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Research Motivation

Would like to consider the degree of separation between
insurance losses y and premiums P

For typical portfolio of policyholders, the distribution of
premiums tends to be relatively narrow and skewed to the right
In contrast, losses have a much greater range.
Losses are predominantly zeros (about 93% for homeowners)
and, for y > 0, are also right-skewed
Difficult to use the squared error loss - mean square error - to
measure discrepancies between losses and premiums

We are proposing several new methods of determining
premiums (e.g., instrumental variables, copula regression)

How to compare?
No single statistical model that could be used as an “umbrella”
for likelihood comparisons

Want a measure that not only looks at statistical significance
but also monetary impact
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The Lorenz Curve

We consider methods that are variations of well-known tools
in economics, the Lorenz Curve and the Gini Index.
A Lorenz Curve

is a plot of two distributions
In welfare economics, the vertical axis gives the proportion of
income (or wealth), the horizontal gives the proportion of people
See the example from Wikipedia
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The Gini Index

The 45 degree line is known as the “line of equality”
In welfare economics, this represents the situation where each
person has an equal share of income (or wealth)

To read the Lorenz Curve
Pick a point on the horizontal axis, say 60% of households
The corresponding vertical axis is about 40% of income
This represents income inequality
The farther the Lorenz curve from the line of equality, the greater is the amount
of income inequality

The Gini index is defined to be (twice) the area between the
Lorenz curve and the line of equality
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The Ordered Lorenz Curve

We consider an “ordered” Lorenz curve, that varies from the
usual Lorenz curve in two ways

Instead of counting people, think of each person as an
insurance policyholder and look at the amount of insurance
premium paid
Order losses and premiums by a third variable that we call a
relativity

Notation
Let xi be the set of characteristics (explanatory variables)
associated with the ith contract
Let P(xi) be the associated premium
Let yi be the loss (often zero)
Let Ri = R(xi) be the corresponding relativity
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The Ordered Lorenz Curve

Notation
xi - explanatory variables, P(xi) - premium, yi - loss, Ri = R(xi),
I(·) - indicator function, and E(·) - mathematical expectation

The Ordered Lorenz Curve
Vertical axis

FL(s) =
E[yI(R≤ s)]

E y
=

empirical

∑
n
i=1 yiI(Ri ≤ s)

∑
n
i=1 yi

that we interpret to be the market share of losses.
Horizontal axis

FP(s) =
E[P(x)I(R≤ s)]

E P(x)
=

empirical

∑
n
i=1 P(xi)I(Ri ≤ s)

∑
n
i=1 P(xi)

that we interpret to be the market share of premiums.
The distributions are unchanged when we

rescale either (or both) losses (y) or premiums (P(xi)) by a
positive constant
transform relativities by any (strictly) increasing function
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Example

Suppose we have only n = 5 policyholders

Variable i 1 2 3 4 5 Sum
Loss yi 5 5 5 4 6 25
Premium P(xi) 4 2 6 5 8 25
Relativity R(xi) 5 4 3 2 1
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Another Example

Here is a graph of n = 35,945 contracts, a 1 in 10 random sample of an
example that will be introduced later
To read the Lorenz Curve

Pick a point on the horizontal axis, say 60% of premiums
The corresponding vertical axis is about 50% of losses
This represents a profitable situation for the insurer

The “line of equality” represents a break-even situation
Summary measure: the Gini coefficient is (twice) the area between the line of
equality and the Lorenz Curve

It is about 6.1% for this sample, with a standard error of 3.7%
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Insurance Scoring

Policies are profitable when expected claims are less than
premiums
Expected claims are unknown but we will consider one or
more candidate insurance scores, S(x), that are
approximations of the expectation

We are most interested in polices where S(xi) < P(xi)

One measure (that we focus on) is the relative score

R(xi) =
S(xi)
P(xi)

,

that we call a relativity.
This is not the only possible measure. Might consider
R(xi) = S(xi)−P(xi).
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Ordered Lorenz Curve Characteristics

Additional notation: Define m(x) = E(y|x), the regression function.
Recall the distribution functions

FL(s) =
E[yI(R≤ s)]

E y
and FP(s) =

E[P(x)I(R≤ s)]
E P(x)

1 Independent Relativities. Relativities that provide no
information about the premium or the regression function

Assume that {R(x)} is independent of {m(x),P(x)}.
Then, FL(s) = FP(s) = Pr(R≤ s) for all s, resulting in the line of
equality.

2 No Information in the Scores
Premiums have been determined by the regression function so
that P(x) = m(x).
Scoring adds no information: FP(s) = FL(s) for all s, resulting in
the line of equality.
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Ordered Lorenz Curve Characteristics

3 A Regression Function is a Desirable Score.
Suppose that S(x) = m(x),
Then, the ordered Lorenz curve is convex (concave up).
This means that it has a positive (non-negative) Gini index.
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Figure: Bounds on Insurance Scores.
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4 Regression Bound
Suppose that S(x) = m(x),
and total premiums equals total claims. Then

FL(s)≤ sFP(s).

