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Abstract

In this chapter, we consider a theoretical model for the pricing and
valuation of guaranteed annuity conversion options associated with
certain unit-linked pension contracts in the UK. The valuation ap-
proach is based on the similarity between the payoff structure of the
contract and a call option written on a coupon-bearing bond. The
model makes use of a one-factor Heath-Jarrow-Morton framework for
the term structure of interest rates, in order to obtain a closed-form
analytical solution to the fair valuation of the liabilities implied by
these contracts. Mortality risk is incorporated via a stochastic model
for the evolution over time of the underlying hazard rates. Numerical
results are investigated and the sensitivity of the price of the option to
changes in the key financial and mortality parameters is also analyzed.
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1 Introduction

A guaranteed annuity option is a contract feature attached to personal (in-
dividual) pension policies, which provides the policyholder with the right to
receive at retirement either a cash payment or an annuity, payable through-
out the policyholder’s remaining lifetime and calculated at a guaranteed rate,
depending on which has the greater value. This guarantee of the conversion
rate between cash and pension income was a common feature of pension poli-
cies sold in the UK during the (late) 1970s and 1980s, with more than 40
companies involved in this market.

Until recently, the UK experience has been that the cash benefit is more
valuable than the guaranteed annuity payment since a higher pension could
be obtained by using the cash payment to buy the best annuity rates available
in the market (the so-called “open market option”). After the reductions in
market interest rates in recent years, particularly since 1998, the position has
changed and the guaranteed annuity has tended to be worth more than the
cash benefit; unanticipated falls in mortality rates since these policies were
issued have also made the guaranteed annuity more valuable to policyholders.
As a result of these two combined effects, many UK insurance companies
have experienced solvency problems requiring the setting up of extra reserves
(using ad hoc methods) and leading one large mutual life insurer (Equitable
Life, the world’s oldest life insurance company) to be closed to new business
in 2000. Although pension policies with these guarantees are no longer being
sold in the UK, these are a common feature of corresponding policies in other
countries, for example the US.

In this chapter, our objective is to explore a number of questions that
arise from the UK experience and which are of current relevance. How should
we value (and hence price) a guaranteed annuity option (GAO) in a market
consistent manner (bearing in mind the trend towards fair valuation method-
ologies for insurance liabilities)? Is it possible to describe how the value of a
GAO evolves over time, as the policyholder ages and as new financial infor-
mation becomes available? What are the key sensitivities affecting the value
of a GAO? How much of the historical problem in the UK can be explained by
adverse changes in interest rates and how much by adverse changes in mor-
tality rates? How do we allow for the uncertainty of mortality rate trends
and what effect do these have on the value of a GAO?

We focus on unit-linked deferred annuity contracts purchased originally
by a single premium. For simplicity, we ignore insurance company expenses,
taxes, profit and pre-retirement death benefits in order to concentrate on the
GAO. The analytical approach follows the financial economics literature and
exploits the well-known option valuation theory in order to obtain results
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for the pricing, reserving and hedging of the GAO. Fuller details are given
in Ballotta and Haberman (2002, 2003). An alternative approach based on
modelling the dynamics of the annuity price, rather than the underlying term
structure of interest rates, has been used by Bezooyen et al. (1998), Pelsser
(2002) and Yang et al. (2002). However, we argue that a methodology based
on the term structure of interest rates is more sound in that it facilitates the
analysis of the effect on the GAO of changes in the underlying interest rates
and their term structure.

We propose an option pricing approach which is based on the similarity
between the payoff structure of the contract under consideration and a call
option written on a coupon-bearing bond. We use a single-factor Heath-
Jarrow-Morton framework for the term structure of interest rates. This
choice is justified by the need to avoid dependence of the model on the
market price of interest rate risk, which usually implies an arbitrary speci-
fication of the model parameters leading to arbitrage opportunities (Heath,
Jarrow and Morton, 1992). Also, single-factor models have the advantage
of allowing a mathematically tractable solution to the coupon bond option
pricing problem (Jamshidian, 1989). Under the additional assumption of an
unsystematic mortality risk, independent of the financial risk, a general pric-
ing framework is proposed and closed-form analytical formulae for the value
of the GAO are obtained. Further, we introduce a dynamic model for the
evolution of mortality rates over time which requires the use of a numerical
procedure for the computation of the survival probabilities involved in the
valuation of the GAO. The valuation formulae derived implicitly contain the
dynamic investment strategy that replicates the contract. Numerical results
are investigated and the sensitivities of the price of the option to changes in
the key parameters are also analyzed.

