
The Duration of Liabilities with Interest Sensitive Cash Flows 

Abstract  

In order to apply asset-liabilitymanagement techniques to property-liability 

insurers, the sensitivity of liabilities to interest rate changes, or duration, must be 

calculated. The current approach is to use the Macaulay or modified duration 

calculations, both of which presume that the cash flows are invariant with respect 

to interest rate changes. Based on the structure of liabilities for property-liability 

insurers, changes in interest rates -- given that interest rates are correlated with 

inflation -- should affect future cash flows on existing liabilities. This paper 

analyzes the effect that interest rate changes can have on these cash flows, shows 

how to calculate the resulting effective duration of these liabilities, and 

demonstrates the impact of  failing to use the correct duration measure on asset- 

liability management for property-liability insurers. 



1. Introduct ion 

Asset-liability management (ALM), as used in the insurance industry, is a process by 

which insurers attempt to evaluate and adjust the exposure of  the net value of  the company (assets 

minus liabilities) to interest rate changes. Although, in theory, the volatility of  other factors -- 

e.g., catastrophes, changes in unemployment rates ~ -- can also affect both asset and liability 

values, the current focus of  ALM for insurers, as for most other financial institutions, is on 

interest rate risk. Life insurers were the first in the industry to apply ALM techniques, since they 

have significant exposure to interest rate risk due to the long payout patterns of  losses and their 

high leverage. However, this approach is now being applied to the property-liability insurance 

industry as well. 

The general approaches used by life insurers to measure the sensitivity of assets to interest 

rate risk are applicable to property-liability insurers to the extent that they have similar asset 

portfolios. In general, property-liability companies invest more heavily in equities and less in 

mortgages, but the overall structure of  the investment portfolio is roughly similar. However, the 

liabilities of property-liability insurers are different enough that the approaches used by life 

insurers are simply not applicable to them, and nexv techniques must be developed. 

The basic approach of ALM involves measuring the durations of assets and liabilities, and 

then adjusting one or both until the insurer is not significantly affected by interest rate changes 

(essentially, this involves setting the duration of surplus, D s, equal to zero). If the duration of 

liabilities is measured incorrectly, then an inst.rer tr3'ing to immunize itself from interest rate risk 

1 For example, an increase in the tmemploymex~t rale is likely to increase the severity ofworkers compensation 
losses and also alter the prepayment patlerns on mortgage-b~lcked securities. 



based on the incorrect measure will actually still be exposed to interest rate risk. Much research 

has been done on determining the duration of complex financial instruments held by insurers, such 

as collateralized mortgage obligations (CMOs) (Fabozzi 1995, Chapter 25), and corporate bonds 

with callability provisions. Attention has also been given to determining the appropriate duration 

measure of life insurance liabilities (Babbel 1995). However, much less attention has been paid to 

the duration of liabilities of property-liability insurers. (The issue has been briefly discussed or 

alluded to in, for example, Butsic, 1981; D'Arcy, 1984; Ferguson, 1983; and Noris, 1985.) The 

general approach to measuring the duration of liabilities for property-liability insurers has been to 

calculate a weighted average of the time to payment for loss reserves (Campbell, 1995; Hodes and 

Feidblum, 1996; Staking and Babbel, 1995). This approach is patterned after the work by 

Frederick Macaulay (1938), which determined that the sensitivity of the price of non-callable fixed 

income securities to changes in interest rates was approximated by this duration measure: 

Ix p V C F  t 
M a c a l d a y  Dtlrat ion = )_£ 

~=i P V T C F  

where PVCF = tile Present Value of the Cash Flow at time t, 

PVTCF = the Present Value of the Total Cash Flow, and 

t = time to payment of the cash flow 

Additional analysis (Panning 1995) has been based on tile modified duration measure 

(Fabozzi 1995), which is the Macaulay duration value divided by 1-,-r (where r is the current 

interest rate): 



Modified Duration = Macaulay Duration 
1 + r  

or alternatively a measure of the slope of the price vs yield curve (see Appendix). 

Both the Macaulay and modified duration calculations depend on three basic assumptions: 

1. The yield curve is flat 

2. Any change in interest rates is a parallel yield curve shift 

3. The cash flows do not change as interest rates change 

In practice, none of  these assumptions is correct. A number &researchers have examined the 

effect of  the first two assumptions in general. (See Klaffky, Ma, and Nozari, 1992; Ho, 1992; and 

Babbel, Merrill, and Panning, 1997.) In addition, the issue of  variable cash flows has been widely 

recognized for specific classes of assets. Bonds with embedded options (such as call provisions) 

and mortgage-backed securities (where prepayments depend on the interest rate level) are 

examples of  assets on which the expected cash floxvs change as interest rates change. A measure 

termed effective duration has been developed to express the sensitivity of the present value of  the 

expected cash flows with respect to interest rate changes; this measure specifically reflects the fact 

that the cash flows can change as interest rates change (Fabozzi 1995). For assets with variable 

cash flows, it is appropriate to calculate the effective duration rather than the modified duration. 

The liabilities of  property-liability insurers also vary with interest rates, due to the 

correlation of interest rates with inflation. As explained by Hodes and Feldblum, "Personal auto 

loss reserves are at least partially inflation sensitive. Medical payments in tort liability states, for 

instance, depend in part upon jury awards at tile date of  settlement. The jury awards, in turn, are 



influenced by the rate ofinflation, which is correlated (at least in the long run) with interest rates." 

(Hodes and Feldblum, 1996, p. 558.) Thus, the appropriate measure of interest rate sensitivity of 

the liabilities of property-liability insurers is one that reflects this interest rate-infation 

relationship, or effective duration. Hodes and Feldblum indicate that "A mathematical 

determination of the loss reserve (effective) duration is complex." (Hodes and Feldblum, 1996, p. 

559) This is the task that is addressed in the remainder of this paper. 

In order to accommodate non-parallel yield curve shifts, stochastic interest rate models 

must be used. This approach has been advocated tbr insurance applications by Tilley (1988), 

Keitano (1992), and Briys and de Varenne (1997). However, as pointed out by Litterman and 

Scheinkman (1991), parallel shifts explain over 80°,0 of historical yield curve movements. 

Although hypothetical portfolios can be constructed that show significant differences in duration 

values under parallel versus non-parallel yield curve shifts, for the asset and liability portfolios of 

typical property-liability insurers these differences are likely to be far less important than the 

impact of variable cash flows. Thus, this paper focuses on analyzing liability cash flows that vary 

with interest rate changes. Further research will explore the impact of stochastic interest models 

for both assets and liabilities for representative property-liability insurers. 

Section 2 of this paper discusses the nature and relative significance of property-liability 

insurance company liabilities. Section 3 examines the three major liability items, and discusses the 

timings of cash flows for each of these items. The natures of the cash flows have important 

implications for the type and level of impact on liability durations of changes in interest rates. 

Section 4 provides a mathematical derivation of a closed-form effective duration formula in a 

highly simplified framework. Section 5 describes a more detailed numerical model used to 
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estimate effective durations. Section 6 summarizes the results of empirical estimates and 

sensitivity tests of  effective duration measures. Section 7 demonstrates the impact on asset- 

liability management of  using modified versus effective duration measures of liabilities. Section 8 

concludes. In addition, an Appendix describes the mathematical underpinnings of  duration. 

2. The Liabilities of Property-Liability Insurers 

The three major balance sheet liability items of property-liability insurers are the loss 

reserve, the loss adjustment expense reserve, and the unearned premium reserve. As of 12/31/97, 

for the industry in aggregate, these components totaled 84.8% of liabilities (A.M. Best 1998). All 

of  these three reserves are subject to change, via imlationary pressures, as interest rates change. 