The curve (FP(s),sFP(s)) is labeled as a “regression bound.”
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5 Additional Explanatory Variables Provide More Separation
Suppose that SA(x) = m(x) is a score based on explanatory
variables x.
Consider additional explanatory z with score SB(x) = m(x,z).
Then, the ordered Lorenz Curve from Score SB is “more
convex” than that from Score SA

For a given share of market premiums, the market share of losses
for the score SB is at least as small when compared to the share
for SA.
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Gini as an Association Measure

The Gini coefficient is a measure of association between
losses and premiums

When the insurance score is a regression function, the more
explanatory information, the smaller is the association between
losses and premiums.
In this sense, the Gini coefficient can be viewed as another
goodness of fit measure from a regression analysis.

To see how the Gini performs in different situations, we
conduct a simulation study where the amount of fit is known.
We consider 5,000 contracts with expected claims:
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Figure: Distribution of Illustrative Insurance Expected Claims.
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Simulation Study Design

The regression scores are given by:

m(x) = exp(β0 +β1x1 +β2x2) .

We compare this to an underfit score

SUnder(x) = exp(β0 +β1x1)

and an overfit score

SOver(x) = exp(β0 +β1x1 +β2x2 +β3x3) .

Here, each xj was generated from a chi-square distribution with 20
degrees of freedom, rescaled to have a zero mean and variance
1/10.
Consider 3 cases for premiums P(x)

Constant premiums (constant exposure),
Premiums “close to” the regression function, and
Premiums “very close to” the regression function
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Case 1. Substantial Opportunities for Risk
Segmentation

By controlling the beta parameters, we have the following
relationships among scores, summarized by Spearman
correlations

SUnder m(x)
m(x) 0.444 .
SOver 0.439 0.973

Interpret this to mean
If the insurer uses the conservative score SUnder, substantial
opportunities are missed.
There is little penalty for being over-aggressive; the score SOver
is similar to the regression function m(x).
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Case 1. Substantial Opportunities for Risk
Segmentation

Each panel gives a Lorenz curve for an under-fit score, a
over-fit score,
a score using the regression function and a constant score
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Case 1. Substantial Opportunities for Risk
Segmentation
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Table: Gini Coefficients

Premiums
Close to Very Close to

Regression Regression
Score Constant Function Function
Under-fit Score 9.60 -5.69 -4.83
Regression Function 20.76 14.62 5.80
Over-fit Score 20.38 14.04 4.64
Constant Score 0.06 -14.62 -5.80
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Case 1. Substantial Opportunities for Risk
Segmentation

Table: Gini Coefficients

Premiums
Close to Very Close to

Regression Regression
Score Constant Function Function
Under-fit Score 9.60 -5.69 -4.83
Regression Function 20.76 14.62 5.80
Over-fit Score 20.38 14.04 4.64
Constant Score 0.06 -14.62 -5.80

The regression function has the largest Gini for each of the 3
premium cases:

Use of this as a score yields the most separation between
losses and premiums

The Over-fit score is a close second
Both the under-fit and constant scores perform poorly
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Case 2. Few Opportunities for Risk
Segmentation

The (Spearman) correlation coefficients are
SUnder m(x)

m(x) 0.879 .
SOver 0.534 0.592

Interpret this to mean
In this case, if the insurer uses the conservative score SUnder,
few opportunities are missed.
By being over-aggressive, the use of the score SOver means
using a very different measure than the regression function
m(x).
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Case 2. Few Opportunities for Risk
Segmentation

Table: Gini Coefficients

Premiums
Close to Very Close to

Regression Regression
Score Constant Function Function
Underfit Score 9.18 5.32 0.42
Regression Function 10.24 6.99 2.69
Overfit Score 6.50 3.43 0.60
Constant Score -0.15 -6.99 -2.69

Again, the regression function has the largest Gini, the
constant score the lowest, for each of the 3 premium cases
The under-fit score outperforms the over-fit score
The separation among Gini coefficients decreases as the
premium becomes closer to the (optimal) regression function
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Case 3. Effects of Non-Ordered Scores

Return to the Case 1 design where SOver performs well and
SUnder performs poorly
Define two new scores

S1(x) =
{

SOver(x) if m(x) < τ

SUnder(x) if m(x)≥ τ

and

S2(x) =
{

SUnder(x) if m(x) < τ

SOver(x) if m(x)≥ τ
.

We use τ = 2.5×E m(x).

