical design of medical research, researchers would like to 

know the impact of an intervention measure.  Using the notation introduced in Section 

2.2, assume that A and C are the number of observations where the intervention has taken 

place.  B and D are the number of observations in the group where the intervention has 

not been executed (the control group).  The distinction between the A and C (and also B 

and D) observations is the potential confounding variable.  For example, in Cates [5], A 

and C would represent smokers attempting to quit with nurse intervention (the 

intervention) from two different studies (the potential confounding variable)1.  Also, in 

our previous college admission example, A and C might represent the number of females 

(the intervention) applying to the art and engineering schools (the potential confounding 

variable) respectively. 

                                                 

1 Cates [5] described the meta-analysis of smokers attempting to quit with and without high 

intensity  nurse intervention.  Cates illustrated several methods of combining studies from independent 

sources.  Methods included Maentel-Hensel fixed effects method and a random effects methodology.  Both 

of these methodologies produced weights that were used to combine the risk differences, rather than the 

underlying data.  Cates showed that a reversal (Simpson’s paradox) occurred when the raw data were 

combined.   
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Further, the number of events is represented by a, b, c and d and the ratio a/A is 

the proportion of events per number of observations, e.g. the percentage of females being 

admitted to art school or the proportion of smokers in Study #1 (of the Cates paper) who 

quit with the aid of a nurse.   

While both the college admission example and the smoking intervention example 

involve studies where existing data are observed and analyzed, assume for a moment that 

this is not the case; that we can design an experiment in such manner that we can 

minimize the bias of any potential confounding variable.  Ultimately, we find the bias is 

eliminated if the confounding variable and the variable under study are independent.  The 

bias is also eliminated if either the groups are balanced (possess an equal number of 

observations) or are proportionally distributed (there is the same ratio of observations of 

the variable under study for each value of the confounding variable).2  It is possible to 

illustrate this using the following argument. 

 

TABLE 5 

      Variables Under Study 
      1 2 
    Example Females Males 

Number of 
Events a b Confounding 

Variable 
Value 1 Number of 

Observations 

Art School 
A B 

Confounding 
Variable 

Number of 
Events 

Engineering 
School c d 

                                                 

2 Of course, the balance condition is a special case of the proportional condition.  The balance 

condition is especially important in experiment design. 
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Value 2 Number of 
Observations 

 
C D 

 

Consider an experiment with groups A, B, C, D as described above.  Also assume 

that the ratio differences are known and are equal to some K:  
D
d

C
cK

B
b

A
a

−==− .  

How can the experiment be designed so that K
DB
db

CA
ca

=
+
+

−
+
+ ?   

First assume that the potential confounding variable is independent of the variable 

under study, i.e. that 
C
c

A
a

=  and 
D
d

B
b

= .  Therefore 
c

aCA =  and 
d

bDB =  and 

D
d

bD
db

C
c

aC
ca

+

+
−

+

+

( ) ( )
K

D
d

C
c

db
d
D

db

ca
c
C

ca
=−=

+

+
−

+

+
= .  Therefore, if the potential 

confounding variable and the variable under study are independent then there is no 

confounding.    

Now instead of assuming independence, assume that the experiment has a 

balanced distribution, i.e. there is the same number of observations in each group relative 

to the variable under study, e.g. the same number of females applying to the art school 

and the engineering school and the same number of males applying to both schools.  

Then CA =  and DB = .   

And 
DB
db

CA
ca

+
+

−
+
+

DB
d

DB
b

CA
c

CA
a

+
−

+
−

+
+

+
=  

DD
d

BB
b

CC
c

AA
a

+
−

+
−

+
+

+
= 



 −−+=

D
d

B
b

C
c

A
a

2
1





 −+−=

D
d

C
c

B
b

A
a

2
1

[ ] KKK =+=
2
1 .  So there is no confounding if the observations possess a balanced 

distribution. 
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Now assume that the experiment is proportionally distributed, i.e. there is the 

same ratio of observations of the variable under study for each value of the confounding 

variable 





 =

D
C

B
A , i.e. the number of females applying to the art school divided by the 

number of males applying to the art school is the same as the number of females applying 

to the engineering school divided by the number of males applying to the engineering 

school.  If 
D
C

B
A

=  then define K
D
B

C
A ′== .  Then KCA ′= , KDB ′= , Therefore 

DB
db

CA
ca

+
+

−
+
+

DKD
db

CKC
ca

+′
+

−
+′

+
= 






 +

−
+

+′
=

D
db

C
ca

K 1
1  







 −−+

+′
=

D
d

D
b

C
c

C
a

K 1
1







 +−

+′
= K

D
b

C
a

K 1
1  

















+

′

−

′
+′

= K

K
B
b

K
A
a

K 1
1









+






 −′

+′
= K

B
b

A
aK

K 1
1 ( )KKK

K
+′

+′
=

1
1  

KK
K
K

=
+′
+′

=
1
1 .  Therefore, if the observations are proportionally distributed then 

there is no confounding.   

In the example detailed in the introduction of the paper, the good student pure 

premiums and ultimately the indicated good student discount were confounded by driver 

age.  It is not surprising that there is the observed relationship between the distribution of 

drivers by age and those with the good student discount.  As driver age approaches 25 

fewer are students, much less good students.  The reversal occurs since there is a higher 

distribution of young drivers with good student discount and young drivers have higher 

pure premiums. 
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Important Principle: If there is independence between the potential confounding 

variable and the variable under study, or if the study is balanced or proportionally 

distributed, then there is no confounding.   

Insurance ratemaking differs from most statistical studies in a number of ways: 

1. It is generally not possible to design the makeup of groups of insureds so that 

classifications are balanced. 

2. Generally there are far more values for each variable and probably more variables 

in insurance than in research analysis. 

3. In most statistical studies the objective is to accept or reject a hypothesis.  The 

primary concern in insurance ratemaking is to properly calculate a rate, which 

requires a continuous rather than binary output. 

In the next four sections, we will further examine and extend the above Important 

Principle of confounding to more than two variables using general statistical models and 

experimental design theories.  The two statistical models that we will use are the simple 

additive model and multiplicative model, both without an interaction term.  Such additive 

and multiplicative multivariable models are the ideal models and are similar to many 

insurance rating and class plan structures [1].  For illustrative purposes, we will use a 2 

by 2 rating example with age of driver (youthful drivers vs. adult drivers) and territory 

(urban territories vs. suburban territories) throughout the sections.  For more details of the 

additive and multiplicative statistical models and experimental design theories, please see 

Montgomery [8] and Neter, et al [9]. 

3.2. The Confounding Effect on an Additive Model with no Interaction Term 
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Let’s start with a 2 by 2 additive model.  Assume that the observation or exposure 

distribution of each cell is w ii 21 . 

Define:   
∑

=

i
ii

i
i w

w
w

2
21

1
1

,

1,
1),( ; e.g.  

ww
w

w
2,11,1

1,1
1),1( +

= , 
ww

w
w

2,11,1

2,1
2),1( +

= , 

ww
w

w
2,21,2

1,2
1),2( +

= , 
ww

w
w

2,21,2

2,2
2),2( +

= . Note: While this notation may be unfamiliar 

please accept this verbal interpretation.  If w ii 21, represents the exposures in cell ii 21 , , 

then w i 1),( 1
 represents the marginal exposure distribution of cell ii 21 ,  for cells with 12 =i . 

For a linearly independent additive model, the mean value (underlying rate) for 

each of the 2 by 2 cells can be represented as follows: µµµµ iiii 2121 ,, •• ++= : 2,11 =i , 

2,12 =i . 

By linearly independent we mean that there is no interaction term.  If the model 

were not linearly independent the mean value (underlying rate) for each of the 2 by 2 

cells would be represented as:  εµµµµ iiiiii 212121 ,,, +++= •• : 2,11 =i , 2,12 =i where ε ii 21,  

is the interaction term. 

More specifically, we define the following for the 2 by 2 age of driver and 

territory example: Territory) (VehicleDriver) of (Age iiii µµµµ
2121 ,, •• ++= , where dot 

index indicates the mean across that index.   

Now we want to compare the difference in the aggregate rate between adult and 

youthful drivers:  

Then the aggregate rate for each i1 is wwm iiiii 2),(2,1),(1,, 11111 µµ +=
•  

And wwwwmm 2),2(2,21),2(1,22),1(2,11),1(1,1,2,1 µµµµ −−+=−
•• . 
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Then  

( ) ( )µµµµµµ 2,,12),1(1,,11),1(,2,1 •••••• +++++=− wwmm     

  ( ) ( )µµµµµµ 2,,22),2(1,,21),2( •••• ++−++− ww . 

If ww 1),2(1),1( =  and ww 2),2(2),1( =  then  

( ) ( )µµµµµµ 2,,12),1(1,,11),1(,2,1 •••••• +++++=− wwmm     

 ( ) ( )µµµµµµ 2,,22),1(1,,21),1( •••• ++−++− ww  

( ) ( ) µµµµµµ •••••• −=−+−=
,2,1,2,12),1(,2,11),1( ww .  

Since for the 2 X 2 case: 12),1(1),1( =+ ww      

we can derive the same results for the other factor, the vehicle territory. 

If ww )1(,2)1(,1 =  and ww )2(,2)1(,2 =  then µµ 1,2,1,2, •••• −=− mm .  

Therefore, territory does not confound the age of driver relativities for this 2 by 2 

linearly independent additive model if territorial distribution of exposures is independent 

of the age of driver distribution of exposures.  That is, if ww
1),2(1),1( = , ww 2),2(2),1( = , 

ww
)1(,2)1(,1 =  and ww

)2(,2)2(,1 = .  This is a proportional distribution.  Of course, a special 

case for such a distribution occurs when each cell has the same number of data points, 

wwww 2,21,22,11,1 === .  This is a balanced distribution.  

