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ABSTRACT

Until recently, the importance of skewness in the rate of return distribution has been

largely unrecognized in financial journals.  The reemergence of skewness in financial

literature is particularly relevant to catastrophe insurance products where some of the

most extremely skewed distributions occur.  This paper presents an argument for

including a provision in the equilibrium premium to cover the cost of skewness.  It also

generalizes the insurance CAPM to n-moments.  This extension permits explicitly

determining the impact that skewness and other higher moments have on the needed

premium.
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THE N-MOMENT INSURANCE CAPM

1.  ASYMMETRY AND ITS IMPLICATIONS

In much of modern Finance, it is presumed that the standard deviation of the rate of return

is the appropriate measure of risk to the investor.  The Capital Asset Pricing Model, for

example, assumes this to be true.  It is then a mathematical consequence of this and a few

other assumptions that only the systematic component (beta) of this risk is rewarded in

financial markets.  This seems quite reasonable for returns that are symmetrically

distributed.  It does not seem so reasonable, however, for returns that are asymmetrically

distributed.  Consider that although investors dislike unexpected large losses, they like

unexpected large gains.  It seems reasonable then that investors place different values on

two different securities that promise the same expected return and the same standard

deviation of return but differ in that the return on one is symmetrically distributed while

the return on the other is positively skewed1.  In fact, there are reasons to believe, and

evidence which corroborates, that the latter security is preferred to the former.

For example, Arditti (1967, page 21) argues that it is reasonable to expect risk aversion to

decrease with wealth.  He gives an example of a bet with two equally likely outcomes:

either a loss of $10,000 or a gain of $20,000.  Since both outcomes are equally likely the

                                                          
1 For purposes of this paper, we are using William Sharpe’s (1985) definition of security, i.e. a security is “a
legal representation of the right to receive prospective future benefits under stated conditions.”
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expected value is $5,000.  He then asks who is more likely to pay a higher price for this

bet - a wealthy man or a poor man?  Arditti concludes that it is reasonable to expect a

wealthy man to pay more for this bet since in his words "a loss of $10,000 to him would

be trivial while a similar loss to the poor man would render him, assetless".  Arditti goes

on to show that whenever risk aversion decreases with wealth, it necessarily follows that

positive skewness is preferred.  That is, investors are willing to pay a premium, or give up

expected return, in exchange for positive skewness.

One does not have to go any farther than to consider all of the various state-run lotteries

as corroborating examples.  Lottery players face an almost certain loss of a trivial amount

in exchange for a trivial probability of a very large gain.  The expected return on lottery

tickets is, of course, negative since government extracts a significant portion of the

revenues.  Lottery players, thus, pay a premium in exchange for positive skewness.

Others have reached the same conclusions for opportunities similar to the lottery.  In a

discussion trying to explain Internet stock price increases, Alan Greenspan described this

“lottery premium” in the Wall Street Journal (January 29, 1999, page C1):

“What lottery managers have known for centuries is that you could get somebody

to pay for a one-in-a-million shot more than the [pure economic] value of that

chance”
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Consider for a moment, the lottery, as a relevant analogy to understand the skewness

associated with catastrophes.  Catastrophe insurance can be thought of from the

policyholders’ perspective as a conditional lottery.  This provides a concrete example of

the cost of skewness.  With this lottery, if the catastrophe occurs then there is a huge

payoff.  Of course, there is also a large loss that offsets the payoff.  But the loss is there

regardless of insurance.  Thus, if the loss is going to happen, it is preferable to have

insurance.

Imagine a security that trades in financial markets, and promises a large payoff in the

event of a catastrophe somewhere else in the world.  The details don’t really matter for

this example, as long as the payoff is triggered by a rare, random event.  Since the cash

flows are similar to those of a lottery, we can expect that the purchasers, as is true with a

lottery, would pay a skewness premium.  One implication of the Capital Asset Pricing