The remaining liabilities of  property-liability insurers consist primarily of expenses payable, 

including taxes, reinsurance, contingent commissions, and declared dividends. These cash flows 

are not likely to be affected by interest rate changes. Thus, the remainder of  this section describes 

the three major liability components for which we --,_re attempting to measure effective duration. 

The loss  r e s e r v e  is the estimate of  future payments that will be made on losses that have 

already occurred. Insurers use a variety of  techniques to arrive at this value. Some loss reserve 

estimates are based on a review of the specific circumstances of  individual claims. Claims 

department personnel collect information about the claim, including estimates of the value of 

property damaged and the extent of  bodily injuries, as well as the likelihood that the insurer will 

be required to pay the claim. For other claims, average values are established based solely on the 

type of  coverage involved. In addition, some estin'ates have to be made for claims that have 

already occurred but on which the insurer has no ir, tbrmation. These claims, termed "Incurred 



But Not Reported" (IBNR) losses, have generally occurred so recently that the insurer has not 

had time to receive a claim report or perform any evaluation. 

The total loss reserve, including a provision for IBNR, is determined based on an actuarial 

analysis of  historical development patterns. For example, ira review of past data revealed that the 

individual claim estimates made by claims department personnel tended to be 10% too high, the 

overall reserve would adjust for this redundancy. Other adjustments include those for losses that 

have not yet been reported, or for trends in reopening claims currently considered closed. 

Historical data are examined to determine loss development trends, and these trends are then 

applied to current loss data. In general, the trends are based on aggregate historical information - 

- thus the combined impact of late reporting, inflation, new legal basis for liability, improvements 

in damage assessment and repair, etc., would all be aggregated. (There is one reserving technique 

that attempts to isolate the inflationary component ..a',om the other effects (Taylor 1986), but this 

approach is not widely used.) 

The loss" adjustment expense reserve is the estimate of expenses associated with settling 

claims that have already occurred. Loss adjustmen.: expenses are classified into two types: 

allocated and unallocated. Allocated loss adjustmeat expenses (ALAE) consist of  items such as 

legal fees, independent adjuster costs, court costs, and investigation expenses, which can be 

assigned to specific claims. Unallocated loss adjus:ment expenses (ULAE) consist of  the 

expenses of  the company in operating a claims department that cannot be accurately allocated to 

an individual claim. ULAE are assigned to particu:.~r lines of business and accident years based on 
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a statutory formula. 2 The reserves for both ALAE and ULAE are also set on the basis of  

historical patterns. 

The unearned premium resera,e is a statutory reserve requirement for insurers. For a 

given insurance policy, a company is generally required to reserve a pro-rated portion of  the 

premium representing the part of the policy term thzt has not yet expired. This reserve is 

generally recognized as being excessive. Premiums are set to cover losses, loss adjustment 

expenses, and all other expenses. Whereas the losses and loss adjustment expenses occur 

throughout the term of  the policy, other expenses (~ch  as commissions, underwriting, and 

premium taxes) tend to occur at the inception of  the policy. Thus, there is some "equity" in the 

unearned premium reserve. The cash flows that ~ emanate from the unearned premium reserve 

are essentially losses and loss adjustment expenses en claims that occur after the evaluation date 

but during the remaining policy term. Since these events have not yet occurred, they are 

completely sensitive to changes in inflation affecting the value of these future losses. 

Since loss reserve estimates are based on hi~orical development patterns, and the 

historical development patterns are affected by historical economic variables such as interest rates 

and inflation, the accuracy of  the loss reserve is, in ~sence, path dependent with respect to those 

economic variables. In other words, the level oflo.~ reserves calculated at any point in time will 

depend upon how economic variables have pen'orn-ed in prior years. However, it is not the 

accuracy of  the current estimate that is of  concern :_-. measuring the effective duration, but how 

future cash flow patterns are influenced by future i.-.-erest rate changes via inflation. 

2 This formula assigns 45% of calendar ),ear un,lllezated Ic:.~,, adjustment expense pa.vmenls to tile current accident 
year, 5% to lhe immediately prior accident year. and th,e bz;~ce ill proportion to loss payments by accident year. 



An added complication to the measurement of the sensitivity of  insurer assets and 

liabilities to interest rate changes is the statutory ac,:ounting conventions of the insurance industry. 

Specifically, bonds are valued on a book, or amortized, basis. Also, loss liabilities are not 

discounted to reflect the time value of money until payment. Thus, statutory valuations are often 

not directly affected by changes in interest rates. However, the economic values of  these assets 

and liabilities are affected by interest rate changes. It is the economic values that are considered 

here, since these reflect the true worth of  the compmy to its owners. 

Each of the three major liability items is discussed in greater detail below. More 

specifically, Section 3 sets the groundwork for eva]:lating the impact of future interest rate 

changes and inflation on the liabilities of  property-liability insurers. 

A. 

all claims that have already occurred. 

respect to these claims. 

3. The Timing of Property-l iabil i ty Insurer  Liabilities 

Loss Reserves 

A company's aggregate loss reserve represmts the total anaount to be paid in the future on 

However, a variety of different situations can exist with 

1) A loss reserve can reflect a claim on which the nsurer is in the process of  issuing a check -- 

the claim has already been fully investigated, a.-A the insurer has agreed to a settlement 

amount with the claimant. The nominal value of the claim amount will not be affected by 

changes in interest rates, although the present .alue would change slightly. 



2) 

3) 

Alternatively, a loss reserve can represent a claim that has caused a known amount of  damage 

to property or to a person (the medical bills are complete). Thus, the amount of  the loss to 

the claimant is determined and will not change. However, the insurer and the claimant are still 

in dispute over whether the incident is covered, or over the extent of the insurer's liability for 

payment. Again, the nominal amount of the pa)ment should not change if interest rates 

change 3. However,  the economic value of the loss would change, since the future cash flow 

would be discounted by a different interest rate  

A third type of  loss reserve is for damage that t'as yet to be incurred. The insurer will be liable 

for the loss when the claimant experiences it, bt:: the value of the loss will only be known in 

the future. On an occurrence-based policy, this could apply for medical malpractice to a 

person who has not yet suffered the adverse co-~equences of an injury caused by a negligent 

physician (e.g., improper diagnosis, long term aLverse consequences from prescribed 

medication, surgical errors that will lead to futta-e complications). Or, in the case of  workers 

compensation, i fa  former employee, exposed tc a work related environmental hazard, first 

manifests the ailment at some future date, the c,;zim will be assigned to policies in effect during 

the period of employment. For another examp!~, a company may have sold a defective 

product, but the injuries have not yet occurred The insurer is required to establish loss 

reserves for these future losses because thev v,--- be paid based on prior policies. For these 

claims, the nonfinal value of the loss payment ~<J.l be affected by interest rate changes to the 

extent that the interest rate change is correlated with inflation on the goods or services related 

3One way this could happen is if the insurcr's claim .~ttlement philosophy were to change with interest rates-- 
for example, if the financial condition of the insurer ~'ere -:., become impaired in conjunction with an interest rate 
change and the company had to alter its claim ~ttlemeat a.-croach. 



4) 

to the cost of  the claim (property damage, medical expenses). Tile economic value of  these 

losses will also change with interest rates. 

The most common type of loss rese~:e is for losses on which some of the damages have 

already been fixed in value, but the remainder has yet to be determined. In addition, the 

question of the extent of  the insurer's liability may not have been settled. This could apply to 

an automobile accident involving property damage and bodily injury in which the policyholder 

of  the insurer may be liable. The damage to the claimant's vehicle is predetermined. The 

injured person has received some medical care, .'ut that care will continue at least up until the 

settlement of the claim and perhaps beyond. Tie nominal value of  a portion of these losses, 

termed "fixed," will not be affected by interest rzte changes, but the remaining portion of the 

losses will be affected by future inflation. 