The following is a numerical example that illustrates such an additive model.  The 

statistics for the example are as follows:  

Territory) (VehicleDriver) of (Age iiii µµµµ
2121 ,, •• ++=  

400$=µ Let , 
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drivers adultfor   and drivers youthfulfor  100$100$ ,2,1 −=+= •• µµ , 

drivers anfor suburb  and drivers urbanfor  100$100$ 2,1, −=+= •• µµ . 

Therefore, the pure premiums for each of the four combinations are: 

200$400$400$600$ 2,21,22,11,1 ==== µµµµ  , , , . Also assume that 

%5.37%5.12%5.37%5.12 2,21,22,11,1 ==== w ,w ,w ,w . 

 

TABLE 6 

    Urban Suburban Total 
Youthful Total Loss $3,000 $6,000 $9,000  

  Exposures               5               15              20  
  Distribution 12.5% 37.5% 50.0% 
  Pure Premium $600 $400 $450  
       

Adult Total Loss $2,000 $3,000 $5,000  
  Exposures               5               15              20  
  Distribution 12.5% 37.5% 50.0% 
  Pure Premium $400 $200 $250  
       

Total Total Loss $5,000 $9,000 $14,000  
  Exposures             10               30              40  
  Distribution 25.0% 75.0% 100.0% 
  Pure Premium $500 $300 $350  

 

If we study TABLE 6 we can see that the difference between youthful driver 

underlying rate and the adult driver underlying rate is: 200$,2,1 =− •• µµ , which is the 

same as the difference between the aggregate rates, $450-$250=$200.  Therefore, in this 

case, confounding does not occur. 
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The data for the other factor, the vehicle territory, yield the same result.  The 

difference between underlying rates for the urban territory and the suburban territory is: 

 200$2,1, =− •• µµ which is the same as if we use the aggregate rates, $500-$300=$200.  

Therefore, in this case as well, confounding does not occur. 

Now consider a different distribution:   

%5.12%5.37%5.37%5.12 2,21,22,11,1 ==== w ,w ,w ,w . 

This distribution is neither balanced nor proportional.  The confounding effect of 

territory on class (and vice versa) becomes apparent.  TABLE 7 displays that in this case 

for the age of the driver factor, we can see that the difference between the underlying rate 

for youthful drivers and adult drivers is:  00.200$,2,1 =− •• µµ , as before.  However the 

aggregate rate difference is $450-$350=$100.   

TABLE 7 

    Urban Suburban Total 
Youthful Total Loss $3,000 $6,000 $9,000  

  Exposures               5               15              20  
  Distribution 12.5% 37.5% 50.0% 
  Pure Premium $600 $400 $450  
       

Adult Total Loss $6,000 $1,000 $7,000  
  Exposures             15                 5              20  
  Distribution 37.5% 12.5% 50.0% 
  Pure Premium $400 $200 $350  
       

Total Total Loss $9,000 $7,000 $16,000  
  Exposures             20               20              40  
  Distribution 50.0% 50.0% 100.0% 
  Pure Premium $450 $350 $400  
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3.3. The Confounding Effect for an n-Dimensional Additive Model with no Interaction 

Term 

Now, we want to extend the linearly additive model from two dimensions to n-

dimensions.  Also we will extend the number of values for each variable to more than 

two, that is m values.  This is because a typical insurance rating structure has many 

variables with multiple values.  Again, assume that the sample distribution of each cell is 

w iiii ...4321
. 

Define:   
∑ ∑ ∑ ∑

=
m

i

m

i

m

i

m

i
iiii

iiii
iiii n

n
n

n
n

w

w
w

2

2

3

3

4

4
321

321
321

,...,,,

,...,,,
,..,,),(

...
. For a linearly additive model, the 

mean value for each of the n x m cells can be represented as follows: 

µµµµµ iiiiiii nn ,...,,,,...,,,,...,,,... ...
211321 ••••••••• ++++= : m i 11 ,...,3,2,1= , m i 22 ,...,3,2,1= , 

m   i 33 ,...,3,2,1= , … , m   i nn ,...,3,2,1= , where a dot ( • ) index indicates the mean across that 

index.   

Again, we want to compare the difference in the aggregate rate and the underlying 

rate between any two values for the first factor, i1. 

Then the expected rate for each i1 is ∑ ∑ ∑ ∑=
•••

m

i

m

i

m

i

m

i
iiiiiiiii

n

n
nn

wm 2

2

3

3

4

4
3213211 ,...,,),(,...,,,,...,,, ... µ  

and ∑ ∑ ∑ ∑=− ••••••
m

i

m

i

m

i

m

i
iiiiiiiii

n

n
nn

wmm 2

2

3

3

4

4
3213211 ,...,,),(,...,,,,...,,,1,...,,, ... µ      

  ∑ ∑ ∑ ∑−
m

i

m

i

m

i

m

i
iiiiii

n

n
nn

w
2

2

3

3

4

4
3232 ,...,,),1(,...,,,1... µ  . 

Then  
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( )∑ ∑ ∑ ∑ ++++=− •••••••••••••••
m

i

m

i

m

i

m

i
iiiiiiii

n

n
nnwmm 2

2

3

3

4

4
213211 ,...,,,,...,,,,...,,,,...,,),(,...,,,1,...,,, ...... µµµµ  

  ( )µµµµ ii

m

i

m

i

m

i

m

i
iii n

n

n
nw ,...,,,,...,,,,...,,,1,...,,),1( ......

2

2

2

3

3

4

4
32 ••••••••• ++++∑ ∑ ∑ ∑−  . 
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Confounding will not occur for the n-dimension linearly additive model if the 

sample distribution is proportional. 

3.4. The Confounding Effect on a Multiplicative Model with no Interaction Term 

Let’s start with a 2 by 2 multiplicative model without an interaction term.  

Assume that the sample distribution of each cell is w ii 21
 as before. 

Again define:  
∑
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i
i

i
i w

w
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For a multiplicative model with no interaction term, the mean value for each of 

the 2 by 2 cells can be represented as follows: 

µµµµ iiii 2121 ,, •• ××= : 2,11 =i , 2,12 =i . 

More specifically, we define the following for the 2 by 2 age of driver and 

territory example: 

 Territory) (VehicleDriver) of (Age iiii µµµµ
2121 ,, •• ××= , 

where a dot ( • ) index indicates the mean across that index.   

Now we want to compare the difference in the aggregate rate and the underlying 

rate between adult and youthful drivers.  

Then the expected rate for each i1 is wwm iiiii 2),(2,1),(1,, 11111 µµ +=
•  

and 
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m
m
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Therefore, territory does not confound the age of driver relativities for this 2 by 2 

multiplicative model if the territorial distribution of exposures is independent of the age 

of driver distribution of exposures.  That is, if ww 1),2(1),1( = , ww 2),2(2),1( = , ww )1(,2)1(,1 =  

and ww )2(,2)2(,1 = . 

This occurs when the distributions among the predictive variables are independent 

and proportional to each other.  Of course, a special case for such independent 

distributions is when each cell has the same number of data points, 

i.e. wwww 2,21,22,11,1 === . Again, this is a balanced distribution. 

The following is a numerical example that illustrates such a multiplicative model. 

The statistics for the example are as follows:  

Territory) (VehicleDriver) of (Age iiii µµµµ
2121 ,, •• ××=  

400$=µ Let , 
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drivers adultfor   and drivers youthfulfor  75.025.1 ,2,1 == •• µµ , 

drivers anfor suburb  and drivers urbanfor  50.050.1 2,1, == •• µµ . 

Therefore, the pure premiums for each of the four combinations are: 

  , , , 150$450$250$750$ 2,21,22,11,1 ==== µµµµ . 

Also assume that %5.37%5.12%5.37%5.12 2,21,22,11,1 ==== w ,w ,w ,w . 

 

TABLE 8 

    Urban Suburban Total 
Youthful Total Loss $3,750 $3,750 $7,500  

  Exposures               5               15              20  
  Distribution 12.5% 37.5% 50.0% 
  Pure Premium $750 $250 $375  
       

Adult Total Loss $2,250 $2,250 $4,500  
  Exposures               5               15              20  
  Distribution 12.5% 37.5% 50.0% 
  Pure Premium $450 $150 $225  
       

Total Total Loss $6,000 $6,000 $12,000  
  Exposures             10               30              40  
  Distribution 25.0% 75.0% 100.0% 
  Pure Premium $600 $200 $300  

 

 

If we study TABLE 8 for the age of the driver factor, we can see that the 

underlying rate for the difference between youthful drivers and adult drivers is: 

67.1
75.0
25.1

,2

,1 ==
•

•

µ
µ

which is the same as if we use the aggregate rate, 67.1
225$
375$

= .  

Therefore, in this case, confounding does not occur. 
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Now assume a different distribution:   

%5.12%5.37%5.37%5.12 2,21,22,11,1 ==== w ,w ,w ,w . 

TABLE 9 

    Urban Suburban Total 
Youthful Total Loss $3,750 $3,750 $7,500  

  Exposures               5               15              20  
  Distribution 12.5% 37.5% 50.0% 
  Pure Premium $750 $250 $375  
       

Adult Total Loss $6,750 $750 $5,000  
  Exposures             15                 5              20  
  Distribution 37.5% 12.5% 50.0% 
  Pure Premium $450 $150 $250  
       

Total Total Loss $10,500 $4,500 $15,000  
  Exposures             20               20              40  
  Distribution 50.0% 50.0% 100.0% 
  Pure Premium $525 $225 $375  

 

This distribution is neither balanced nor proportional and the confounding effect 

of territory on class (and vice versa) is again obvious.  TABLE 9 displays that in this case 

for the age of the driver factor, we can see that the relationship between the underlying 

rates for youthful drivers and the adult drivers is: 67.1
75.0
25.1

,2

,1 ==
•

•

µ
µ

, as before.  