The paper is organized as follows: sections 2.1 and 2.2 develop the frame-
work for the valuation of guaranteed annuity conversion options, with some
of the mathematical details relegated to the Appendix. In sections 2.3 and
2.4, we introduce different approaches to modelling mortality risk. Section
3 provides numerical results and a sensitivity analysis. Concluding remarks
are offered in section 4.
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2 Fair valuation of guaranteed annuity op-

tions

2.1 General framework

As noted in section 1, a guaranteed annuity option provides the holder of the
contract with the right to receive at retirement the greater of two choices:
either a cash benefit (equal to the current value of the reference portfolio),
or an annuity which would be payable throughout his/her remaining lifetime
and which is calculated at a guaranteed rate, g.

Hence, if the policyholder is aged x at inception and N is the normal
retirement age, the guaranteed annuity option pays out at maturity T =
N − x:

CT = max (gSTax+T , ST )

= ST + (gSTax+T − ST )
+

= ST + gST (ax+T −K)+ ,

where S is the market value of the equity fund backing the contract, K = 1/g
and ax+T represents the “annuity factor”, i.e. the expected present value at
time T of a life annuity which pays £1 throughout the remaining lifetime of
the policyholder, and the notation (v)+ is equivalent to max (v, 0).

Consider a frictionless market with continuous trading. Assume that
there are no taxes, no transaction costs, no restrictions on borrowing or short
sales, all securities are perfectly divisible, and that the price process of the
equity fund S follows an adapted, càdlàg and strictly positive semimartingale.
Let rt be the stochastic short rate. Applying risk-neutral valuation, the fair
value at time T of the annuity can be calculated as

ax+T = Ê





w−(T+x)
∑

t=0

e−
∫ T+t

T
rudu1(Tx+T>t)

∣

∣

∣

∣

∣

∣

FT



 ,

where Ê denotes the expectation under the risk-neutral probability measure
P̂, w is the largest survival age, FT is the information flow at maturity and
Ty is a random variable representing the remaining lifetime of a policyholder
aged y. Assume that the mortality risk, captured in the model by the random
variable Ty, is unsystematic and independent of any source of risk existing in
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the financial market. Then

ax+T =

w−(T+x)
∑

t=0

Ê
[

1(Tx+T>t)

∣

∣FT

]

Ê
[

e−
∫ T+t

T
rudu
∣

∣

∣FT

]

=

w−(T+x)
∑

t=0

P
[

1(Tx+T>t)

∣

∣FT

]

PT (T + t)

=

w−(T+x)
∑

t=0

tpT+xPT (T + t)

where PT (T + t) is the price a time T of a zero coupon bond with unit
face value and redemption date (T + t), and tpT+x is the t-year survival
probability of a person aged (x+ T ) . It follows that the terminal payoff of
the guaranteed annuity option is:

CT = ST + gST





w−(T+x)
∑

t=0

tpT+xPT (T + t)−K





+

. (1)

Expressed in this way, the guaranteed annuity option contract shows a pay-
off structure which is analogous to that of an option written on a coupon
bond, where the role of the coupon is played by the post-retirement survival
probabilities.