Calculating the effect of inflation on tangib# losses, such as medical expenses, wage 

losses, and property damage, although complicated, is relatively straightforward once the 

appropriate inflation indices are determined. Howe-.er, quantifying the effect of  inflation on the 

value of intangibles in a liability claim, termed 'ger~ral damages" in a legal context, presents 

additional challenges. These components include i:¢ms such as pain and suffering, loss of  

consortium, and hedonic losses. It is difficult to de-ermine exactly how these values are 

established. Are they based on the value at the tim~ of the loss or the time of the verdict in a jury 

trial? Is the pain and suffering of a broken arm tha: occurred in 1986 evaluated the same as, or 

less than, a similar broken arm that occurred in 199.~, if both are being settled at the same time? 

Due to tile difficulty in putting a numerical ,alue on an intangible such as pain and 
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suffering, general rules of  thumb arise that try to relate the pain and suffering award to the 

medical expenses incurred by the patient. Thus. a broken arm that generated $15,000 in medical 

bills is worth roughly three times as much as anoth~ broken arm that generated only $5,000 in 

medical bills. (This does not mean that the pain and. suffering from a soft tissue injury, such as a 

sore neck, which generated $15,000 in medical expenses would be worth as much as a broken 

arm with the same amount of  medical expenses.) On this basis, the general damages on liability 

claims will be impacted by interest rate changes to 6-~e same extent that medical expenses are 

affected. However, a typical question asked by a pi~ntiff's attorney in a bodily injury case is how 

much a member of  the jury would require to be wilL-rig to undergo the same pain that the client 

has experienced. Since this is asked, rhetorically, near the end of the claim settlement process, 

conceivably the jury will implicitly adjust the value cfthe claim to the then-current cost of  living. 

In this case, the entire loss reserve for general dam~es  would be sensitive to future inflation 

changes. 

Determining the effective duration of  reserves will. therefore, depend on amodel  for dividing 

the future payments into afixed component, which :s not sensitive to future inflation, and an 

inflation sensitive component, which wilt vary witg subsequent inflation. This model is developed 

and described below. 

B. Loss Adjustment Expenses 

Loss adjustment expense rese~'es are e_-s~ab-shed for future payments, in a manner similar 

to loss reserves. These expenses will be paid over :S~e time during which the remaining losses are 

settled. Loss adjustment expenses are assigned to :-e accident year in which the loss that 
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generated these expenses occurred; they are assigned either directly (for allocated loss adjustment 

expenses) or indirectly (for unallocated loss adjustment expenses). The same approach used for 

determining the proportion of loss reserves that are Lxed in value can be used for loss adjustment 

expense reserves. However, since the rate with which these expenses become fixed in value can 

differ from the loss itself, they may be modeled separately using different parameter values. 

Loss adjustment expenses are different from loss reserves in the following respect. As an 

insurer generates loss adjustment expenses, such as .by hiring outside adjusters, it would generally 

pay these expenses shortly after the work is complezed. The loss adjustment expense reserve, 

then, represents costs that are fixed in value to a much lower degree than loss reserves. Also, the 

legal costs associated with defending a claim that goes to court will not be established until the 

very end of  the loss settlement process. In addition, the allocation process for unallocated loss 

adjustment expenses assigns a portion of the genera2 claim department's expenses to the accident 

year of  the claim when the loss is paid. Thus. for loss adjustment expense reserves, few of these 

costs will be fixed in value when the claim occurs ar.d a relatively high portion of the total costs 

will be based on the cost of  living when the claim is finally settled. 

C. Unearned P r e m i u m  Reserve 

Since the unearned premium reserve essenti21y represents exposure to losses that have not 

even occurred yet, this liability is fully sensitive zo f.:mre inflation. The expected cash flow 

emanating from the unearned premium reserve will :hifi to the extent that any change in interest 

rates is correlated with inflation. If it is assumed t?=at the insurer writes policies with terms not 

more than one year, then all of the claims eman~dm: from the unearned premium reserve will 
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occur in the next accident year. 

o f  the insurer, except that losses will occur approximately in the middle of  the first half o f  the year 

(assuming annual policies written evenly throughou: the year), as opposed to in the middle o f  the 

year as would be assumed for accident year data. Tqus, the duration of  the unearned premium 

reserve at the end o f  a year would be the weighted zverage of  the time until payment o f  the most 

recent accident year, plus 3/4 of  a year. For exampke, the unearned premium reserve as o f  

12/31/99 will cover losses that will occur, on average, on 4/1/00. For  the loss reserve for 

accident year 1999, the average loss would have occurred at the middle of the year, or 7/1/99. 

Thus, the duration o f  the unearned premium reserve as o f  12/31/99 is 3/4 of  a year more than the 

duration o f  the accident year 1999 loss reserves 

The payments on these losses will follow the claim payout pattern 

4. Mathematical  Model  of the Effective Duration of  Reserves 

In Section 5, we will present a detailed nurr,~rical model for determining effective 

duration. In this section, we develop a simplified rrathematical model of  an effective duration 

formula. This formula will provide a method to de~ermine the general value o f  the effective 

duration of  insurance liabilities, as well as a poiva o: reference for the more detailed calculations 

discussed later. 

In this section, it is assumed that all payrner.:5 are fully sensitive to inflation. In this case, 

the price level at which an insurer makes a claim paTment depends only upon the date o f  that 

payment. Put in the context of"fixed" costs descriSed in the last section, here it is assumed that 

there are no fixed costs. This provides a frame,,~'ork in which a closed-form solution can be easily 
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derived, assuming an appropriate payment pattern. The measurement  o f  duration assuming partial 

fixed costs will be derived in Section 5. 

Define the following variables: 

R, = the (correct) nominal r e~rve  at time t, 

c = the (constant) annual payout ratio, and 

r = the relevant interest rate. 

Assume that the payout,  over time, o f  property-l iab~ty reserves is represented by a "proportional 

decay" model: each year, proportion c o f  the beginning reserve is paid OUt) Thus, 

R, = (1-c'JRt_ I 

Under  this assumption, the present value of :he  initial reserve is expressed as 

PV(Ro)  = ( l  -o) , - ,cR, .  = CRo_ _ ( 1 - o ) ,  _ CRo 

,=l (1 +r): I -Ct=l l+ r  r+c 

where  the final form o f  the equation is derived from -he formula for an infinite geometr ic  

progression, s Now,  we can derive an expression fo- the Macaulay duration as follows: 

Macaulay  duration = D . =  

( l _c),-l cRot 

,°, (1 +r) '  

PV(Ro) 

By again using the properties of  infinite geometr ic  ::cogressions, the numerator  o f  the Macaulay 

in size. 
4Theoretically, this assumes that pa.vouts are m".,de f:rever, although after some years they become negligible 
Finite-length payout patterns are considered in Sec,._,.,n 5. 
5For 0<x<l. the value ofx + x 2 + x ~ + ... = x / ~ 1-×. 
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duration formula reduces to 

cRo(l  -r)  

(,-+c): 

Dividing by the previous expression for PV(Ro). the Macaulay duration is 

] ÷ r  
D o - 

r - C  

Since the modified duration is the Macaulay duratien divided by (l+r),  we have 

M o d i f i e d  dura t ion  = &ID o - 
r + c  

In order to determine the ef fec t ive  duration of property-liability insurer liabilities, we must 

calculate the present value of  those liabilities in three, different ways: with the original interest rate, 

with an increased interest rate, and with a decreased interest rate. Under this approach, at~er 

calculating the present value assuming the original Lqterest rate, we assume that the interest rate 

increases (e.g., by 100 basis points), and then that 2:e interest rate decreases (e.g., by 100 basis 

points). The effective duration is then calculated as 

Effect ive  d l l r a t l O l l  = ~-J~o = 
P V  - P V  

2PVo(~)  

where PI/: = the present value of  the expec-ed cash flows if interest rates decline by Ar, 

PV+ = the present value of  the expe-zed cash flows if interest rates increase by Dr, 

and 
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P V  o = the initial present value of  the expected cash flows. 