However the aggregate rate is biased: 50.1
250$
375$

= . 

 

3.5. The Confounding Effect on an n-Dimensional Multiplicative Model with no 

Interaction Term 
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Now, we want to extend the multiplicative model from two dimensions to n-

dimensions.  In addition, for each variable, we will extend the number of values to more 

than two, that is, m values.  Again, assume that the sample distribution of each cell is 

w iiii ...4321
. 
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Confounding will not occur for the n-dimension multiplicative model if the 

sample distribution meets the above independent or proportional conditions. 

4. TYPES OF CONFOUNDING VARIABLES 

A variable that confounds the results of a study does so in essentially the same 

way regardless of the nature of the variable under study or the confounding variable 

itself.  However, the nature of the variable may affect its identification and treatment.  

For the purpose of this paper, confounding variables will be categorized as one of three 

types: stratification confounding variable, aggregation confounding variable or lurking 

confounding variable. 

4.1. Stratification Confounding Variable 

In order to properly price a pool of risks it may be necessary to stratify those risks 

into smaller, more homogeneous groups.  Often a structure is stratified using more than 

one criterion.  An example that has already been discussed is personal automobile, which 

is usually rated by territory and by classification.  Each of these rating variables is 

customarily analyzed separately and rating factors developed reflecting past loss 

experience.  If territory is independent of classification, then the rates developed will be 

appropriate.  If the distribution by classification varies between territories, that is 

classification is not independent of territory, then such a simple analysis will yield biased 
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rates.  For example, if there is a disproportionately high number of youthful operators in a 

particular territory and youthful operators are under priced, a univariate analysis of each 

rating variable will yield rates that are too high for the youthful drivers in that territory.  

If the rating variable under analysis is territory, then classification is a potential 

stratification confounding variable. 

4.2. Aggregation Confounding Variable 

“It’s a well accepted rule of thumb that the larger the data set, the more 

reliable the conclusions drawn.  Simpson’ paradox, however, slams a 

hammer down on the rule and the result is a good deal worse than a sore 

thumb.  Unfortunately Simpson’s paradox demonstrates that a great deal 

of care has to be taken when combining small data sets into a large one.  

Sometimes conclusions from the large data set are exactly the opposite of 

conclusion from the smaller sets.  Unfortunately, the conclusions from the 

large set are also usually wrong.”  [6] 

In order to stratify data into smaller and more homogeneous classes, actuaries 

gather data from as many sources as possible.  Adding states, companies and years of 

experience are three ways that an actuary may maintain class homogeneity while 

increasing class size (and thus credibility).  If the variable along which data is aggregated 

is correlated with one or more rating variables, then that variable may confound the 

results of any analysis of those rating variables.  For example, assume that state B’s loss 

experience is to be combined with state A’s loss experience to increase the volume of 

data available for a class relativity analysis.  Also assume that state B has a higher 

proportion of youthful operators as well as worse loss experience overall.  While an 
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analysis of each state’s youthful operator experience alone might yield the same 

appropriate relativity, when combined the analysis will produce an indicated youthful 

operator relativity that is inappropriately high. 

Exhibit 1 [14] illustrates the effect of two aggregation confounding variables.  In 

this scenario both loss ratio and exposure distribution by class are related to both year and 

state.  The loss experience displayed in Exhibit 1 (second page) arises from the required 

factors of 1.00 for class 01 and 2.10 for class 02.  The derivation of the indicated class 02 

relativity is displayed on the first page of Exhibit 1.  The indicated relativities are 2.27 

using the loss ratio method, 2.64 using the pure premium method and 2.27 using the 

modified loss ratio method.  Although each of  the indicated relativities are biased, the 

pure premium method is more susceptible to bias than either of the other two methods.  

Aggregation confounding variables (though not identified as such) were discussed at 

length by Stenmark [14].  The example of aggregation confounding variables given in 

Exhibit 1 will be discussed further in Section 5.5. 

4.3. Lurking Confounding Variable 

As displayed in the Introduction to this paper it is possible that a confounding 

variable may not be under examination.  While many references use the terms lurking 

variable and confounding variable interchangeably, a more narrow definition of lurking 

confounding variable is being used here.  A lurking confounding variable, then, is a 

variable that has not yet been uncovered as a stratification confounding variable or an 

aggregation confounding variable.  A lurking confounding variable may exist outside of 

an actuary’s ratemaking data, possibly to be detected using one of the many data mining 

techniques available.  A lurking confounding variable may be a data element that is 
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available only through demographic data, not captured through a company’s processing 

system.  Most discouraging of all, the piece of information may not exist anywhere as 

data.   

Insurance companies have been collecting more and more information and 

underwriters and actuaries have become sensitive to criteria that might affect the loss 

process.  Hopefully, then, there are not too many undiscovered confounding variables 

lurking in our data that will significantly distort our rates.  Regardless, one only needs to 

point at the use of credit scores to recognize an important lurking confounding variable 

that has only recently been utilized to its full potential.   

There are two issues relative to the discussion of confounding in previously 

unused rating variables.  First, prior to its use as a rating variable, the failure to segment 

insureds according to any credit measure may have caused confounding of those rating 

variables actually in use.  For example, assume that a certain class of insureds often 

displays a poor credit rating and, as a result, that class manifests poor loss experience.  

The rates for insureds in that class with a better credit score would receive an 

inappropriately high rate. 

Second, once credit score has been established as a rating variable proper methods 

must be undertaken to prevent the continued confounding of the class rates through the 

use of one of the treatments described in the next section.  For example, a company that 

provides a discount in automobile for insureds with a homeowner’s policy might find 

that, after introducing a discount for good credit, the rates for automobile risks with an 

accompanying homeowner’s policy are too low.  This challenge is discussed at length by 

Wu [15]. 
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5. TREATMENT OF POTENTIAL CONFOUNDING VARIABLES 

We have presented the empirical and theoretical evidence for the existence of 

Simpson’s paradox and confounding variables.  In this section, we present several 

alternatives for the treatment of this phenomenon.   

5.1. No Treatment 

Pearl [11] concludes that there is no test for confounding.  Much of Pearl’s 

writing concerns the principle of causality [10]; presumably because confounding is of 

such great concern in medical research and, in that research, causality is of prime 

importance.  Since, in insurance, we are more concerned with statistical correlation than 

causality we allow a more liberal test for confounding.  Therefore, we say that if a 

variable is unrelated to the variable under study or to the loss measure, then confounding 

will not result and no treatment is necessary.  However it is ill advised for an actuary to 

assume that there is no confounding without extensive examination of the relationship of 

all the variables affecting the loss process.   

5.2. Controlling Confounding through Experiment Design 

As discussed in Section 3.1, if we can carefully design an analysis and then 

collect the data accordingly, then we can control confounding.  Whether we have prior 

knowledge of the relation between the potential confounding variable and the target 

information or not, we can control its effect if the confounding variable is unrelated to the 

variable(s) under study.  This can be achieved through completely balanced design or 

proportional design of the experiment. That is, for each combination of the confounding 

variable and the variable(s) of interest, the same or proportional amount of data is 
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collected.  This concept is commonly used in many research areas such as medical, 

engineering, and scientific research projects. 

However, when an actuary analyzes insurance data, the actuary typically cannot 

“design” the analysis.  The actuary has to analyze whatever he or she is given.  The data 

are mostly determined by the company’s book of business, which is largely determined 

by the market segments that the company serves.  Moreover, since there are multiple 

rating variables, and for each rating variable, there exist many different values, it is 

possible that many combinations of the variables will have missing or very little data.  In 

other words, insurance data is highly non-ideal for the confounding issue, and it is 

difficult, if not impossible, for us to control the bias through the experimental design 

approach. 

5.3. Controlling Confounding through Multivariate Analysis 

If the insurance data is highly non-ideal and we cannot control confounding 

through standard experimental design, we can control it by using multivariate analysis.  

That is, we can perform the Bailey’s [1] minimum bias analysis or GLM analysis [4] [7] 

by including the confounding variable along with the variable(s) of interest.  By doing so, 

the confounding variable’s relation with the target variable and the variable(s) in interest 

will be properly determined and be allocated through the multivariate approach.  

Therefore, the true relationship of the variable(s) under study can be revealed.   

While multivariate analysis may be an ideal solution to deal with the confounding 

issue, there may exist practical issues for using the approach within insurance 

applications.  One issue is that insurance applications constantly aggregate or stratify data 

with regards to states, years, and companies.  In theory, we can include these potential 
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confounding variables in the analysis, but the inclusion of these non-rating variables in 

the multivariate analysis may lead to other issues such as credibility of the data for 

analysis and reasonability and interpretation of the analysis result for the variables.  

Therefore, later we propose an alternative approach, using scaling factors, for actuaries to 

consider for addressing confounding.  The alternative approach will be discussed in detail 

in Section 5.5. 

5.4. Controlling Confounding through the use of Meta-analysis 

Researchers are often faced with situations that compel the use of data from 

several studies.  In insurance we strive to increase the volume of our data to increase 

credibility and medical researchers attempt to do the same through compilations of more 

than one study called meta-analyses [5].   

A research study typically includes observations from two groups: an intervention 

group ( Ni ) and a control group ( N c ).  From these observations four pieces of data are 

derived: An intervention with an event ( ni ), intervention without an event ( nN ii − ), 

control with an event ( nc ) and control without an event ( nN cc − ).  From these a statistic, 

generally called a “size effect”, is calculated.  The two size effects in general use are 

termed the “risk difference” and the “odds ratio”.  The risk difference is the difference 

between the ratio of the number of interventions with an event to the total observations of 

all interventions and the ratio of the number of control subjects with an event to the total 

observations of the control group.  
N
n

N
n Difference Risk

c

c

i

i −= .  The reciprocal of the risk 

difference is termed the “number needed to treat” (or “harm”) and represents the number 

of interventions required to achieve one event.  The odds ratio is the ratio of the ratio of 

the number of interventions with an event to the number of interventions without an event 
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to the ratio of the number of control subjects with an event to the number of control 

subjects without an event.  
nN

n
nN

n Ratio Odds
cc

c

ii

i

−
÷

−
= . 