Model is that all investors hold the same portfolio of risky assets, the market portfolio,

even if it might include lottery tickets.  Since investors are holding the market portfolio,

the skewness premium would only reflect systematic components of skewness, i.e. that

portion of skewness that cannot be diversified away.  But the cash flows on this security

are also similar to those of catastrophe insurance.  Hence, the free market price of this

security, which includes the cost of skewness, must also equal the equilibrium price for a

perfectly corresponding catastrophe insurance contract, i.e. a contract with the same

expected cash flows, the same systematic risk of receiving those cash flows, the same

systematic skewness etc.
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One might argue that this analogy is inappropriate since there is a fundamental difference

in the demand for lottery tickets and catastrophe insurance.  The cost of skewness,

however, is unaffected.  Consider that a person might be willing to buy a lottery ticket for

a dollar, but unwilling to buy 1,000,000 of them.  Clearly a person’s willingness to buy

tickets depends on his overall wealth as well as his preference for skewness and other

factors.  Certainly he would be more willing to buy one lottery ticket rather than say 200

(the price of the catastrophe insurance).  With a single lottery ticket there is only one

dollar at risk.  With 200 tickets, there are 200 dollars at risk.  What motivates people to

buy the catastrophe insurance, though, is that the lottery is contingent on an otherwise bad

event.  It is offsetting the risk of that bad event that motivates them to buy catastrophe

insurance.  Accordingly, we can expect that people are more willing to buy 200 dollars

worth of catastrophe insurance than 200 dollars worth of lottery tickets.  But the cash

flows in the catastrophe insurance are identical to the cash flows in the lottery, so the cost

of skewness must be the same for both.  Preference for skewness varies from individual

to individual in a complex and unknown way.  It is certainly multi-variate with wealth

being one of the variables.  But in the aggregate, the market determines the price for

skewness in such a way that the markets clear.  Demand is also a variable that depends

upon price and so supply and demand are in balance at the equilibrium price.

Hence, the equilibrium returns implied by the CAPM may be inadequate for securities

with heavily skewed returns.  Accordingly, to adequately charge for an insurance policy

covering hurricane and other catastrophic risks, a provision covering the cost of skewness
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must be added to the otherwise needed premium to compensate investors for the

extremely skewed loss distributions of catastrophes.

Others have also recognized this shortcoming of the CAPM.  For example, Yehuda

Kahane (1979) notes the need for analyzing higher moments of profit distributions for

certain utility assumptions in his paper deriving the insurance CAPM.   He states on page

237:

“All distributions were assumed to be characterized by the first two moments.

This makes the model acceptable only for certain utility assumptions...Thus,

measures of asymmetry, like the skewness and semi-variance, may be needed in a

loading formula (especially for risks with catastrophic nature—which are

represented by extremely skewed distributions).”

Alan Kraus and Robert Litzenberger (1976) go even further by stating on page 1086 that:

“The evidence suggests that prior empirical findings that are interpreted as

inconsistent with the traditional theory can be attributed to misspecification of the

capital asset pricing model by omission of systematic (nondiversifiable)

skewness.”

Campbell Harvey and Akhtar Siddique (2000) define systematic skewness, or coskewness

on page 1265.
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 “[Coskewness is] the component of an asset’s skewness related to the market

portfolio’s skewness.”

In order to capture the contribution of the cost of skewness to the equilibrium return, it is

necessary to generalize the CAPM.  Section 2 presents the three-moment CAPM derived

by  Rubinstein (1973) and Kraus and Litzenberger.  Section 3 derives the three-moment

insurance CAPM.   Section 4 derives the n-moment insurace CAPM.  This derivation

depends on the n-moment CAPM which is derived in the Appendix.  Section 5 presents

conclusions and implications.
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2.  THE THREE-MOMENT CAPM

2.1.  The Model

Kraus-Litzenberger (1976) follow Rubinstein’s lead (1973) in their development of a

three-moment capital asset pricing model that incorporates the coskewness of an asset.

(See the Appendix for a formal derivation of the model.)  Their model of equilibrium

returns, assuming the rate of return on the market portfolio is nonsymmetrically

distributed, is given below:

(2.1)          iifi bbRRE γβ 21)( +=−

Where,      =+= ff rR 1  one plus the risk free rate of return,

                  =+= ii rR 1 one plus the rate of return on i-th asset,
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                  1b  = market risk premium,

                  2b  = market skewness premium.
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Simplifying (2.1) leads to:

(2.2)          iifi bbrrE γβ 21)( +=−

One final simplification leads to the intercept form of the equation;

(2.3)       iifi bbrrE γβ 21)( ++=

Kraus and Litzenberger’s derivation assumes that all investors have the same probability

beliefs, and further, that each investor’s risk tolerance is a linear function of wealth,

( )ii bWa + , with the same cautiousness, b , for all investors.  These assumptions are

required to ensure that each investor’s optimal risk asset portfolio is the same, that is, the

market portfolio.  These assumptions are very strong and arguably unreasonable.