The key in calculating the effective duration is to account for the impact of hypothetical changes 

in the interest rate on the future cash flows emanating from the liability items. For property- 

liability reserves, the primary impact on cash flows of a change in interest rates is via inflation: 

since interest rates are correlated with inflation, and inflation increases future nominal claim 

payments, changes in interest rates will affect the level of  future cash outflows, and thus the 

present value of  those outflows. Therefore, in order to calculate the effective duration, we need 

to adjust the formulas above to reflect this inflationary impact. 

Define the following additional variables: 

r .  or-= r +/- Ar = the increased or decreased interest rate, and 

i .  or- = the inflationary adjustment after the change in interest rate. 

The inflationary adjustment contemplates the correlation between changes in interest rates and 

inflation (actually, not just overall inflation, but claim inflation for the specific type of  insurance at 

issue). 

We can now adjust the present value equation above in preparation for calculating the 

effective duration 

( l -c) ' - lcRo(]  +i.)'  ~.. (1 -c)(]  ~-i_) ' CRo(l -,-i.) 
P v  ( R  o) = - 2_" ( ) = 

t=l (l + r )  t 1 -c,=t 1 +r r + c + c i _ - i .  

A similar equation applies for the present value of rese~,'es under the assumption of an interest 

rate decrease• Thus, we derive the following formula for the effective duration: 
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1 +i 1 +i 
E l )  ° _ r + c  [ _ . ] 

2 A r  r +c  + c i  - i  r + c  + c i  - i  

These formulas can be used to indicate the relative magnitudes of the various duration 

measures. For example, assume the following illustrative parameter values: r = 0.05, Ar = 0.01, c 

= 0.40, and the correlation between interest rate anc~ inflation changes is 0.50 (thus, i+ = 0.005, 

and i. = -0.005). Given these values, the formulas a~ove provide the following duration measures: 

D O = 2.333, M D  o = 2.222, and E L )  o = 1.056. This example illustrates the potentially significant 

differences between effective duration and the more common, traditional measures of  duration. 

5. Model ing  the  Interes t  R a t e  Sensitivity of Loss and  LAE R e s e r v e s  

One of the difficulties in measuring the interest rate sensitivity of liabilities is the need for 

extensive data. What information is publicly available to determine the impact of  interest rate 

changes on the cash flows of  losses? For the loss ar.d loss adjustment expense reserve, the 

expected nominal cost of  these amounts at the end c(each year are reported in aggregate, by 

accident year, by line of  business, in the .-Manual Sta:~ment. Although the expected payment dates 

for these values are not listed, the actual pa.x.,'ments ~.,ade in each historical year -- categorized by 

accident year and by line of  business -- are included This allows a comparison of  the actual 

payments with the expected payments and pemv,ts ~:e generation of  a profile of  when the 

aggregate loss reserves are likely to be p~,id in the f:~ure. However, there is no public information 

on when the value of  an unpaid loss is set in value. Thus, this relationship needs to be modeled. 

For this model, the following assumv.ions ~:,~ made. At the time the loss occurs, 
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proportion k of the eventual cost of  the claim is "determined" -- i.e., a proportion of  the future 

cost is "fixed" and no longer open to change from interest rate and inflationary changes. In 

addition, proportion m of the loss will not be determined until the time the claim is settled. 

Examples of  loss costs that will go into k are medical treatment sought immediately after the loss 

occurs, the wage loss component of  an injury claim, and property damage. Examples of  loss costs 

that will go into m are medical evaluations that are done immediately prior to determining the 

settlement offer, general damages to the extent they are based on the cost of living at the time of  

settlement, and loss adjustment expenses connected with settling the claim. 

The remaining (1-k-m) portion of  the expenses are modeled in three ways, to allow for 

differing rates at which the claim values could become fixed: these expenses could be fixed in 

value linearly over the time period from loss to settlement, or in a manner that would represent a 

concave function or a convex function. Figure l illustrates the three different functions proposed 

for the proportion of  loss reserves that are fkxed in .alue, and therefore not subject to inflation, 

over time. 

A representative function that displays these attributes is: 

. / ( 0 - - k  .-[( l - k - . , , )  × o] 

where f(t) represents the propoctior, of ultimate paid claims "fixed" at time t, 

k = the proportion of the claL'n that is fixed in value immediately, 

m = the proportion of the clam that is not fixed in value until the claim is 

settled, 

n = 1 for the linear case. 
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n < 1 for the concave case, 

n > 1 for the convex case, and 

T = the time at which the claim is fully and completely settled. 

For example, assume an insured causes an automobile accident in the middle of  1997, and 

the victim requires immediate medical attention. This is the k portion of  the claim that is 

predetermined immediately; assume, for example, that it represents 15% of the total cost of the 

claim. Further, assume that m is zero. After the acddent, the victim receives medical care on an 

ongoing basis until the claim is eventually settled in the middle of the year 2000. These 

continuing care expenses will be influenced bv inflation. At the end of  1997, ha l fo fa  year of  

continuing expenses has been obtained. The total ler.gth of  time before the claim will be settled is 

three years (2000-1997). Thus, for the linear case (1.--1), 

x,0.5,1 
f(0.5) = .15~-[(1- 15) ~,-~--) ] 

In this case, f(0.5) = 0.292, meaning that at the end ~,f 1997, 29.2% of  the loss reserve for this 

1997 accident year claim is fixed in value, with the remainder subject to future inflation. 

6. Duration Measures  for Insurer Liabilities 

A. Empirical Estimates 

In order to irriplement our model of  effecIive duration, values of several parameters must 

be determined: 
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Loss payout pattern 

Economic parameters 

• Interest rate 

• Correlation between interest and inflation 

• Growth rate of  insurance writings 

Cost determination parameters 

• k (the proportion of claim value that is fixed immediately) 

• m (the proportion of claim value that is not fixed until the claim is settled) 

• n (the shape parameter of  the fixed-claim-proportion function) 

Each of  these parameter values is discussed in greatec detail below. 

A key component to determining effective duration is identifying the future cash flows. 

For property-liability insurance, this involves determining the timing &future loss payments as 

loss reserves run off. For a particular corporate application of this effective duration procedure, 

the company's historical loss payment information bv line of business can be used as a basis for 

estimating future claim payouts. For purposes of  this paper, we used aggregate industry 

information available from A.M. Best (1998). Due "o their size and importance, two lines of  

business were used in our analysis: private passenge: auto liability (PPAL) and workers 

compensation (WC). An additional advantage of  us!rig these two lines of business is that their 

cash flows have different timing characteristics: WC pays out more slowly, in general, than PPAL. 

This distinction allows us to test the potential in,..pac: of calculating effective duration under 

different payout environments. 
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Aggregate industry payout data for PPAL and WC were each used in two different ways. 

First, the raw empirical data were used. Empirical loss payment patterns were generated from an 

actuarial analysis of  historical calendar and accident year payment data. The second approach 

was to fit statistical distributions to the raw empiric',.l payment patterns. This was done using 

soft:ware called "BestFit" (a product of  Palisade CoNoration), which provides best-fit parameter 

values to sample data for a variety of theoretical di~ributions. For both PPAL and WC, a gamma 

distribution was used for illustrative purposes as the :smoothed alternative" to the raw empirical 

payment pattern. 

The loss payment patterns used in our tests were as shown in Table 1. 

[Insert Table I here] 

This table reflects the payout patterns through ten )'ears, which is the timeframe in which 

aggregate industry data is available in an.,,' partic~laz edition of A.M. Best's Aggregates and 

Averages. For our purposes, the WC patterns are extrapolated out to 30 years, and the PPA 

patterns to 15 (empirical) and 19 (smoothed) .ve:ars. 