If an analyst naively combines all of the observations, confounding can result and 

lead to biased findings because there is a different distribution of observations between 

studies.  For example, in Cates [5] seven out of ten studies resulted in a positive number 

needed to treat and the three that did not represented only 839 of the 6,121 observations 

in the meta-analysis.  Regardless, combining the raw data produced a number needed to 

harm in contrast to the number needed to treat in the majority of studies. 

A discipline has risen centered around the optimum method to be used to combine 

such studies.  In general, methodologies focus on calculating a variance for each study.  

The reciprocal of this variance is used to weight the size effects themselves rather than 

the raw observations. 

This treatment is analogous to calculating class relativities for each year and state 

and weighting those relativities to arrive at a composite relativity for each class.  As such, 

it has some similarities to credibility weighting.  However, one major difference between 

typical medical research and insurance ratemaking is that medical research results are 

binary outputs and insurance ratemaking results are relativities or rates on a continuous 

scale.  Therefore, although meta-analysis provides an interesting example of the effect 

and treatment of confounding in medical research, it does not appear to have any direct 

application to insurance pricing.   

5.5. Controlling Confounding through the use of Scaling Factors 

In this section, we introduce a practical approach, called “scaling factors”, to treat 

the confounding effect that may commonly exist in insurance rating applications.  This 
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approach was first proposed by Stenmark in his 1990 paper [14] and we are revisiting the 

approach from the perspective of confounding variables and Simpson’s paradox.  This 

approach is important because there are some confounding variables that are not 

optimally addressed using any of the treatments mentioned above. 

It is not usually desirable or practical to include a multivariate analysis of most 

aggregation confounding variables as described in Section 4.2, since if data from several 

states are included, a multiplier by state is probably not a necessary rating model output.  

This is because each state’s overall rate change requirements will be calculated through a 

statewide indication, possibly at some indeterminate time in the future.  In addition, a 

multiplier for each experience year has no direct application or interpretation.  

Regardless, recognition of such variables in multivariate analysis, through the use of 

dummy variables, is an accepted and effective practice as will be discussed in Section 

5.6.  An alternative to that approach will be discussed in this section. 

Is there a way that data from several experience years and several states can be 

aggregated to increase data volume without possibly confounding the results of the study 

and without the necessity of inclusion of the confounding variable in the analysis? 

As stated previously, there are two conditions necessary for a variable to 

confound the results of an analysis: 

1. There must be a relationship between that variable and the experience variable. 

2. There must be a relationship between that variable and at least one of the rating 

variables under analysis. 

If either of those two conditions is not met then there is no confounding of the 

results. 
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This leads to the question:  if both conditions are met can the data be modified so 

that one of the conditions is no longer met, eliminating the confounding?   This must be 

done in such a manner that the important underlying relationships in the data are not 

disturbed.  In the following sections, we will show the scaling factors approach using a 

class plan analysis example with two potential confounding variables – states and years. 

5.5.2 The Loss Experience Model 

To eliminate the confounding effect it is first necessary to quantify that effect on a 

classification loss model.  The model need not be complex and is composed, at the 

atomic level, of exposures, base rate, current rating factors, required rating factors and 

base class loss ratio.  Appendix A outlines this model and the quantification of the impact 

of confounding.  For example, the total earned premiums for class i on present rates =  

Pi= cBe iys
y s

iys∑ ∑  and the total incurred losses for class i = Li= fBre iys
y s

ysiys∑ ∑ .  The 

notation introduced in Appendix A will be used throughout the remainder of Section 5. 

The impact on indicated class relativities due to the confounding effect of 

aggregation of experience by year and by state is displayed for three classification 

ratemaking methods: the loss ratio method, the pure premium method and the modified 

loss ratio method.  The modified loss ratio method bears some description.  The 

premiums are calculated at base class rates so that the output of the method is the class 

relativity, not the indicated change to that relativity. 

In addition to the three methods presented there is another subtle variation in 

methodology.  It is possible to develop each class relativity as a ratio of the selected 

statistic (e.g.  loss ratio) to that of a base class (special case) or to the statistic of the all 

class experience (general case).  The words “special” or “general” are used to identify 
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each method.  For example, in Personal Automobile Insurance it is common to divide the 

class loss ratio by the loss ratio for adult driver (pleasure use).  This is the special case.  It 

is not always the case that the base class has a large portion of the business, so the all 

class loss ratio may provide a more stable base.  This is the general case.  The class 

relativities can be normalized back to the base class after the indicated relativities have 

been credibility weighted and selections have been made from those credibility weighted 

relativities.  The model introduced by Stenmark [14] was for the special case only.  

Including the general case adds further flexibility. 

The bias produced by confounding is derived in Appendix A and is reproduced 

below: 

Bias arising from confounding using pure premium method (special case) 

Equation 5-1 
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Bias arising from confounding using loss ratio method (special case) 

Equation 5-2 
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Bias arising from confounding using modified loss ratio method (special case) 

Equation 5-3 
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Each of the above utilizes the base class experience as the base.  If the relativity is 

calculated utilizing, instead, the all class experience (general case) then the bias for the 

modified loss ratio method is shown in Equation 5-4. 

Equation 5-4 
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5.5.2 Derivation of the Scaling Factor 

Is it possible to scale the premiums or losses (or both) in such a manner that the 

bias is removed when the data from one state and/or year are combined with that of 

another state or year?  What characteristics should such a scaling factor possess?  Two 

criteria must be met by any scaling factor candidate: 

Criterion 1: The scaling factors should maintain the relationship between class loss 

ratios by year and state (The scaling factors should not change the 

underlying relativities). 

Criterion 2: The scaling factors should reduce the bias due to confounding to zero.   

Any scaling factor that is applied uniformly to each class within a specific state 

for a particular year or is applied to both premiums and losses for a specific class will 

fulfill the requirements of Criterion 1.  When either the exposure distribution or the base 

class loss ratio remains constant, the distortion is not present and any scaling factor that 

stabilizes either the base or total class loss ratio (in the special case or general case 

respectively) or the exposure distribution should fulfill the requirements of Criterion 2. 

A clue as to how to approach the derivation of a scaling factor was discussed in 

the section on experiment design.  If the experience is balanced or there is no relationship 



 36

between the experience and the confounding variable, then confounding does not occur.  

If a scaling factor candidate can promote either characteristic, then confounding should 

be mitigated. 

Appendix B displays the evaluation of four types of scaling factors that meet the 

needs of both criteria.  These scaling factors can be broken into two categories.  One 

category applies to the special case and the other applies to the general case.  Each 

category has one scaling factor that is used to address the non-independence of the 

confounding variable and the loss statistic (loss ratio, pure premium, etc.).  The other 

scaling factor addresses the non-independence of the confounding variable and the rating 

element(s) under study (balance). Only one type of scaling factor need be used in a rate 

analysis.  The choice of which type of factor to use is the choice of the actuary.   

Please note that these factors were arrived at by inspection.  This was not a trivial 

process, but it is believed by the authors that a mathematical derivation of the factor is 

not possible.  The factors are tested within Appendix B to display that the bias from 

confounding is eliminated. 

The first scaling factor that is considered is the reciprocal of the base class loss 

ratio for each state and year.  By applying this factor uniformly to the losses for each 

class, the relationship between each of the class loss ratios is maintained (Criterion 1) 

while the method error is reduced to zero (Criterion 2).  This is shown in Appendix B. 

The example given in Exhibits 1-5 is used to examine the scaling factors.  Exhibit 

2 displays the effect of scaling losses with the reciprocal of Scaling Factor 1, the base 

class loss ratio.  Both Exhibits 2 and 3 utilize input parameters that were set forth in 

Exhibit 1.  The modified loss ratio method is utilized in this exhibit.  The premium is 
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modified to the base class rate level by dividing by the class factor prior to calculating the 

loss ratio.  For each class, the losses are scaled by the base class adjusted loss ratio for 

that year and state.  For example, the incurred losses for state 01, year 1 (500,000) are 

multiplied by the reciprocal of class 01 loss ratio (1.00/0.50=2.00) to yield the scaled 

losses of $1,000,000.  The class 02 incurred losses (525,000) are also multiplied by this 

factor to yield the scaled losses for that class of $1,050,000.  These scaled losses maintain 

the relationship between the class loss ratios, but lose any information regarding the 

actual base class loss ratio.  It is possible to apply a scaling factor (the base class loss 

ratio in this case rather than its reciprocal) to the premium rather than the losses.  This 

method should be used only for larger, more stable lines of business.  In cases where even 

the base class loss ratio can fluctuate wildly, it is more appropriate to scale the losses. 

The reason is that scaled losses are equal, in total, to premium.   If  the scaling factor 

were applied to premium, the result would be equal to (the more volatile) losses.   

The second scaling factor derived in Appendix B addresses the different exposure 

distribution by year and state.  The ratio of the total exposures for each class to the total 

exposures for the base class is multiplied by the ratio of the base class exposures in each 

state and year to the class exposures in each state and year to provide the scaling factor 

(algebraically iys

bys

y s
bys

y s
iys

iys e
e

e

e
s •

∑ ∑

∑ ∑
=

).   As opposed to the first scaling factor, the 

second scaling factor is unique for each class, year and state. However, since the factor is 

applied to both premiums and losses, this scaling factor also satisfies the requirements of 

Criterion 1.  When e'iys replaces eiys in the equation for the error developed in Appendix 
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A, that error is reduced to zero, thus satisfying the requirements of Criterion 2.  Exhibit 3 

displays the effect of utilizing the second scaling factor. 