Similarly, risk-neutral valuation implies that the value at time τ , 0 ≤ τ ≤
T , of the guaranteed annuity option contract entered by a policyholder aged
x at time 0 is

Vx (x+ τ, τ, T − τ = N − x− τ) = Ê
[

e−
∫ T

τ
ruduCT1(Tx+τ>T )

∣

∣

∣
Fτ

]

= T−τpx+τ Ê
[

e−
∫ T

τ
ruduCT

∣

∣

∣
Fτ

]

= T−τpx+τ {Sτ

+gÊ
[

e−
∫ T

τ
ruduST (ax+T −K)+

∣

∣

∣
Fτ

]}

.(2)

If P̃ is a martingale probability measure equivalent to P̂ and defined by the
density process (Geman, El Karoui, Rochet, 1995)

ηT :=
dP̃
dP̂

∣

∣

∣

∣

∣

FT

= e−
∫ T

0 rudu
ST

S0

, (3)
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then the expectation in equation (2) can be reduced to

Ê
[

e−
∫ T

τ
ruduST (ax+T −K)+

∣

∣

∣Fτ

]

= e
∫ τ

0 ruduÊ
[

ηTS0 (ax+T −K)+
∣

∣Fτ

]

= e
∫ τ

0 ruduS0Ê [ηT | Fτ ] Ẽ
[

(ax+T −K)+
∣

∣Fτ

]

= Sτ Ẽ
[

(ax+T −K)+
∣

∣Fτ

]

,

where Ẽ denotes the expectation under the stock-risk-adjusted probability
measure P̃. Therefore, we may demonstrate that the following holds:

Vx (x+ τ, τ, T − τ)

= T−τpx+τSτ +T−τ px+τgSτ Ẽ









w−(T+x)
∑

t=0

tpT+xPT (T + t)−K





+∣
∣

∣

∣

∣

∣

Fτ



 ,

(4)

(see Ballotta and Haberman, 2002, 2003, for further background).
Both equations (1) and (4) show that the fair premium that the insurer

should charge for a pension plan with a guaranteed annuity option feature
attached is given by the current market value of the reference equity portfolio,
plus the single premium for a coupon-bond like option, weighted by the
probability of the policyholder to survive till retirement. A fair premium
means, in this context, that if the actual premium charged were greater
than V , the customers would not receive value for money; if instead the
premium were less than V , then the insurer would be offering the guarantees
too cheaply. In other words, the market would not be in equilibrium and
arbitrage opportunities would arise.

The two equations, (1) and (4) , also show that the guaranteed annuity
option contract is affected by two sources of risk: the financial risk, in the
form of the uncertainty related to future movements in both the equity fund
and the market interest rate, and the mortality risk, captured by the ran-
dom remaining lifetime of the policyholder. As we show in the remaining
sections of this chapter, a closed analytical formula for the fair premium
of the guaranteed annuity option can be obtained modelling the financial
risk within the classical Black-Scholes economy, and making use of a single-
factor Heath, Jarrow and Morton (1992) framework for the term structure
of interest rates. Mortality effects are taken into consideration through two
approaches: (a) basing the survival probabilities on the standard mortality
tables which have been adopted by UK Life Insurance companies (for pric-
ing and reserving calculations); or, alternatively, (b) calculating the survival
probabilities from a stochastic model for the mortality risk, which is based
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on the reduction factor approach for modelling the time variations in hazard
rates.

2.2 Pricing the guaranteed annuity option allowing for

financial risk

In the frictionless market introduced in the previous section, we assume that
the insurer invests the single premium paid by each policyholder at the start
of the contract into an equity fund, whose risk-neutral dynamic is described
by the following stochastic differential equation.

dSt = rtStdt+ σSStdẐt, (5)

where σS ∈ R+ and
(

Ẑt : t ≥ 0
)

is a standard one-dimensional P̂-Brownian
motion. Thus, S0 is the single premium. As mentioned above, we assume
that the evolution of the term structure of interest rates is given by a single-
factor HJM framework and we consider the specific case in which the forward
rate volatility has an exponentially decaying structure which resembles an
extended form of the model of Vasicek (1977). In other words, the risk-
neutral dynamic of the forward rate is given by

df (t, T ) =

(

σ2e−λ(T−t)

∫ T

t

e−λ(u−t)du

)

dt+ σe−λ(T−t)dŴt, (6)

where
(

Ŵt : t ≥ 0
)

is a standard one-dimensional P̂-Brownian motion corre-

lated with Ẑ, so that
dŴtdẐt = ρdt

for any ρ 6= 0. This implies

Ẑt = ρŴt +
√

1− ρ2Ŵ ′
t ,

where
(

Ŵ ′
t : t ≥ 0

)

is a P̂-Brownian motion independent of both Ŵ and Ẑ.