The selected economic parameters are based largely on current and historical economic 

relationships. A "base case" 5% interest rate was s~!ected in accordance with the level of  short- 

term government rates in effect during the late 199'2s. A 40% relationship between interest rates 

and claim inflation was selected based on the histor_,:al relationship between these two economic 
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variables. 6 Finally, a 10% growth rate is assumed,  based on judgment .  This g rowth  rate 

parameter  reflects the fact that a typical insurance company carries reserves for a number  o f  

different accident years. The  distribution o f  reserves by accident year  is a function o f  the g rowth  

rate in ultimate accident  year incurred losses, and the runoff  patterns. The 10% g rowth  

assumpt ion  assumes that ultimate accident year losses are growing at 10% per year, which reflects 

the g rowth  in both the number  of  policies written and claim cost inflation. 

The selection o f  cost  determination parameters is very difficult. Publicly available loss 

deve lopment  information (e.g., Best's Aggregates andAverages or the NAIC data tapes) includes 

loss payments  made  each year, by accident year, on a by-line basis. This is not sufficient to 

determine the fixed and variable port ions o f  loss reserves. Even within a company,  the data 

needed to determine these relationships is not generally maintained in an easily accessible format. 

To  address  this issue, several large insurers were approached and asked to participate in a study 

to help estimate the parameters  used in this model. These companies  were asked to report  

information on a small sample of  claims that were settled several years after the date o f  loss. 

None  o f  the companies  could provide an answer to the question o f  when the general damages  

port ion o f  a claim is fixed in value. It appears that there is simply too  much uncertainty about  the 

process  used to establish this figure to know if it is based on costs at the time o f  the loss, the time 

of  the settlement, or some interim time. 

One company  did provide especially detailed reports on a sample of  auto liability insurance 

6The selected relationship is based upon regressions of historical annual changes in U.S. Treasury bill returns 
(independent variable) and historical annual changes in inflation rates (depcndent variable) for CPI, PPA bodily injup,.' 
liability, PPA property damage liability, and WC. The regression coefficients varied greatly -- by both magnitude and 
statistical significance -- according to the type of inflation and the period being tesled. The lest periods ranged from 
20 to 60 years. The intercept term in the regressions were sel~ted as zero. Insurance claim inflation data were taken 
from Masterson (1968 and subsequent); T-bill and CPI data were taken from lbbolson (1996). 
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claims. These reports slaowed all the medical, wage loss, and property damage costs associated 

with the claims, the date any of these expenses were incurred by the claimant, and the total claim 

payment made by the company. 

costs the claimant had incurred. 

For most of these cases, the final claim paid exceeded the total 

This is expected, since the itemized expenses represented special 

damages, and the final payment would also include ~he intangible general damages. However, 

there was one case in which the policyholder was not fully liable for the claim and the total 

payment was less than the plaintiffs expenses. 

The general pattern of the expenses was as follows. At the time of the loss, the plaintiff 

incurred significant medical expenses, property dan-age, and wage loss. After the initial medical 

treatment, the plaintiff incurred some continuing meclical expenses, either for additional treatment 

or for rehabilitation. These expenses most frequemly ended before the claim was finally settled. 

This would suggest that the function for the value c/ the fixed claim is concave (n<l),  at least for 

the special damages portion of the claim. 

The results of  this sample indicate that a mc,:e extensive and detailed examination of this 

process would be very helpful in determining the aFpropriate parameters for measuring effective 

duration. For purposes of  getting initial empirical estimates of effective duration, we have chosen 

to begin with k = 0.15, m = 0.10, and n = 1.0. These values will be varied in the next subsection, 

in order to determine the potential sensitivity of  effective duration results to the magnitude of 

these parameters. 

Based on these selected parameters, and a ._v" of  100 basis points, and using a spreadsheet 

model to implement the calculations, the effective &lration indications in Table 2 were derived: 
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[Insert Table 2 here] 

The essential finding is that effective duration measures -- which properly account for the 

inflationary impact of  interest rate changes on future loss reserve payments -- are approximately 

25% below their modified duration counterparts. This relationship appears to be consistent, 

based on the illustrative PPA and WC tests above, regardless of line of  business, or whether 

empirical or smoothed payout patterns are utilized. 

In addition to duration, another quantity that is important to asset-liability management -- 

convexity -- is also displayed in Table 2. Just as the impact of inflation on future cash flows must 

be measured via effective duration, the second derivative of the price/interest rate relationship (see 

appendix) is appropriately measured by effective convexity in an inflationary environment. The 

results in Table 2 show that there is a significant difference between the traditional and effective 

measures of convexity. The effective convexity formula used to derive the values in Table 2 was: 

Effective convexia" = 
pr .  + P V  - 2 P V  o 

P Vo( Ar) 2 

B. Sensi t ivi ty  o f  Ef fec t ive  Durat ion to Parameter  Values 

As indicated above, effective duration meast:res can provide significantly different 

evaluations of property-liability insurer interest rate _~ensitivity than the traditional modified 

duration measures. Use of  the appropriate e~'ec,.ive duration measure is therefore critical when 
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utilizing asset-liability management techniques. Similarly, it is important to have an understanding 

of which parameter values have the greatest impact on the magnitude of the effective duration 

calculation. In Table 3, various parameters have been changed -- one at a time -- to demonstrate 

the level of  sensitivity of  effective duration values with respect to those parameters. (Since the 

empirical and smoothed pattern results were so similar above, to promote clarity only the 

empirical patterns were used for each line of business.) 

[Insert Table 3 here] 

The main result from Table 3 is the significant sensitivity of  effective duration to the 

interest rate - inflation relationship. In particular, this parameter expresses how much inflationary 

pressure is associated with a 100 basis point change in interest rates. If there is no correlation 

between interest rates and inflation, the modified duration and effective duration are the same. If 

the correlation is as high as 80%, the effective duration is approximately one-half the modified 

duration. The relationship between changes in interest rates and changes in inflation -- both CPI 

and line of  business claim inflation -- has historically been very volatile. Our results suggest that 

additional efforts to determine reasonable values for this relationship parameter would be 

worthwhile. 

Another observation from the table is that tt-.e results are not overly sensitive to some of 

the cost determination parameters. Given the di.,~culties, mentioned above, of  determining values 

for the parameters, this is a somewhat comforting finding. For companies undertaking asset- 

liability management, simply using effective duration measures of  their liabilities is more important 
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than having the exact parameter values. However, these companies should be encouraged collect 

data that will allow them to monitor the sensitivity of their results to different cost determination 

function specifications. 

7. Use of Effective Duration in Asset-Liability Management 

In previous sections, the deficiencies of traditional measures of  duration in an inflationary 

world were identified, and an alternative measure -- effective duration -- was described. In this 

section, the impact of  using effective, as opposed to modified, duration on a company's asset- 

liability management process is illustrated. The example used is a hypothetical workers 

compensation insurer; it is assumed that this company has asset and liability values which are 

related in a manner consistent with aggregate industry balance sheet figures. 

The effective duration analysis in the prior section concentrates on loss and allocated loss 

adjustment expense reserves and runoffs. A complete asset-liability management analysis would 

also consider unallocated loss adjustment expenses and unearned premium reserves (the timings of 

which are described in Section 3 of this paper). For simplicity, and because they represent a 

relatively small pact of  an insurer's liabilities, unallocated loss adjustment expenses are considered 

together with losses and ALAE in the illustrative example in this section. However, the 

reasonableness of this assumption would need to be evaluated in any specific corporate 

application of asset-liability management. 

The duration of the unearned premium rese~-e was described in Section 3. The one 

adjustment that must be made with respect to asset-liability management is to only consider the 

portion of  the UPR which is associated with fi.~ture losses and loss adjustment expenses -- it is 

26 



only this portion which represents a liability for future cash flows which may be impacted by 

inflation. The duration for this portion of  the UPR is calculated by determining the duration of  

the loss and LAE reserve for the most recent accident year, and adding 0.75. The other portion 

of  the UPR -- the "equity" in the UPR -- represents prepaid expenses associated with prior 

writings of insurance policies, and is essentially an accounting construct which is unrelated to 

f u t u r e  cash flows. Thus, this portion of  the UPR is not considered in the following illustration. 