The third scaling factor is for the general case and it addresses the non-

independence of the confounding variable and the loss experience, as did Scaling Factor 

1.  Appendix B displays the derivation of this factor as well.  The reciprocal of the loss 

ratio for the state and year is shown to eliminate the bias in the loss experience. 

The fourth scaling factor is similarly tested in Appendix B.  This factor is applied 

in the general case and addresses balance.  As displayed the appendix this scaling factor 

is 
iys

i
iys

i y s
iys

y s
iys

iys e

e

e

e
s

∑
•

∑ ∑ ∑

∑ ∑
= .   

The advantages of Scaling Factors 1 and 3 are: 

1. Ease of use:  The base class and statewide loss ratio is directly obtainable 

from the data already necessary for the modified loss ratio method. 

2. Since the scaling factor is applied uniformly for each class, the premium 

distribution by class for each year and state is left unaltered. 

3. Many of the traditional adjustments to premium and loss data are no 

longer necessary.  Any adjustment that applies uniformly to the premiums 

or losses of all classes is nullified by the application of that scaling factor.  

These adjustments would include present level adjustments for overall rate 

changes, development factors and trend factors.  If, however, an 

adjustment is not applied uniformly by class, it will still be necessary.  For 

example, if trend factors are applied by cause of loss, these factors will 

need to be applied prior to the scaling process. 
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The advantage of Scaling Factors 2 and 4 is that if the exposure distribution is 

more stable than the loss ratios from year to year then Scaling Factors 2 and 4 will result 

in less abrupt adjustments for most classes than will Scaling Factors 1 and 3.   

5.6. Comparison of Multivariate Analysis vs. Scaling 

It is common practice to include dummy variables for potential aggregation 

confounding variables in a multivariate analysis.  Inclusion of a dummy variable for both 

year and state, for example, would allow the non-independence of those variables with 

the dependent variable (e.g. loss ratio) to be reflected in the dummy variables.  Does this 

methodology compensate for the confounding observed previously?  If it does, is this 

method more or less effective than the use of one of the scaling factors discussed in the 

previous section?  Table 10 displays the results of such a computation.  The resulting 

factors for State 1 and 2, Year 1 and 2 and Class 01 and 02 are shown.  In eleven 

iterations the minimum bias equations converged to the raw output displayed in TABLE 

10.   



 40

The raw output was then normalized to base class (year and class) and the state 

factors were adjusted to correct for the normalization.  The normalized class 02 factor is 

equal to the correct value, 2.10.  It appears that both the scaling factors discussed in 

section 5.5 and the multivariate analysis discussed above yield the correct factor  in this 

deterministic scenario.   

However, the world in which we live is hardly deterministic.  It is necessary to 

test each method in a stochastic model.  The deterministic model was used to 

parameterize such a model.  Separate frequency and severity averages were derived 

assuming a frequency of .01 adjusted by the class and year loss ratio.  The state loss ratio 

was reflected in the severity.  The frequency distribution was assumed to be Poisson and 

the severity distribution was assumed to be lognormal.  Exhibit 4 displays the model 

output.  One thousand iterations were simulated.  Within each iteration for each exposure 

for each year, state, and class a number of claims was derived from the Poisson.  For each 

of these claims a claim size was determined from the lognormal distribution.  The loss 

ratio for each year, state, and class was determined and from these the Class 02 relativity 

was derived using the univariate (traditional) method, each of the four scaling factor 

1 2
Number of 
Iterations

State 1.1544      1.3853      11
Year 0.7432      1.1148      

Class 0.5828      1.2238      

1             2
State 0.5000      1.8900      
Year 1.0000      1.5000      

Class 1.0000      2.1000      

Result of Minimum Bias
Using Dummy Variables for State and Year

Raw Output

Normalized

TABLE 10 
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methods, as well as, Bailey’s minimum bias.  The authors acknowledge that the use of a 

linear model based on the lognormal might have been more appropriate.   

The values that emerged from the deterministic model are displayed as the 

expected values.  Below these are the average values from all one thousand iterations.  

Finally, the next row displays the mean square error (MSE) for each column.  The value 

used to calculate this error for the univariate method was the correct class relativity rather 

than the relativity emerging from the deterministic model (i.e. 2.10 rather than 2.2958).   

The presence or absence of a loss limit might affect the sensitivity of each method 

to variability in losses.  Therefore, the model was repeated, but this time losses were 

limited to $25,000.  Of course, the lognormal parameters had to be adjusted upward to 

compensate for the excluded losses at the top end of the distribution. 

The mean square error for the univariate method was somewhat higher than that 

for the other methods with or without the loss limitation.  This was expected since the 

method possessed a relatively large bias in the first place.  On the other hand, there was 

no significant difference between the errors for Bailey’s minimum bias and the four 

scaling methods.  It appears that while use of an iterative bias reducing methodology 

does, in fact, reduce bias, so do each of the scaling factors described earlier in this paper. 

6. CONFOUNDING VARIABLES AND CURRENT ACTUARIAL PRACTICE 

6.1. Areas where confounding variables have been recognized. 

Bailey and Simon [2] first recognized the potential for bias from confounding in 

1960, though they did not identify it as such.  Are there other areas where actuaries have 

recognized this bias and compensated for it?   
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One answer is in the trending process that actuaries frequently employ in their 

rating and reserving applications to adjust premium and loss data.  It is customary when 

preparing a rate indication to trend losses to recognize the increase in severity and 

changing frequency.  It is also necessary to trend premium to recognize that some loss 

trend is from factors that will increase the premium over time.  These inflation and 

coverage sensitive rating factors confound the loss trends necessitating an adjustment.  

Since deductible, for example, is related to both the trend measure, pure premium or 

frequency and severity, as well as related to time (deductibles tend to increase over time), 

deductible is a confounding variable for trend data.  Other confounding variables for 

trend might be symbol, model year, limit of liability, amount of insurance, to name just a 

few. 

6.2. Areas where confounding may be an unrecognized problem 

Confounding is a frequent and serious problem in ratemaking.  Obviously, almost 

all the rating variables can confound each other because their distributions are hardly 

independent.  As discussed above, the premium and loss on-leveling and trending is a 

process that actuaries employ to encounter such confounding to the best we can.  

However, the process may not be able to remove all the potential confounding 

relationships between the variables. 

Moreover, there are other potential confounding variables that exist outside the 

rating variables that may not be fully recognized and explored, i.e. lurking confounding 

variables.  The following are a few examples, some of which have been discussed 

previously: 
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• Geographic Information: While a rating plan may include geographic 

rating variables, such as state and territory, such variables may not be 

enough to fully explain the confounding relationship in the rating data.  

The real underlying drivers for such geographic factors include the 

underlying demographic, consumer, economic, traffic, and weather 

information.  Such information includes, but is not limited to, information 

such as education, employment, credit, life style, consumer spending, 

traffic volume, crime, cold, heat, hail, storms, etc.  Especially for 

commercial lines of business, such geographic information is usually 

under-represented in the rating process. 

• Market Segment:  The rating variables distribution is significantly 

influenced by market segments.  For example, a non-standard book of 

business might be expected to have a much higher distribution of younger 

drivers, more risks with prior claims and violations, and insurance with 

lower coverages.  Therefore, it might be prudent to aggregate or stratify 

data along different market segments.  In many instances, companies or 

tiering will be used to separate different market segments.  It is highly 

likely that classification experience will be confounded by rating tier or 

company.  Variables used in company placement or tiers typically include 

both rating variables and non-rating variables.  Company or rating tier can 

be used as a variable with classification in a linear model or the experience 

should be treated with one of scaling factors introduced in Section 5.5. 
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• Distribution Channels:  Our experience indicates that distribution channels 

will also affect the compositions and the information gathered for a book 

of business.  This issue has become even more significant as many 

companies are going on-line in addition to the two traditional channels of 

direct writers and independent agents.  We have found that business 

flowing through different channels may be of very different quality and 

contain differing amounts of information.     

• External Environment:  The insurance industry is not operating within an 

isolated world, and its performance is a part of the increasingly more 

integrated national or even worldwide economy.  Therefore, in the fast-

changing world, issues such as technological development, economic 

cycles and recent terrorism activity will impact the insurance industry.  

The current hard market condition is a clear piece of evidence how the 

insurance underwriting cycle is influenced by the external world.  

Therefore combining multiple years with possible year to year changes 

and insurance cycles requires special care.  Additional care must be 

rendered when projecting the historical information into the future.   

7. CONCLUSIONS 

E.  H.  Simpson introduced the concept now known as Simpson’s paradox.  It is 

the extreme case of a phenomenon known as confounding.  While such extreme cases 

may not occur frequently in actuarial calculations, the change in relationship due to 

confounding does.         
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A variable can confound the results of an insurance rate structure analysis only if 

it is related (non-independent) to both the experience measure (loss ratio, pure premium, 

etc.) and at least one of the other rating variables in the analysis.   Confounding variables 

can be categorized as either a stratification confounding variable, an aggregation 

confounding variable or a lurking confounding variable. 

Several methods for the treatment of confounding were discussed including no 

treatment, experimental design, multivariate analysis, meta-analysis and use of scaling 

factors. 

The combination of data from more than one year may cause distortion in 

traditional classification ratemaking techniques if each body of data represents a different 

base rate adequacy and different exposure distribution by class.  The combination of data 

from more than one state may cause distortion in the traditional pure premium method if 

the base rate from each state is different and possesses a different exposure distribution 

by class.  The combination of data from more than one state may cause distortion in both 

of the traditional methods if the base rate from each state is different, the base class loss 

ratio is different and the state/year data exhibit a different exposure distribution by class.  