However, if one’s purpose is to estimate equilibrium returns, then it is not essential that

all investors have the same optimal risk asset portfolio.   In the case of disagreement, 1b

and 2b  may still be interpreted as the market price of risk and the market price of

skewness respectively as will be shown in a later section of this paper.

Kraus and Litzenberger empirically tested the three-moment model using monthly,

deflated excess rates of return.  That is, their measure of the rate of return for the i-th
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security is 
f

fi

R
RR −

, where the returns are measured over a monthly holding period. They

state on page 1098:

“Empirical evidence is presented that is consistent with a three moment valuation

model.  Investors are found to have an aversion to variance and a preference for

positive skewness.”

 Specifically, they found the values of 1b  (the market risk premium) and 2b  (the market

skewness premium) to be 1.119 and –0.212 respectively.  Moreover, both were

significant.  As Arditti shows, whenever risk aversion decreases with wealth, it follows

that positive skewness is preferred.  This further implies that 2b  and 
MRτ  are of opposite

sign.  For example, if the market is positively skewed, or 
MRτ  is positive, then investors

will give up return, which implies a negative 2b , in exchange for this positive skewness.

Kraus and Litzenberger’s results confirm this expectation.  Since β  and γ  for the market

portfolio are both equal to one, a negative value for 2b  and a positive value for

MRτ necessarily increases the market risk premium, and thus, the significance of risk.

The following hypothetical example demonstrates the impact of coskewness on the

traditional CAPM estimate.  In the traditional two moment CAPM, the excess of the

expected return on the market portfolio over the risk free rate is the market risk premium,

but in the three moment model it is the sum of the market risk premium and the market
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skewness premium.  By definition, the beta and gamma of the market portfolio is one.

Hence, from equation (2.2) for the market portfolio we have:

21)( bbrrE fm +=−

Kraus and Litzenberger estimated 1b  and 2b  to be 1.119% per month and -.212% per

month respectively.  Using the sum of these values of the risk premium and the skewness

premium, respectively, to estimate the excess of the expected return on the market

portfolio over the risk free rate, we get;

fm rrE −)( =1.119% – 0.212% = 0.91% per month.

The excess of the expected return on the market portfolio over the risk free rate must be

the same for both the traditional two moment CAPM and the three-moment CAPM.  In

the two moment model, however, this quantity is simply the market risk premium:

1')( brrE fm =− = 0.91% per month.

Hence, the failure to include skewness in the two moment CAPM results in understating

the market risk premium by 19%, (i.e., 1.0 - .91/1.119).
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There are two implications of this theoretical example for a negatively skewed market

such as the market for catastrophe insurance.  First, the market risk premium is

understated in the traditional two moment CAPM.  Second, additional return is required

to compensate insurers and their investors for the negative skewness of catastrophe

insurance products.  Therefore, the three moment CAPM is of particular significance to

the insurance industry.

In an exercise on pages 1276-1278, Harvey and Siddique (2000) estimate the risk

premium for coskewness.  They rank stocks based on their past coskewness and create

three value-weighted portfolios using 60 months of returns: 30 percent with the most

negative skewness, 40 percent in the middle, and the 30 percent with the highest

skewness.  Harvey and Siddique conclude on page 1263 that “Systematic skewness is

economically significant and commands a risk premium, on average, of 3.60 percent per

year.”  They estimate a skewness premium for coskewness of 3.60 percent by taking the

difference in annual excess returns between the portfolio with the most negative

coskewness and the portfolio with the highest coskewness.

Moreover, Harvey and Siddique (2000) conclude (pp. 1287-1288) that systematic

skewness is not only statistically significant but also economically significant.  They

reached this conclusion by analyzing pricing errors with the model containing coskewness

as a variable relative to the traditional CAPM and by measuring the expected return

implied by a change in coskewness.
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Friend and Westerfield (1980) also found evidence that investors prefer skewness,

however, they did not find that evidence to be compelling.  They state on page 913:

       “Our analysis provides some but not conclusive evidence…suggesting that investors

        may be willing to pay a premium for positive skewness in their portfolios.”