For illustrative purposes, all other liability items on the insurer's balance sheet are 

considered to have a Macaulay duration of  1.0 (and thus, at an interest rate of  5%, a modified 

duration of  0.952). 

The duration of  an insurer's surplus is as follows (Staking and Babbei, 1995): 

D s S = D.4.4 - D L L 

where S = surplus, 

D = duration, 

A = assets, and 

L = liabilities. 

In order to immunize its surplus (setting D s =0) from interest rate risk, an insurer needs to set the 

duration of its assets as follows: 

DA L 

Thus, the appropriate determination of the duration of liabilities is critical for asset-liability 

management. 
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Based on the aggregate industry balance sheet figures for WC insurers reported in A.M. 

Best (1998), Table 4 shows the liability distribution for an insurer with assets of  $1 billion. 7 

[Insert Table 4 here] 

The liability durations were calculated as described above and in Section 6 based on the empirical 

WC payout pattern. The resulting overall (value-weighted) liability modified duration is 3.823; 

while the effective duration of total liabilities is 2.801. 

If the insurer wanted to immunize surplus from interest rate swings based on modified 

duration, the duration of  assets would need to be 2.714. However, based on effective duration, 

the duration of assets should be 1.989. An insurer that attempted to immunize its exposure to 

interest rate risk by matching the duration of assets with the modified duration of  liabilities, 

instead of  effective duration, would find that it still would be exposed to interest rate risk. Based 

on these values, the insurer would have a duration of surplus of 2.501: each 1 percentage point 

increase in the interest rate would decrease surplus by 2.501 percent (where surplus here is 

defined as the economic value of statutory, surplus plus the equity in the unearned premium 

reserve). 

7Workers compensation insurcrs tend to have a sli~2atly higher proportion of their liabilities in loss and loss 
adjustment expenses, and a much lower proportion in the unearned premium reserve, than other insurers. In 
applications of this technique, the actual values for these ~abilities, and for the relationship between assets and 
liabilities, for the company should be used. 
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8. Conclusion and Future Research 

This paper has demonstrated a method for determining the effective duration and 

convexity of property-liability insurer liabilities, and has provided some general estimates of  these 

values. Based on the results derived, it appears that there can be significant differences between 

the traditional measures of  duration -- i.e., Macaulay and modified duration -- and effective 

duration. Of these measures, only effective duration is capable of  properly accounting for the 

impact of  inflationary pressures on liability cash flows that are associated with potential changes in 

interest rates. This means that effective duration is the appropriate tool for measuring the 

sensitivity of the liabilities of property-liability insurers to interest rates when performing asset- 

liability management. Use of the wrong duration measure can lead to an unintended mismatch of 

assets and liabilities, and an unwanted exposure to interest rate risk. 

In addition to inflation, interest rate changes may also be correlated with other financial 

and economic variables. For example, a decrease in interest rates is of[en - -on  average -- 

associated with an increase in stock prices (since the discount rate on future dividends and capital 

gains is lower). Similarly, changes in interest rate~ in tile U.S. may certainly impact international 

financial relationships. To the extent to which these other variables are factors in a jury's damage 

award considerations, they must also be contemplated in an effective duration framework. For 

example, if the stock market has increased in value significantly between the time of an accident 

and the final jury verdict, a well-structured commer.t from the plaintiff's attorney to the jury may 

lead to a higher award on the grounds that the plair:¢iffcould have invested the monies lucratively 
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if they had been available at the time of  the accident. ~ These types of  issues are beyond the 

analytical scope of  this paper, and are left for future research. 

In this paper, we have approached the measurement of effective duration from the 

standpoint of  a shift in a constant interest rate. Future research should examine the impact of  a 

stochastic interest rate model on effective duration and asset-liability management. Interesting 

and important work in the non-insurance literature on effective duration, yield curves, and 

stochastic interest rates (e.g., Babbel, Merrill, and Panning, 1997) has significant future 

applicability to the issues addressed in this paper. In addition, stochastic interest rate models are 

beginning to appear in the property-liability insurance industry, especially within the context of  

dynamic financial analysis (D'Arcy and Gorvett, et al, 1997 and 1998). In analyses in which 

assets are valued according to a stochastic rate assumption, it is appropriate to value liabilities on 

the same basis. This will be an important area for future research. 

STile appropriate analylical framework in this case re:iv involve option pricing theory -- it is possible that tile 
jury award may depend on tile maximization ofalternaIives involving such considerations as inflationary environment. 
stock market performance, etc. 
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Table 1 
Cumulative Proportion of Ultimate Accident Year Losses Paid 

(Based on Age After Beginning of  Accident Year) 

Age (Years) Empirical Empirical 

1 .386 .398 .225 .362 

2 .701 .672 .486 .496 

3 .843 .827 .635 .588 

4 .919 .909 .727 .658 

5 .958 .953 .785 .713 

6 .977 .976 .822 .757 

7 .986 .988 .847 .793 

8 .991 .994 .867 .823 

9 .994 .997 .880 .848 

10 .995 .998 .891 .869 

PPA Liability Workers Compensation 

Smoothed Smoothed 



Table 2 
Summary of Duration Measures for Loss Reserves 

(Based on "Base Case" Parameter Assumptions) 

PPA Liability Workers Compensation 

Empirical Smoothed Empirical Smoothed 
i 

Macaulay Duration I. 516 1.511 4.485 4.660 
I 

Modified Duration 1.444 1.439 4.271 4.438 
I 

Effective Duration 1.089 1.085 3.158 3.285 
I 

! I 

Convexity 5.753 5.214 50.771 45.060 
I I 

Effective Convexity I. 978 1.807 16.038 14.383 
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Table 3 
Analysis of  the Sensitivity of Effective Duration Measures of Loss Reserves 

(Based on Single-Parameter Changes From "Base Case" Values*) 

Macaulay Duration* * 
Modified Duration** 

PPA Empirical WC Empirical 
1.516 4.485 
1.444 4.271 

Effective Duration 
Base Case 1.089 3.158 

Inflation-Interest Relationship: 
80% 0.733 2.036 
60% 0.911 2.596 
40% 1.089 3.158 
20% 1.267 3.721 

0% 1.445 4.286 

k = 0.25 I. 128 3.284 
0.20 1.108 3.221 
0.15 1.089 3.158 
0.10 1.069 3.095 
0.05 1.049 3.032 

m = 0.20 1.067 3. 104 
0.15 1.078 3.131 
0.10 1.089 3.158 
0.05 1.099 3.185 
0.00 1.1 I0 3.212 

n = 1.40 1.045 3.040 
1.20 1.065 3.092 
1.00 1.089 3.158 
0.80 1. 120 3.245 
0.60 1.160 3.362 

g = 0.20 1.070 2.849 
0.15 1.079 2.985 
0.10 1.089 3.158 
0.05 1.101 3.367 
0.00 1.116 3.589 

Base case values are: k=0.15, m=0.10, n=l.00, g=0.10, a 5% interest rate, and a 40% 
relationship between interest rate and inflation movements. 
These duration figures reflect base case parameter values. When parameter g is changed 
according to the range above, Macaulay and modified durations also change slightly: 

PPA: D = 1 . 5 0 1 t o  1.540, and.X'ff)= 1.429 to 1.466 
WC: D = 4.128 to 4.910, and .VD = 3.932 to 4.676 
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Table 4 
Example of Asset-Liability Management 

for a l=Iypothetical Workers Compensation Insurer 
($ figures are in millions) 

Dollar Modified Effective 
Value Duration Duration 

Loss and LAE Reserves 590 
UPR (portion for losses and LAE only) 30 
Other Liabilities 90 

4.271 
3.621 
0.952 

3.158 
1.325 
0.952 

Total Liabilities 710 3.823 2.801 

Total Assets 1,000 

Indicated Asset Duration to Immunize Surplus: 2.714 1.989 
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Appendix 
Derivation of  the Formulae for the Sensitivity o f  a Cash Flow 

to Interest Rates Based on the Taylor Series 

The basic objective of  a duration measure is to determine the sensitivity of  the present 

value of  a cash flow to a change in interest rates.. This is an ithportant factor for financial 

institutions, since interest rate risk is such a significant source of uncertainty for these companies. 