It is more than likely that these conditions will exist within most bodies of ratemaking 

data.   These distortions may be remedied by the application of a scaling factor to the data 

from each year and each state.  This scaling factor may address either the exposure 

distribution or the base rate adequacy.  An investigation of the effectiveness of 

multivariate analysis in comparison with the use of scaling factors reveals that both 

methodologies reduce the effect of confounding, probably to the same degree.   
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The authors have encountered the confounding experience numerous times in 

their work, and it is with this motivation that we introduce Simpson’s paradox and the 

concept of confounding to the actuarial community.  We believe that understanding these 

concepts is a key for actuaries in understanding the “correlation” issue that exists 

frequently in our actuarial work and the impact of such “correlation” of analysis results.   
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Exhibit 1

Multiple State - Multiple Year Situation
Different Loss Ratios - Different Distribution

Assumptions

Current Required                   Loss Ratios
Class Factor Factor State Year 1 Year 2

01 1.00 1.00 1 50% 75%
02 2.00 2.10 2 60% 90%

                      State 1                           State 2
Class Year 1 Year 2 Year 1 Year 2 Total

01 10,000 15,000 10,000 15,000 50,000
02 5,000 15,000 15,000 45,000 80,000

Total 15,000 30,000 25,000 60,000 130,000

 State 1 Base Rate = $100
 State 2 Base Rate = $200

(The Derived Loss Experience is shown on the next page.)

Indicated Class 2 Relativity

   Loss Ratio Method: (84.56% / 73.67%)  x  2.00 = 2.30
        Pure Premium Method: 295.97 / 110.50 = 2.68
   Modified Loss Ratio Method: (169.13% / 73.67%)   = 2.30

Class Factors Underlying Experience Class 01 Loss Ratio

Distribution of Exposures
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Exhibit 1 (cont.)

Modified Modified
Earned Class Earned Incurred Loss Pure Loss

Class Exposures Premium Factor Premium Losses Ratio Premium Ratio

State 1
Year 1 01 10,000 $1,000,000 1.00    $1,000,000 $500,000 50.00% $50.00 50.00%

02 5,000 $1,000,000 2.00    $500,000 $525,000 52.50% $105.00 105.00%
Total 15,000 $2,000,000 $1,500,000 $1,025,000 51.25% $68.33 68.33%

Year 2 01 15,000 $1,500,000 1.00    $1,500,000 $1,125,000 75.00% $75.00 75.00%
02 15,000 $3,000,000 2.00    $1,500,000 $2,362,500 78.75% $157.50 157.50%

Total 30,000 $4,500,000 $3,000,000 $3,487,500 77.50% $116.25 116.25%

All Years 01 25,000 $2,500,000 $2,500,000 $1,625,000 65.00% $65.00 65.00%
02 20,000 $4,000,000 $2,000,000 $2,887,500 72.19% $144.38 144.38%

Total 45,000 $6,500,000 $4,500,000 $4,512,500 69.42% $100.28 100.28%

State 2
Year 1 01 10,000 $2,000,000 1.00    $2,000,000 $1,200,000 60.00% $120.00 60.00%

02 15,000 $6,000,000 2.00    $3,000,000 $3,780,000 63.00% $252.00 126.00%
Total 25,000 $8,000,000 $5,000,000 $4,980,000 62.25% $199.20 99.60%

Year 2 01 15,000 $3,000,000 1.00    $3,000,000 $2,700,000 90.00% $180.00 90.00%
02 45,000 $18,000,000 2.00    $9,000,000 $17,010,000 94.50% $378.00 189.00%

Total 60,000 $21,000,000 $12,000,000 $19,710,000 93.86% $328.50 164.25%

All Years 01 25,000 $5,000,000 $5,000,000 $3,900,000 78.00% $156.00 78.00%
02 60,000 $24,000,000 $12,000,000 $20,790,000 86.63% $346.50 173.25%

Total 85,000 $29,000,000 $17,000,000 $24,690,000 85.14% $290.47 145.24%

All States
Year 1 01 20,000 $3,000,000 $3,000,000 $1,700,000 56.67% $85.00 56.67%

02 20,000 $7,000,000 $3,500,000 $4,305,000 61.50% $215.25 123.00%
Total 40,000 $10,000,000 $6,500,000 $6,005,000 60.05% $150.13 92.38%

Year 2 01 30,000 $4,500,000 $4,500,000 $3,825,000 85.00% $127.50 85.00%
02 60,000 $21,000,000 $10,500,000 $19,372,500 92.25% $322.88 184.50%

Total 90,000 $25,500,000 $15,000,000 $23,197,500 90.97% $257.75 154.65%

All Years 01 50,000 $7,500,000 $7,500,000 $5,525,000 73.67% $110.50 73.67%
02 80,000 $28,000,000 $14,000,000 $23,677,500 84.56% $295.97 169.13%

Total 130,000 $35,500,000 $21,500,000 $29,202,500 82.26% $224.63 135.83%

Derived Loss Experience

Multiple State - Multiple Year Situation
Different Loss Ratios - Different Distribution
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Exhibit 2

Multiple State - Multiple Year Situation
Different Loss Ratios - Different Distribution

Derived Loss Experience

Earned Class Adjusted Incurred Adjusted Scaled Modified
Class Exposures Premium Factor Premium Losses Loss Ratio Losses Loss Ratio

State 1
Year 1 01 10,000 $1,000,000 1.00 $1,000,000 $500,000 50.00% $1,000,000 100.00%

02 5,000 $1,000,000 2.00 $500,000 $525,000 105.00% $1,050,000 210.00%
Total 15,000 $2,000,000 $1,500,000 $1,025,000 68.33% $2,050,000 136.67%

Year 2 01 15,000 $1,500,000 1.00 $1,500,000 $1,125,000 75.00% $1,500,000 100.00%
02 15,000 $3,000,000 2.00 $1,500,000 $2,362,500 157.50% $3,150,000 210.00%

Total 30,000 $4,500,000 $3,000,000 $3,487,500 116.25% $4,650,000 155.00%

All Years 01 25,000 $2,500,000 $2,500,000 $1,625,000 65.00% $2,500,000 100.00%
02 20,000 $4,000,000 $2,000,000 $2,887,500 144.38% $4,200,000 210.00%

Total 45,000 $6,500,000 $4,500,000 $4,512,500 100.28% $6,700,000 148.89%

State 2
Year 1 01 10,000 $2,000,000 1.00 $2,000,000 $1,200,000 60.00% $2,000,000 100.00%

02 15,000 $6,000,000 2.00 $3,000,000 $3,780,000 126.00% $6,300,000 210.00%
Total 25,000 $8,000,000 $5,000,000 $4,980,000 99.60% $8,300,000 166.00%

Year 2 01 15,000 $3,000,000 1.00 $3,000,000 $2,700,000 90.00% $3,000,000 100.00%
02 45,000 $18,000,000 2.00 $9,000,000 $17,010,000 189.00% $18,900,000 210.00%

Total 60,000 $21,000,000 $12,000,000 $19,710,000 164.25% $21,900,000 182.50%

All Years 01 25,000 $5,000,000 $5,000,000 $3,900,000 78.00% $5,000,000 100.00%
02 60,000 $24,000,000 $12,000,000 $20,790,000 173.25% $25,200,000 210.00%

Total 85,000 $29,000,000 $17,000,000 $24,690,000 145.24% $30,200,000 177.65%

All States
Year 1 01 20,000 $3,000,000 $3,000,000 $1,700,000 56.67% $3,000,000 100.00%

02 20,000 $7,000,000 $3,500,000 $4,305,000 123.00% $7,350,000 210.00%
Total 40,000 $10,000,000 $6,500,000 $6,005,000 92.38% $10,350,000 159.23%

Year 2 01 30,000 $4,500,000 $4,500,000 $3,825,000 85.00% $4,500,000 100.00%
02 60,000 $21,000,000 $10,500,000 $19,372,500 184.50% $22,050,000 210.00%

Total 90,000 $25,500,000 $15,000,000 $23,197,500 154.65% $26,550,000 177.00%

All Years 01 50,000 $7,500,000 $7,500,000 $5,525,000 73.67% $7,500,000 100.00%
02 80,000 $28,000,000 $14,000,000 $23,677,500 169.13% $29,400,000 210.00%

Total 130,000 $35,500,000 $21,500,000 $29,202,500 135.83% $36,900,000 171.63%

Indicated Class 2 Relativity

  Modified Loss Ratio Method: (210.00% / 100.00%)  x   = 2.10
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Exhibit 3

Multiple State - Multiple Year Situation
Different Loss Ratios - Different Distribution

Derived Loss Experience
Earned Class Incurred Scaling Scaled Scaled Modified

Class Exposures Premium Factor Losses Factor Premium Losses Loss Ratio
State 1
Year 1 01 10,000 $1,000,000 1.00 $500,000 1.000 $1,000,000 $500,000 50.00%

02 5,000 $1,000,000 2.00 $525,000 3.200 $1,600,000 $1,680,000 105.00%
Total 15,000 $2,000,000 $1,025,000 $2,600,000 $2,180,000 83.85%

Year 2 01 15,000 $1,500,000 1.00 $1,125,000 1.000 $1,500,000 $1,125,000 75.00%
02 15,000 $3,000,000 2.00 $2,362,500 1.600 $2,400,000 $3,780,000 157.50%

Total 30,000 $4,500,000 $3,487,500 $3,900,000 $4,905,000 125.77%

All Years 01 25,000 $2,500,000 $1,625,000 $2,500,000 $1,625,000 65.00%
02 20,000 $4,000,000 $2,887,500 $4,000,000 $5,460,000 136.50%

Total 45,000 $6,500,000 $4,512,500 $6,500,000 $7,085,000 109.00%

State 2
Year 1 01 10,000 $2,000,000 1.00 $1,200,000 1.000 $2,000,000 $1,200,000 60.00%

02 15,000 $6,000,000 2.00 $3,780,000 1.067 $3,200,000 $4,032,000 126.00%
Total 25,000 $8,000,000 $4,980,000 $5,200,000 $5,232,000 100.62%