Kian-Guan Lim (1989), though, found strong evidence that confirms Kraus and

Litzenberger’s earlier conclusions.  Lim divided the fifty-year period from January, 1933

through December, 1982 into ten consecutive five year periods.  The model was then

tested using data from each of the sub-periods as well as for the entire period.  Lim

concludes that investors prefer coskewness when market returns are positively skewed,

and dislike coskewness when market returns are negatively skewed.  Moreover, in all of

the subperiods in which the model was not rejected at the one percent level of

significance, the skewness premium and the skewness of the market return were of

opposite sign.  Further, Lim found the evidence to be particularly strong when data from

the entire period was used.

2.2.   Properties of Covariance and Coskewness

As is the case with the traditional two-moment CAPM, beta in the three-moment CAPM

is the measure of systematic risk.  As a measure of risk, beta is linear in the sense that the

beta of a linear combination of securities is the linear combination of the betas of the
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securities themselves.  Specifically, the beta of a portfolio is equal to the weighted

average of the betas of the securities in the portfolio.

 Let,          Z   =  a portfolio of n securities,

                 iS  =  the dollars invested in the i-th security,

                  ir   =  the rate of return on the i-th security,

                  Zr   =  the rate of return on the portfolio,

                  Mr  =  the return on the market portfolio,
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For Z  equal to the market portfolio, the covariance of the rate of return on the market

portfolio with itself is equal to the variance of the rate of return on the market portfolio.

Therefore, the weighted sum of covariances of the rates of return on all of the securities in

the market portfolio is equal to the variance of the rate of return on the market portfolio.
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Similarly, the gamma of a portfolio is the weighted average of the gammas of the

individual securities.
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The coskewness of the return on the market portfolio with itself is equal to the skewness

of the return on the market portfolio.  Hence, the weighted sum of the coskewnesses of

the returns on all of the securities in the market portfolio is equal to the skewness of the

return on the market portfolio.

2.3.  Disagreement

As noted earlier, under the assumptions of complete agreement on the part of investors

about expected returns and identical risk tolerance functions, the optimal combination of
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risky assets is the same for each investor.  It necessarily follows that the optimal portfolio

is the market portfolio.  These are very strong assumptions.   But they are not intrinsic to

the three-moment CAPM.  Rather, they also apply to the traditional two-moment CAPM.

Sharpe relaxes these assumptions in Appendix D of his book.  He concludes on page 291:

  “ [T]he equilibrium relationships derived for a world of complete agreement can be

   said to apply to a world  in which there is disagreement, if certain values are

   considered to be averages.”

In this section, we will relax these assumptions and investigate the implications.

In the case of disagreement, each investor has his own optimal risk asset portfolio, which

depends entirely on his expectations.   Different investors do not necessarily have the

same optimal risk asset portfolios.  For simplicity, assume that there are only two

investors.  The arguments presented here can be extended to any finite number of

investors.

Suppose that 1M  and 2M are the optimal risk asset portfolios of the two investors.     Let

M be the market portfolio.

Then,              21 MMM +=

Let,      ijr  = the rate of return for security i that is expected by the j-th investor,
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ijS  = the dollars invested in security i by the j-th investor,

∑=
i

iSS 11  

            ∑=
i

iSS 22

                       
1

11

1 S

rS
r i

ii

M

∑
=

                       
2

22

2 S

rS
r i

ii

M

∑
=          

Then, the average expected returns are given by:

( )
( )21

2211

ii

iiii
i SS

rSrS
r

+
+

=

and,
( )

( )21

21 21

SS
rSrS

r MM
M +

+
=

Thus,               
( )

( ) 





+
+

= M
ii

iiii
Mi r

SS
rSrS

CovrrCov ,),(
21

2211

                                        = ( ) ( )Mi
ii

i
Mi

ii

i rrCov
SS

S
rrCov

SS
S

,, 2
21

2
1

21

1






+

+





+

Hence, recalling that;        
( )

)(
,

M

Mi
i rVar

rrCov
=β     implies that;

2
21

2
1

21

1
i

ii

i
i

ii

i
i SS

S
SS

S βββ 





+

+





+

=



18

Note that 1iβ  and 2iβ  are computed with respect to the total market portfolio, rather than

with respect to each investor’s optimal portfolio.  Thus, in a world of agreement

everybody has the same estimate of β , and in a world of disagreement, β turns out to be

a weighted average over all investors.