Several measures of  interest rate risk have been developed in finance. An understanding of these 

different measures can best be grasped by examining their basic mathematical foundations. 

The Taylor series states that the value of a function at any point can be approximated by 

the value of a series of  derivatives of the function valued at another point, with each derivative 

multiplied by the difference between the two points raised to the same power as the order of  the 

derivative and divided by the factorial of  that order. The accuracy of  the approximation is 

determined by the number of  derivatives taken. Mathematically, the Taylor series is represented 

as :  

h 2 h 3 h "  

f ( " o ) +  hf l)(ro) + -  57  .... 
2 ! " 3 .  " 177! . . . .  

where 

r 0 = i n i t i a l  i n t e r e s t  r a t e  

r~ = n e w  i n t e r e s t  r a t e  

h = r ~ - r  0 

The Taylor series will be used to evaluate a simple interest rate function, but one that is 
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typical for fixed income assets. This function is the present value of  a $1 million ten year zero- 

coupon bond, which is simply the present value $1,000,000, or: 

f ( r )  - 
1,000,000 
(1 + r) l° 

The first four derivatives of  this function are: 

f o )  _ ( -  10)(1,000,000) - 10,000,000 
(1+  r ) l l  : (1.1_ F)II  

f (2)  : ( -  11)(- 10)(1,000,000) 110,000,000 

(1 + r)  'z = (1 + r )  '2 

"9 f(3) = ( - 1 2 ) ( -  11)(- 10)(1,000,000) - 1.~_,000,000 
(1+ r )  13 = (1+ r )  13 

f ( 4 ) =  ( - 1 3 ) ( -  12) ( -11) ( -10) (1 ,000 ,000)  = 17,160,000,000 
(1 + r) 14 (1 + r) '4 

Figure 1-A illustrates the present value function for this zero coupon bond. As can be 

seen from this figure, the present value of  the bond is inversely related to interest rates and the 

function is convex. This represents the typical relationship for bonds with a fixed coupon rate and 

payment pattern. 

In order to apply the Taylor series, we need an initial interest rate, which will be set at 
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10%, and a new interest i'ate to be used to value the function. The accuracy of each order of  

Taylor series approximation is illustrated graphically over the range of 0 to 30 percent. 

Figure 2-A illustrates the bond value and the Taylor series approximations based on the 

first, second, third and fourth orders. For small changes, all of the approximations appear to 

provide a fairly reasonable fit. However, for larger changes -- for example, at an interest rate of  

20 percent -- it is clear that the higher order approximations provide progressively better fits to 

the actual bond value. 

Figure 3-A illustrates the present value function and the first four order approximations 

over the range of 8 to 12 percent. Within this range, the second, third and fourth order 

approximationsare visually indistinguishable from each other and from the bond value itself. The 

first order approximation is clearly distinct, however. Based on this mathematical background, 

the attempts to quantify interest rate sensitivity can be examined. 

The first attempt to develop a measure of the sensitivity of  a cash flow to interest rates 

was performed by Frederick Macaulay in 1938. The measure he developed, termed the Macaulay 

duration, is the present-value-weighted average time to receipt of  the cash flows, divided by the 

initial present value of  the cash flows, and is expressed by the following formula: 

n 

Y' tcn,,/(1 + 
D = ' = '  n 

CF,/(l+ ro)' 
t = l  
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where CF, = the cash flOW received at time t 

r o = initial interest rate 

The numerator of  the Macaulay duration is close to the first derivative of  the function for 

the present value of  the cash flow. If the denominator of the expression in the numerator were 

(l+ro) '÷~ instead o f (  1+%)', then the numerator would be equal to the negative of  the first 

derivative of the function for the present value of the cash flow. When the Macaulay duration is 

used to estimate the effect of  a change in interest rates, the Macaulay duration is multiplied by the 

change in the interest rate, or rl-r0, and, in recognition of the inverse relationship between the 

present value and interest rates, also by -1. 

For example, the Macaulay duration of the zero-coupon bond is: 

~'~ IOCFjo I ( I+  ro) '° 
D= = 10 

~, CFlo I (I+ ro) '° 

The change in the present value of  the cash flow is estimated to be f(i0)(-l)(10)(rl-r0). In 

this example, for every 1 percentage point increase in interest rates, the present value of  the cash 

flow is estimated to decrease by 10 percent. The accuracy of this estimate, for an r 0 = 10 

percent, is illustrated on Figure 4-A. Similar to the first order Taylor series approximation, this 

estimate is only accurate for ve~' small changes in interest rates. 
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The next approach to measure the sensitivity of the present value of a cash flow to interest 

rates is termed modified duration. The formula for modified duration is: 

fm(ro) M D = -  
f (ro) 

This expression is mathematically equivalent to the Macaulay duration divided by (l+ro). 

Apparently, the negative of the first derivative is used simply to avoid having a negative number 

for the duration measure. Since the slope of the present value function for almost all financial 

assets is negative, then the first derivative would naturally be a negative. Taking the negative of  

this derivative transforms it to a positive value. 

10%: 

The modified duration of the ten year zero-coupon bond is. for an initial interest rate of  

( -  10)(1,000,000) / (1.10)" -3,504,939 
MD= (-1)  1,000,000/(1.10)10 = ( -1)  385,543 = 9.0909 

To use the modified duration estimate to determine tile new present value of a cash flow, the 

change in the present value is: 

% Price Change = ( -  1)(MD)(r. - r0) 

Here, multiplying the modified duration by negative one cancels out the negative of  the 
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slope that was taken in determining modified duration. The accuracy of this estimate, for an r 0 = 

10 percent, is also illustrated on Figure 4-A. Modified duration is exactly the same as a first order 

Taylor series approximation, and is also only accurate for small changes in interest rates. 

In order to compare the Macaulay and modified duration measures to the Taylor series 

approximation requires the rearranging of  terms. Since duration attempts to measure the 

sensitivity of the present value to interest rate changes based on a first order approximation, the 

correct duration measure would be as follows: 

f (r~)- f (ro) (r~ - r o ) f ( I ) ( r o )  

f (ro) f (ro) 

Macaulay duration is -tall(r0)(l+ro)/f(r0). Modified duration is -•l)(r0)/f(ro). The 

determination of the present value of  the cash flow based on a first order Taylor series 

approximation is shown below. Seen in this framework, it is apparent why the modified duration 

is multiplied by negative one, the initial present value and the difference in interest rates. 

f (r,) = f (r  o ) + ( f  l - F O ) f ( ~ )  (r o ) 

= f ( r o )  + ( t "  1 - r0) (- 1)(Modified Duration)f (~) (r0) 

In order to increase the accuracy of the interest rate sensitivity measure, an additional 

term, called convexity, has been introduced in finance. The measure for convexity is the second 

derivative of the price with respect to interest rates, divided bv the price of the bond, or: 
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Convexity - f(2)(ro) 
f (ro) 

Applying convexity to determine the price change: 

1 
% Price  Change  = (-1)(MD)(r~ - ro)+ -a-Convexity(r~ - ,~)2 

Z 

This expression is similar to the second order Taylor series approximation. Using the first 

and Second derivatives only, and rearranging to determine the change in the value of the function, 

as a percentage of the original value, leads to: 

f(r~)- f(ro) (q-  ro)f(')(ro) ( ' i -  ro)2 f(2)(ro) 
= + 

f (ro) f (ro) 2 ! f ( r o )  

Convexity is multiplied by '/2 to correspond with tile 2{ in the Taylor series approximation 

and multiplied by the yield change squared also to correspond with the Taylor series 

determination. 