Year 2 01 15,000 $3,000,000 1.00 $2,700,000 1.000 $3,000,000 $2,700,000 90.00%
02 45,000 $18,000,000 2.00 $17,010,000 0.533 $4,800,000 $9,072,000 189.00%

Total 60,000 $21,000,000 $19,710,000 $7,800,000 $11,772,000 150.92%

All Years 01 25,000 $5,000,000 $3,900,000 $5,000,000 $3,900,000 78.00%
02 60,000 $24,000,000 $20,790,000 $8,000,000 $13,104,000 163.80%

Total 85,000 $29,000,000 $24,690,000 $13,000,000 $17,004,000 130.80%

All States
Year 1 01 20,000 $3,000,000 $1,700,000 $3,000,000 $1,700,000 56.67%

02 20,000 $7,000,000 $4,305,000 $4,800,000 $5,712,000 119.00%
Total 40,000 $10,000,000 $6,005,000 $7,800,000 $7,412,000 95.03%

Year 2 01 30,000 $4,500,000 $3,825,000 $4,500,000 $3,825,000 85.00%
02 60,000 $21,000,000 $19,372,500 $7,200,000 $12,852,000 178.50%

Total 90,000 $25,500,000 $23,197,500 $11,700,000 $16,677,000 142.54%

All Years 01 50,000 $7,500,000 $5,525,000 $7,500,000 $5,525,000 73.67%
02 80,000 $28,000,000 $23,677,500 $12,000,000 $18,564,000 154.70%

Total 130,000 $35,500,000 $29,202,500 $19,500,000 $24,089,000 123.53%

Indicated Class 2 Relativity

  Modified Loss Ratio Method: (154.70% / 73.67%)  x   = 2.10
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Stochastic Model with Lognormally Distributed Losses (unlimited)  Exhibit 4 

Iterations: 1000

Univariate Scaling Scaling Scaling Scaling
Iteration Method Factor 1 Factor 2 Factor 3 Factor 4 State Year Class Class 01 Class 02 Class 01 Class 02 Class 01 Class 02 Class 01 Class 02

Expected 2.2657 2.1000 2.1000 2.1000 2.1000 1.1478 1.4403 2.1016 0.5000 0.5250 0.7500 0.7875 0.6000 0.6300 0.9000 0.9450
Observed 2.3129 2.1573 2.1149 2.1330 2.1183 1.2071 1.5166 2.1128 0.4985 0.5240 0.7530 0.7865 0.5956 0.6283 0.9019 0.9445

MSE 0.1020 0.0643 0.0474 0.0465 0.0554 0.0168 0.0276 0.0461 0.0140 0.0130 0.0150 0.0070 0.0159 0.0057 0.0168 0.0032
1 2.3935 2.1936 2.1631 2.1932 2.1736 1.2049 1.5474 2.1476 0.6534 0.5833 0.6450 0.7317 0.4710 0.5502 0.8950 0.9649
2 1.8113 1.7371 1.6567 1.6791 1.7141 1.0902 1.6097 1.6514 0.5139 0.4857 1.0362 0.7646 0.7784 0.5104 0.9056 0.8667
3 2.2538 2.0191 2.0735 2.0988 1.9792 1.2186 1.5926 2.1182 0.4053 0.4337 0.6989 0.8902 0.5492 0.6797 1.0675 0.9460
4 2.4408 2.4355 2.1858 2.1875 2.3471 1.2026 1.4451 2.1536 0.5763 0.4172 0.7978 0.7673 0.6987 0.6395 0.6964 0.9671
5 2.1421 2.0335 1.9766 2.0229 1.9670 1.1834 1.4379 1.9186 0.5296 0.5573 0.8452 0.6703 0.4758 0.6336 0.9148 0.8664
6 2.4667 2.3157 2.3354 2.3564 2.3083 1.0514 1.4017 2.3349 0.5477 0.6310 0.6757 0.8165 0.4827 0.6095 0.7831 0.8729
7 2.5048 2.4576 2.2818 2.3519 2.2324 1.2738 1.5613 2.1804 0.2809 0.5142 0.9039 0.6999 0.3743 0.7287 0.9168 0.9460
8 2.3571 2.2147 2.1329 2.1659 2.1591 1.3534 1.3752 2.0514 0.3796 0.4685 0.8075 0.5984 0.5284 0.7062 0.8134 0.8825
9 2.1105 1.9180 1.8851 1.8830 1.9294 1.1960 1.7415 1.8736 0.5170 0.5689 0.8034 0.6887 0.5964 0.4380 0.8943 0.9327

10 2.4410 2.3869 2.1701 2.1827 2.3078 1.2407 1.4736 2.0896 0.5652 0.3443 0.9224 0.7652 0.5930 0.7358 0.7854 0.9980
11 2.1020 1.9224 1.9825 1.9872 1.9249 1.1422 1.3841 2.0751 0.4327 0.4029 0.6272 0.8902 0.7467 0.6580 0.9062 0.8275
12 2.0084 1.8736 1.8714 1.9208 1.7754 1.1715 1.5789 1.8671 0.4173 0.4809 0.8150 0.7818 0.4637 0.6358 1.0940 0.8493
13 2.2959 2.2104 2.0896 2.1382 2.1279 1.1512 1.6218 1.9925 0.4549 0.6291 0.9469 0.6585 0.4334 0.5548 0.8385 0.9222
14 2.1490 1.9574 1.9076 1.9281 1.9514 1.4529 1.3877 1.9140 0.4469 0.3350 0.6642 0.6383 0.7410 0.6557 0.8636 0.8857
15 2.2361 1.9854 2.0147 2.0346 1.9838 1.3287 1.5561 2.0263 0.4699 0.5356 0.7201 0.7646 0.6318 0.6411 1.0427 1.0069
16 2.1911 2.0321 1.9674 2.0141 1.9646 1.2217 1.7060 1.9186 0.4701 0.4849 0.9358 0.7629 0.4819 0.6214 1.0280 0.9842
17 2.2988 2.2033 2.0942 2.0757 2.1698 1.0465 1.7953 2.1426 0.3373 0.3505 0.8378 0.9307 0.7147 0.5039 0.7264 0.8976
18 2.5449 2.5903 2.3678 2.4434 2.4114 1.0333 1.5893 2.2433 0.3690 0.5303 1.0123 0.8015 0.3737 0.6576 0.7376 0.8971
19 2.3596 2.1615 2.1741 2.1971 2.1472 1.1520 1.6126 2.1583 0.3948 0.6219 0.8550 0.8306 0.5561 0.6195 0.9290 0.9851
20 2.2831 2.0866 2.0896 2.1006 2.0688 1.1301 1.5666 2.1466 0.6618 0.4523 0.6090 0.9025 0.5637 0.5814 0.9532 0.9476
21 1.9180 1.6937 1.7110 1.7552 1.6477 1.3537 1.6972 1.7397 0.6081 0.4859 0.6171 0.7104 0.5322 0.5148 1.2337 0.9360
22 2.1284 2.0116 2.0323 2.0510 2.0127 1.0356 1.3674 2.0325 0.5790 0.6386 0.8475 0.8545 0.6246 0.6556 0.8901 0.8771
23 1.9500 1.7895 1.7802 1.7939 1.7911 1.1713 1.4976 1.8193 0.6768 0.4714 0.7298 0.8152 0.7343 0.5626 1.0024 0.9137
24 2.5896 2.4719 2.3317 2.3935 2.2911 1.2323 1.6382 2.2866 0.4986 0.4616 0.6781 0.7542 0.3279 0.6220 0.9056 0.9541
25 2.5466 2.4214 2.4049 2.4214 2.3956 1.1283 1.3022 2.3517 0.5320 0.7422 0.7481 0.7485 0.5069 0.6984 0.7892 0.9311
26 2.2363 2.0273 2.0281 2.0448 2.0267 1.2561 1.5132 2.0196 0.5480 0.5858 0.7793 0.7667 0.6260 0.6374 0.9919 1.0059
27 2.4753 2.3979 2.2668 2.3078 2.2603 1.2619 1.3369 2.1870 0.5829 0.5300 0.7134 0.6655 0.4030 0.7254 0.8618 0.9127
28 2.3489 2.1869 2.1419 2.1741 2.1485 1.1248 1.6669 2.1070 0.4914 0.5183 0.9033 0.8609 0.4984 0.6278 0.9344 0.9938
29 2.1399 2.0637 1.9157 1.9197 2.0193 1.1871 1.5602 1.9278 0.5140 0.3776 0.8174 0.7764 0.7685 0.5537 0.7845 0.9145
30 2.4339 2.2187 2.1744 2.1927 2.1946 1.2553 1.7265 2.1142 0.4255 0.6517 0.8581 0.7072 0.4974 0.5526 0.9187 1.0407
31 2.6216 2.4300 2.4392 2.4183 2.4331 1.1500 1.4939 2.4109 0.4136 0.8439 0.7312 0.7344 0.5475 0.5574 0.7777 0.9875

Minimum Bias

Loss Ratios
State 1 State 2Class 02 Factor

Year 1 Year 2 Year 1 Year 2
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Stochastic Model with Truncated Lognormally Distributed Losses ($25,000 Limit)  Exhibit 5 

Iterations: 1000

Univariate Scaling Scaling Scaling Scaling
Iteration Method Factor 1 Factor 2 Factor 3 Factor 4 State Year Class Class 01 Class 02 Class 01 Class 02 Class 01 Class 02 Class 01 Class 02

Expected 2.2657 2.1000 2.1000 2.1000 2.1000 1.1478 1.4403 2.1016 0.5000 0.5250 0.7500 0.7875 0.6000 0.6300 0.9000 0.9450
Observed 2.3053 2.1271 2.1088 2.1271 2.1095 1.2030 1.5084 2.1083 0.4973 0.5229 0.7530 0.7890 0.5969 0.6309 0.9005 0.9448