The same relationship holds true for coskewness and gamma.  Let the coskewness be

denoted by;

              ( ) [ ][ ]( )2)()(,, bEbaEaEbbaCosabb −−==τ

Assume again that there are only two investors who disagree.   Then for any security;
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It can be shown using the results from section 2.2 and the linearity of the expected value

operator that for any three random variables, x, y, and z, and any two constants, a and b,

that:

  ),,(),,(),,( zzybCoszzxaCoszzbyaxCos +=+
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Where 1iγ  and 2iγ  are computed with respect to the total market rather than with respect

to each investor’s optimal portfolio.   Hence, in a world of agreement everybody has the

same estimate of γ , and in a world of disagreement, γ  turns out to be a weighted average

over all investors.
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3.  THE THREE-MOMENT INSURANCE CAPM

Following D’Arcy and Doherty’s derivation of the insurance CAPM, the rate of return to

the insurer, er , is composed of a linear combination of both an underwriting rate of

return, ur , and an investment rate of return, ir .

(3.1)         
S

tkPSr
S

tPrr iiuu
e

)1)(()1( −+
+

−
=

Where;      er   =  rate of return on equity,

      P   =  premiums in a given year,

      S   =  shareholders’ equity,

      ur   =  underwriting return per dollar of premium,

      ut   =  tax rate on underwriting income,

      k   =  funds generating coefficient2,

       ir   =  investment return per dollar invested,

      it   =  tax rate on investment income.

At equilibrium based on equation (2.3) and assuming that shareholders’ equity, S  is

valued at its expected market value, rather than at its Statutory accounting or GAAP

accounting value:

                                                          
2 This is sometimes estimated by the ratio of the invested portion of reserves to premiums.
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(3.2) eefe bbrrE γβ 21)( ++=

Further,

(3.3) iifi bbrrE γβ 21)( ++=

Moreover, the equity beta (gamma) can be expressed as a linear combination of an

underwriting beta (gamma) and an investment beta (gamma) as follows:
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Setting equation (3.1) equal to equation (3.2) results, at equilibrium, in;
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Substituting with the above three expressions for )( irE , eβ  and eγ  from equations (3.3),

(3.4) and (3.5) gives;
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Simplifying and solving for the after tax equilibrium underwriting return yields;

(3.6) uuuu
fi

ifuu btbt
P

Srt
tkrtrE γβ 21 )1()1()1()1)(( −+−++−−=−

Thus the equilibrium after-tax underwriting return consists of four components:  the first

effectively represents interest paid to policyholders for the use of their funds; the second

is to recapture the tax penalty of being an insurer3; the third component is a provision to

compensate for risk and the fourth component is a provision to compensate for skewness.

                                                          
3 The tax penalty is the double taxation of investment income – once at the corporate level and once at the
personal level – on underlying equity.  Mutual funds, in contrast, are not subject to corporate income taxes.
Accordingly, investors will not invest in an insurance company unless the underwriting operation is
expected to at least recover the tax penalty.



23

4.  THE N-MOMENT INSURANCE CAPM

There is strong evidence as reported in this paper that including the third moment

significantly improves the CAPM and the insurance CAPM.  Any benefits of including

moments beyond the third are unclear now and await further research.  Nevertheless,

generalizing the model to n moments is simple and straightforward and is presented here.

At equilibrium based on equation (A.6) and assuming that shareholder’s equity, S, is

valued at its expected market value, rather than at its statutory accounting or GAAP

accounting value:
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Setting equation (3.1) equal to equation (4.1) results at equilibrium, in;
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Simplifying and solving for the after tax equilibrium underwriting return yields;
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5.  CONCLUSIONS

Until recently the importance of skewness in the rate of return distribution has largely

been unrecognized in financial journals.  But it is in the actuarial realm that some of the

most extremely skewed return distributions occur, namely those for catastrophe insurance

products.   Because some of those distributions are so overwhelmingly skewed, it is

essential to assess systematic skewness when determining equilibrium returns and needed

premiums.

This paper presents an argument for including a provision in the equilibrium premium to

cover the cost of skewness.   It also generalizes the insurance CAPM to include the cost

of skewness.  This permits an explicit determination of the impact that skewness has on

the equilibrium premium, at least theoretically.  Practical application awaits further

empirical studies that measure the amount of systematic skewness in the insurance

industry as well as further investigation into the magnitude of the market skewness

premium and the market risk premium in the context of a three moment model.