Idea: we consider scores that do well in one domain and not
well in others.
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Case 3. Effects of Non-Ordered Scores
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No score dominates the other, crossing patterns are evident
The left-hand panel shows S1 outperforming S2 for small
market shares and S2 outperforming S1 for large market
shares.
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Case 3. Effects of Non-Ordered Scores

Table: Gini Coefficients

Premiums
Close to Very Close to

Regression Regression
Score Constant Function Function
S1 Score 16.07 4.95 -1.22
Regression Function 20.76 14.62 5.80
S2 Score 13.64 4.73 0.16
Constant Score 0.06 -14.62 -5.80

Score performance depends on the premium as well as the
level of expected claims.

S1 outperforms S2 when premiums are constant,
S2 outperforms S1 when premiums are very close to the
regression function and
their performance is similar when premiums are close to the
regression function.
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Gini Coefficients for Rate Selection

We have shown how to use the Lorenz curve and associated
Gini coefficient for risk segmentation.

By identifying unprofitable blocks of business, the risk manager
can introduce loss controls, underwriting and risk transfer
mechanisms (such as reinsurance) to improve performance.
Further, the Gini coefficient can be viewed as a goodness of fit
measure.
As such, it is natural to use this measure to select an insurance
score.

The Gini coefficient measures the association between losses
and premiums.

This association implicitly depends on the ordering of risks
through the relativities
It also depends on the premiums
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Case 4. A Volatile Market

Consider “a volatile market.”
The variable x2 adds little to the regression function
x3 provides substantial extraneous information

The (Spearman) correlation coefficients are:
SUnder m(x)

m(x) 0.115 .
SOver 0.106 0.781

With the conservative score SUnder, substantial opportunities
are missed.
The over-aggressive score SOver is more useful but still
deviates from the true regression function
Instead of having externally available premiums P(x), we let
each score to serve as the premium.
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Case 4. A Volatile Market. Gini Coefficients for

“Champion-Challenger” Competition

Score
True

Underfit Regression Overfit
Premiums Score Function Score
Underfit Score 0.19 18.73 15.65
Overfit Score 7.79 13.89 -0.01

First row, the underfit score = premium base, our “champion.”
The “challenger” scores are used to create the relativities.
When both the true regression function and the overfit score are used, there is
substantial separation between losses and premiums.

Second row, the overfit score is our “champion.”
When the true regression function is used for scoring there is substantial
separation between losses and premiums.
Also substantial separation between losses and premiums when the underfit
score is used to create relativities.
By design, there is substantial deviation between the score SOver and expected
claims.
This deviation can still be detected even when using only a mildly informative
score such as SUnder to create relativities.
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Estimating Gini Coefficients

Let {(x1,y1), . . . ,(xn,yn)} be an i.i.d. sample of size n.

Let Ĝini be the empirical Gini coefficient based on this
sample. We have the following results

The statistic Ĝini is a (strongly) consistent estimator of the
population summary parameter, Gini
It is also asymptotically normal, with asymptotic variance
denoted as ΣGini
We can calculate a (strongly) consistent estimator of ΣGini

For these results, we assume a few mild regularity conditions.
The most onerous is that the relativities R are continuous.
These three results allow us to calculate standard errors for
our empirical Gini coefficients
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Simulation Study: Estimating Gini
Coefficients

Return to the Case 1 design where SOver performs well and
SUnder performs poorly
For each expectation, generate 10 independent losses from a
Tweedie distribution
This results in a sample size of n = 50,000

Table: Gini Coefficients with Standard Errors

Premiums
Close to Very Close to

Regression Regression
Score Constant Function Function
Underfit Score 10.69 (1.78) -4.76 (2.58) -4.19 (2.61)
Regression Function 19.99 (1.32) 13.88 (1.58) 5.15 (1.96)
Overfit Score 19.55 (1.34) 13.29 (1.61) 4.37 (2.02)
Constant Score -0.78 (2.34) -13.88 (3.02) -5.15 (2.67)
Notes: Standard errors are in parens.
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Comparing Estimated Gini Coefficients

Consider two Gini coefficients with common losses and
premiums.

Let ĜiniA be the empirical Gini coefficient based on relativity
RA and ĜiniB be the empirical Gini coefficient based on
relativity RB

From the prior section, each statistic is consistent
We show that they are jointly asymptotically normal, allowing us
to prove that the difference is asymptotically normal
We can also calculate standard errors

This theory allows us to compare estimated Gini coefficients
and state whether or not they are statistically significantly
different from one another
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Concluding Remarks

The ordered Lorenz curve allows us to visualize the
separation between losses and premiums in an order that is
most relevant to potential vulnerabilities of an insurer’s
portfolio

The corresponding Gini index captures this potential
vulnerability

When regression functions are used for scoring, the Gini
index can be view as goodness-of-fit measure

Premiums specified by a regression function yield Gini = 0.
Scores specified by a regression function yield desirable Gini
coefficients
More explanatory variables in a regression function yield a
higher Gini

We have introduced measures to quantify the statistical
significance of empirical Gini coefficients

The theory allows us to compare different Ginis
It is also useful in determining sample sizes
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