MSE 0.0658 0.0249 0.0207 0.0206 0.0228 0.0099 0.0149 0.0213 0.0077 0.0077 0.0083 0.0043 0.0065 0.0024 0.0065 0.0013
1 2.3802 2.1588 2.1801 2.2083 2.1394 1.2469 1.4534 2.1771 0.5754 0.6351 0.6206 0.7198 0.5008 0.6076 0.9345 0.9533
2 2.0924 1.9451 1.9030 1.9097 1.9427 1.1631 1.5583 1.9315 0.5050 0.4458 0.7667 0.7910 0.7212 0.5417 0.8576 0.8932
3 2.1894 1.9774 2.0200 2.0371 1.9742 1.1944 1.5059 2.0514 0.4305 0.4164 0.7654 0.8759 0.6392 0.6960 0.9926 0.9237
4 2.2927 2.1755 2.0755 2.0928 2.1518 1.2505 1.3676 2.0510 0.6062 0.4894 0.7510 0.7166 0.6680 0.6652 0.8156 0.9430
5 2.3338 2.1908 2.1298 2.1655 2.1426 1.1665 1.5365 2.0773 0.5885 0.6086 0.8329 0.7549 0.4763 0.6185 0.9199 0.9774
6 2.3500 2.2127 2.2156 2.2302 2.2132 1.0679 1.3904 2.2182 0.5641 0.6105 0.7519 0.8485 0.5819 0.6475 0.8220 0.9058
7 2.4182 2.1886 2.1941 2.2289 2.1514 1.3159 1.5362 2.1689 0.3439 0.5371 0.7703 0.7359 0.5369 0.6851 0.9492 0.9785
8 2.2514 2.0719 2.0278 2.0596 2.0368 1.3684 1.4208 1.9732 0.4277 0.4732 0.7943 0.6271 0.5626 0.6907 0.9059 0.9142
9 2.0880 1.9078 1.9158 1.9279 1.9166 1.1744 1.5555 1.9314 0.4561 0.5476 0.7536 0.7320 0.6524 0.5204 0.8835 0.8741

10 2.3873 2.2889 2.1538 2.1701 2.2455 1.1996 1.4365 2.1102 0.5993 0.3873 0.8301 0.7960 0.5989 0.7115 0.8115 0.9646
11 2.2490 2.0481 2.0324 2.0433 2.0486 1.2785 1.4612 2.0641 0.5112 0.4113 0.6639 0.7816 0.6937 0.6421 0.8956 0.9346
12 2.3228 2.1178 2.1601 2.1825 2.1109 1.1420 1.5201 2.1736 0.4277 0.5407 0.7578 0.8461 0.5572 0.6457 0.9186 0.9228
13 2.3093 2.2093 2.0827 2.1137 2.1556 1.2011 1.5610 2.0053 0.4600 0.5396 0.9565 0.7053 0.5594 0.6241 0.8322 0.9640
14 2.0638 1.8534 1.8354 1.8600 1.8543 1.3891 1.4913 1.8448 0.4575 0.3483 0.6963 0.6661 0.6889 0.6096 0.9341 0.8825
15 2.1417 1.9027 1.9514 1.9829 1.8830 1.2770 1.6096 1.9699 0.4153 0.5242 0.7279 0.7735 0.5746 0.6100 1.0758 0.9454
16 2.0675 1.9028 1.8807 1.9202 1.8672 1.2018 1.5927 1.8508 0.5335 0.5326 0.8806 0.7403 0.5319 0.6038 1.0331 0.9360
17 2.2452 2.0472 2.0482 2.0599 2.0556 1.1755 1.5753 2.0882 0.3894 0.3630 0.6886 0.7945 0.6294 0.5661 0.8089 0.8480
18 2.4198 2.3042 2.2645 2.3026 2.2484 1.0750 1.5073 2.2190 0.4358 0.5631 0.8784 0.8425 0.4735 0.6724 0.8431 0.9165
19 2.3490 2.1635 2.1565 2.1792 2.1507 1.1715 1.5553 2.1383 0.4207 0.5548 0.8551 0.8276 0.5852 0.6575 0.9104 0.9774
20 2.3289 2.1199 2.1324 2.1408 2.1210 1.1385 1.5696 2.1678 0.6114 0.5239 0.6711 0.8798 0.5741 0.5867 0.9348 0.9741
21 2.1259 1.8874 1.9175 1.9436 1.8794 1.2672 1.6252 1.9396 0.5512 0.5160 0.6732 0.7589 0.5653 0.5557 1.0586 0.9532
22 2.1688 2.0283 2.0268 2.0478 2.0267 1.1261 1.3799 2.0264 0.5676 0.5579 0.7885 0.8012 0.6365 0.6578 0.8857 0.8938
23 2.2252 2.0744 2.0476 2.0590 2.0720 1.1920 1.4154 2.0694 0.4954 0.5022 0.7312 0.7877 0.7174 0.6319 0.8392 0.9097
24 2.4252 2.2689 2.1816 2.2237 2.1666 1.2822 1.5327 2.1346 0.5059 0.4322 0.7337 0.7261 0.4233 0.6761 0.9291 0.9475
25 2.3196 2.1454 2.1753 2.1842 2.1531 1.1397 1.3929 2.1718 0.5268 0.7172 0.7390 0.7731 0.6009 0.6251 0.8721 0.9348
26 2.1485 1.9262 1.9610 1.9834 1.9253 1.1609 1.7169 1.9640 0.4864 0.5932 0.8073 0.8001 0.5366 0.5285 1.0234 0.9589
27 2.4424 2.2630 2.2040 2.2237 2.2470 1.2571 1.4515 2.1820 0.5085 0.4261 0.6857 0.7220 0.5505 0.6438 0.7971 0.9153
28 2.1618 2.0127 1.9780 2.0022 1.9958 1.1605 1.5399 1.9492 0.5388 0.5572 0.9476 0.8214 0.6261 0.6596 0.9785 0.9905
29 2.2255 2.1499 1.9920 1.9877 2.0999 1.2164 1.5028 2.0116 0.5729 0.4374 0.7486 0.7783 0.7889 0.5675 0.7865 0.9569
30 2.4324 2.2201 2.1840 2.1841 2.2225 1.2327 1.6465 2.1610 0.4480 0.5968 0.7583 0.7247 0.5706 0.5350 0.8382 0.9898
31 2.7787 2.5628 2.5558 2.5526 2.5620 1.1933 1.4861 2.5268 0.4251 0.7158 0.6981 0.7751 0.5259 0.6301 0.7727 1.0163

Loss Ratios
Class 02 Factor State 1 State 2

Minimum Bias Year 1 Year 2 Year 1 Year 2
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APPENDIX A 

The symbolic representation of the impact of confounding on class relativity analysis due 

to the aggregation of more than one Year and more than one state. 

The Loss Experience Model 

Let eiys  = Earned exposures for class i, year y, state s 

 r ys  = Base class loss ratio for year y, state s 

 Bys  = Base Rate for year y, state s 

 ci  = Current class factor for class i  ( 1=cb ) 

 f i  = Required factor for class i  ( 1=f b ) 

 gi  = Factor yielded by method for class i  

 Ei  = Total earned exposures for class i = ∑ ∑
y s

iyse  

 Pi  = Total earned premiums for class i on present rates =  cBe iys
y s

iys∑ ∑  

 Li  = Total incurred losses for class i = fBre iys
y s

ysiys∑ ∑   

 b = base class subscript 

A “O” superscript indicates that the variable is relative to overall (all class) rather than 

the base class.  For example: 

 O
ysr  = Overall class loss ratio for year y, state s 

 O
if  = Required factor for class i where overall class factor for year y, state s is 

unity 

Special Case 
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If each class’s loss ratio is related to the base class loss ratio to determine relativities use 

the Special Case below.  The bias resulting from the Loss Ratio Method, the Pure Premium 

Method and the Modified Loss Ratio Method have been derived. 

Pure Premium Method 
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Loss Ratio Method 
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Modified Loss Ratio Method 
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General Case 

If each class’s loss ratio is related to the overall loss ratio rather than the base class loss 

ratio to determine relativities use the General Case below.  Only the error resulting from the 

Modified Loss Ratio Method has been derived. 

Modified Loss Ratio Method 
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The bias in the method 1−=
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APPENDIX B 

DERIVATION OF SCALING FACTORS 

Criterion 1. The scaling factor should maintain the relationship between class loss ratios by 

year and state. 

Criterion 2. The scaling factor should reduce the method error to zero.   

Let primed variables indicate variable after the application of a scaling factor (e.g.  g ′ is 

the Factor yielded by a method after the application of a scaling factor.) 

First Special Scaling Factor 

Consider equation A-1 (from Appendix A): 

The bias in the method 1−=
f
g

i

i 1−
∑∑

∑∑
•

∑∑

∑∑
=

y s
ysysbys

y s
ysbys

y s
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Bre

Be
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01 =−
∑ ∑

∑ ∑
•
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Also (for convenience) 
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So this scaling factor satisfies Criterion 2. 

Since this scaling factor is applied to premiums and losses by class each class loss ratio 

remains unchanged satisfying Criterion 1. 
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General Scaling Factors 
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If each class’s loss ratio is related to the overall loss ratio is used rather than the base 

class loss ratio another set of scaling factors (generalized scaling factors) is used.  First it is 

necessary to establish some relationships: 
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Consider a Scaling Factor, to be applied to Losses only. 
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Second General Scaling Factor 

Consider a Scaling Factor, to be applied to premiums and losses. 
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So this scaling factor satisfies Criterion 2. 
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Since this scaling factor is applied to premiums and losses by class, each class loss ratio 

remains unchanged satisfying Criterion 1. 

Second Scaling Factor: 
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