26

APPENDIX - DERIVATION OF THE N-MOMENT CAPM

This appendix presents Rubinstein’s derivation of the n-moment CAPM and extends it to

derive the market risk premium and the market skewness premium.

Let  iW  be the initial wealth of the i-th individual.  Assume that every dollar of that

wealth is invested in one of j securities.  Let ijS  be the amount that the i-th individual has

invested in the j-th security.  Then,

          ∑=
j

iji SW

And, the wealth at the end of the year is;

          ∑=
j

jiji RSW~

where, jR =  ( )jr+1   =  one plus the rate of return on the j-th security.

Let iU  be the continuously differentiable utility of wealth function for the i-th individual.

Assume that every individual maximizes ))~(( iii WUE  subject to the constraint

∑=
j

iji SW .

Taking the expected value of the Taylor series expansion of  )~( ii WU  around  )~( ii WE

gives;

          ∑
∞

=

=
0

)(

!
))~((

n

in
n

i
iii n

UWUE µ
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where,   )(n
iU  is the n-th derivative of iU  evaluated at )~( ii WE , and

               n
iiiiin WEWE ))~(~( −=µ  is the n-th central moment of  iW~ .

Forming the Lagrangian, the individual’s problem is to maximize Z  where,

          ∑ ∑
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−+=
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 Dropping the subscript i for simplicity, and differentiating gives:
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But the term  ∑
+

n

n
n

n
U
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)1( µ
 is the Taylor series expansion of  )1(U  around  W .  And,
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The expression in (A.1) is true for all j.   Subtracting the expression for the k-th security

from the expression  for the j-th security gives:
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Assume that a risk free security exists.  Let fR  be one plus the rate of return on the risk

 free security.

Equation (A.2) applies to all securities, so substituting fR  for kR  gives:

(A.3)     ( )( )[ ]∑
∞

=

−
−−+=

2

1~)()(
n

n
jjnfj WWRERERRE θ

Let,    fS  denote the amount that the individual has invested in the risk free security, and

          fSWP −=  denote the amount that the individual has invested in his portfolio of
                  risky securities.

         =pR  one plus the rate of return on the portfolio of risky securities.

Then,    ffp RSPRW +=~

          ffp RSRPEWE += )()~(

Thus,

          ( )( )[ ]∑
∞

=

−− −−+=
2

11 )()()(
n

n
ppjj

n
nfj RERREREPRRE θ

Under the assumptions of complete agreement among individuals and identical risk

tolerance functions, it follows that every individual has the same optimal portfolio of

risky assets.  Moreover, that portfolio is the market portfolio.   Hence,
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where,    MR  = one plus the rate of return on the market portfolio.

Let,   
( )( )[ ]

( )[ ]n
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)()( )1(

−
−−
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Then, the n-moment CAPM is:

(A.5)   ( ) ∑
∞
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−+=

2
)1(
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Equivalently,

(A.6)     ( ) ∑
∞

=
−+=

2
)1(

n
nnfj j

brrE ν

For the three moment CAPM, the traditional notation is given by;

jj 2νβ =

jj 3νγ =

Then the three moment CAPM is;

(A.7)   ( ) jjfj bbRRE γβ 21 ++=

Additional insight into the coefficients b1 and b2 can be gained as follows.

Let,    WR   denote one plus the rate of return on the individual’s entire portfolio.

Let,  
WRσ  and 

WRτ denote the standard deviation and the skewness respectively of the rate

          of return on the individual’s entire portfolio.  Then, in conjunction with the results

          from Section 2.2,
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Let Wβ  and Wγ  denote the beta and the gamma of the individual’s entire portfolio.

It follows that,    
M

W

R

R
W σ

σ
β =      and    

M

W

R

R
W τ

τ
γ =

Moreover,          
WRW Wσσ =    and    

WRW Wττ =

Consider that,    WWfW WbWbWRRWEW γβ 21)( ++==

                                          
MM R
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W
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bb
RW

τ
τ

σ
σ 21)( ++=

Since the market portfolio is unchanging, 
MRσ  and, 

MRτ are constants.

It follows that,

                            ( )
MR

W

Wb σ
σ∂

∂=1

                            ( )
MR

W

Wb τ
τ∂

∂=2

Thus, the coefficients are the additional required returns per unit of risk and

skewness respectively, times the units of risk and skewness respectively.
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