The convexity of the ten year zero-coupon bond is, for an initial interest rate of 10%: 

( - 1 1 ) ( - 1 0 ) ( 1 , 0 0 0 , 0 0 0 ) / ( 1 . 1 0 )  '2 35 ,049,390 
C o n v e x i t y  = 1,000,000/(1.10),0 = 385,543 = 90.909 
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Figure 5-A illustrates the effect of  introducing the convexity expression to determine the 

present value of  the cash flow. This is exactly the same as the second order Taylor series 

illustrated in Figure 2-A. 

Despite the importance of accurate measures for interest rate sensitivity, there are no 

specific financial expressions for third or higher order approximations of  the Taylor series. These 

terms are used in some calculations of  interest rate sensitivity, however. In practice, calculations 

of these more accurate expressions are no more difficult than the modified duration and convexity 

determinations. 

Table 1-A shows the actual values for the present value of  the $1 million ten year zero- 

coupon bond for interest rates ranging from 6 to 14 percent, and the estimated values based on 

modified duration, convexity, and the third and fourth order Taylor series expansions. For 

interest rates near the initial 10 percent interest rate, the duration and convexity estimates are very 

close to the actual values. For larger interest rate changes, the higher order terms provide a much 

better approximation. 

Although typically the relationship between the present value of  a cash flow and interest 

rates is convex, this is not always the case. In some instances the relationship is concave over part 

of the range. For example, if the maturity of  the bond is a function of  interest rates, a concave 

relationship can be obtained. In finance, this is termed negative convexity, rather than the 

mathematical term concavity. This type of  function is illustrated in Figure 6-A, in which the 

maturity of  a zero-coupon bond is I00 r. Thus, if interest rates are 10 percent, the bond matures 

in 10 years. If interest rates fall to 6 percent, the bond matures in six years; if interest rates rise to 

12 percent, the bond matures in 12 years. This relationship is representative of actual payoff 
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patterns for collateralized mortgage obligations and callable bonds. 

As shown in this appendix, the financial measures used for interest rate sensitivity are all 

based on the Taylor series expansion. Although some of the terminology used in finance is new, 

the basic application is a standard mathematical technique. 
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Figure 1 
Formula for "Fixed" Costs 
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Figure 1-A 
Present Value of a $1 Million Ten Year Zero Coupon Bond 
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Figure 2-A 
Present Value of a $1 Million Ten Year Zero Coupon Bond 

with Taylor Series Approximations 
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Figure 3-A 
Present Value of a $1 Million Ten Year Zero Coupon Bond 

with Taylor Series Approximations 
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Figure 4-A 
Present Value of a $1 Million Ten Year Zero Coupon Bond 

with Macaulay and Modified Duration Estimates 
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Figure 5-A 
Present Value of a $1 Million Ten Year Zero Coupon Bond 

with Modified Duration and Convexity Estimates 
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Table 1-A 
Accuracy of Estimated Values of $1 Million Ten Year Zero-Coupon Bond 
Initial Interest Rate = 10% 

Interest Rate Actual Value 
6.00% $ 558,394.78 
6.25% $ 545,394.32 
6.50% $ 532,726.04 
6.75% $ 520,380.68 
7.00% $ 508,349.29 
7.25% $496,623.19 
7.50% $485,193.93 
7.75% $ 474,053.34 
8.00% $463,193.49 
8.25% $ 452,606.67 
8.50% $442,285.42 
8.75% $432,222.47 
9.00% $422,410.81 
9.25% $ 412,843.59 
9.50% $403,514.19 
9.75% $394,416.17 
10.00% $385,543.29 
10.25% $ 376,889.48 
10.50% $ 368,448.86 
10.75% $ 360,215.71 
11.00% $ 352,184.48 
11.25% $ 344,349.77 
11.50% $ 336,706.36 
11.75% $ 329,249.16 
12.00% $ 321,973.24 
12.25% $ 314,873.78 
12.50% $ 307,946.15 
12.75% $ 301,185.80 
13.00% $ 294,588.35 
13.25% $288,149.52 
13.50% $281,865.15 
13.75% $ 275,731.22 
14.00% $ 269,743.81 

Modified Duration 
$ 525,740.85 
$ 516,978.50 
$ 508,216.15 
$ 499,453.81 
$ 490,691.46 
$ 481,929.11 
$ 473,166.76 
$ 464,404.42 
$ 455,642.07 
$ 446,879.72 
$ 438,117.37 
$ 429 355.03 
$ 420 592.68 
$ 411 830.33 
$ 403 O67.98 
$ 394 305.64 
$ 385 543.29 
$ 376 780.94 
$ 368 018.59 
$ 359 256.25 
$ 35O 493.90 
$ 341 731.55 
$ 332 969.20 
$ 324 206.86 
$ 315,444.51 
$ 306,682.16 
$ 297,919.81 
$ 289,157.47 
$ 280,395.12 
$ 271,632.77 
$ 262,870.42 
$ 254,108.08 
$ 245,345.73 

Estimates Based On: 
Convexity 

$ 553 780.36 
$ 541 622.60 
$ 529 683.91 
$ 517 964.27 
$ 506 463.68 
$495 182.16 
$ 484 119.70 
$ 473 276.29 
$ 462 651.95 
$ 452 2~-6.66 
$ 442 060.43 
$ 432 093.26 
$ 422 3,~5.15 
$412 8!6.10 
$403 506.10 
$394 415.17 
$ 385 543.2. c 
$ 376 890.47 
$ 368 456.71 
$ 360 2,'2.01 
$ 352 2"6.37 
$ 344 469.7£ 
$ 336 9~ 2.2E 
$ 329 573.7£ 
$ 322 4.54.3£ 
$ 315 5S4.0z 
$ 308 872.75 
$ 3O2 410.52 
$296 167.3. ~ 
$290 143.2~ 
$ 284 358.1 ,~ 
$278 752.1. ~ 
$ 273.3.35.2" 

Third Order Fourth Order 
$ 557,858.84 
$ 544,983.16 
$532,416.16 
$520,151.87 
$ 508,184.29 
$496,507.47 
$485,115.42 
$474,002.17 
$463,161.76 
$ 452,588.19 
$ 442,275.51 
$432,217.73 
$422,408.88 
$412,842.98 
$403,514.07 
$ 394,416.16 
$385,543.29 
$ 376,889.48 
$ 368,448.75 
$ 360,215.13 
$ 352,182.64 
$ 344,345.32 
$ 336,697.19 
$ 329,232.26 
$321,944.58 
$314,828.16 
$ 307 877.03 
$ 301 085.21 
$ 294 446.74 
$ 287 955.63 
$ 281 605.92 
$275 391.62 
$ 269 306.77 

$ 558,340.84 
$ 545,355.5O 
$ 532,698.71 
$ 520,361.92 
$ 508,336.80 
$496,615.15 
$485,188.97 
$ 474,050.43 
$463,191.88 
$ 452,605.85 
$442,285.04 
$ 432,222.32 
$422,410.76 
$412,843.58 
$403,514.19 
$394,416.17 
$385,543.29 
$ 376,889.48 
$ 368,448.86 
$ 360,215.72 
$ 352,184.53 
$ 344,349.92 
$ 336,706.72 
$ 329,249.92 
$ 321,974.70 
$ 314,876.41 
$307,950.58 
$ 301,192.89 
$ 294,599.25 
$288,165.69 
$ 281,888.46 
$275,763.95 
$269,788.77 