Hence, ρ represents the correlation coefficient between equity fund values and
interest rates. In this framework:

rt = lim
T→t

f (t, T )

and
Pt (T ) = e−

∫ T

t
f(t,u)du.
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Since we are using a single-factor model for the term structure of in-
terest rates, and given the similarity between the guaranteed annuity op-
tion contract and a coupon bond option which we have previously observed
(see equations 1 and 4), we can apply the Jamshidian (1989) decomposi-
tion and rewrite the annuity option payoff as the payoff generated by a
portfolio of zero-coupon bond options with appropriate strike prices, Kt,
and weights equal to the survival probabilities, tpT+x. More precisely, for
t = 0, 1, ..., w − (T + x), we find the critical value of the interest rate such
that

w−(T+x)
∑

t=0

tpT+xPT (T + t) = K;

then we define a new “artificial” strike price Kt as the bond price which is
calculated to correspond to this critical interest rate level, that is

Kt = P ∗
T (T + t) .

Since the bond price is a monotonic function of the interest rate, it follows
that




w−(T+x)
∑

t=0

tpT+xPT (T + t)−K





+

=

w−(T+x)
∑

t=0

tpT+x (PT (T + t)−Kt)
+ ,

which implies that (4) can be re-written as:

Vx (x+ τ, τ, T − τ)

= T−τpx+τSτ +T−τ px+τgSτ

w−(T+x)
∑

t=0

tpT+xẼ
[

(PT (T + t)−Kt)
+
∣

∣Fτ

]

= T−τpx+τSτ

+
T−τpx+τgSτ

Pτ (T )

w−(T+x)
∑

t=0

tpT+x

[

Pτ (T + t) e−γ(T,T+t)mr(T−τ)N (d′t)− Pτ (T )KtN (dt)
]

.

(7)

with

dt =
ln Pτ (T+t)

KtPτ (T )
− 1

2
σ2
r (T − τ) γ2 (T, T + t)− γ (T, T + t)mr (T − τ)

γ (T, T + t)σr (T − τ)
,

d′t = dt + γ (T, T + t)σr (T − τ) .

Details of the argument that lead to equation (7) are provided in the Ap-
pendix.
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2.3 Mortality risk: deterministic approach

Although the procedure leading to the valuation equation (7) allows for
stochastic mortality trends, our initial approach to the calculations is to
use a set of three standard UK mortality tables for the calculation of the
survival probabilities in (7) . Each of these incorporates an element of future
mortality reduction computed on a deterministic basis.

These mortality tables have been produced by the Continuous Mortality
Investigation Bureau of the Institute and Faculty of Actuaries for insurance
company data on male pensioner mortality. They are extensively used for the
calculation of premiums and reserves. The PA90 table is based on data for
the period 1967-70 projected to 1990, PMA80-C10 is based on data for the
period 1979-82 projected to 2010 and PMA92-C20 is based on data for the
period 1991-94 projected to 2020. Because of the declining trend in mortality
rates over time, and hence the increasing trend in survival probabilities,

tpT+x, the expected present value of the life annuity increases as we move the
assumption from PA90 to PMA80-C10 to PMA92-C20.

2.4 Mortality risk: stochastic approach

As an alternative to the deterministic approach, we introduce a stochastic
model for mortality trends. In section 2.1, we defined Tx to be a random
variable which represents the remaining lifetime of a policyholder aged x.
The survival function of this random variable, Tx, is given by

spx = P (Tx > s) ,

where P is the objective probability measure. If we explicitly allow for the
time dependence of the hazard rate and we define µx+t:t to be the hazard
rate for an individual at time t then aged x+ t, then it follows that

spx = E
[

e−
∫ s

0 µx+t:tdt
]

. (8)

A widely used actuarial model for projecting mortality rates is the re-
duction factor model; this has been used in the UK and US for pensioner
and annuitant populations for many years, see, for example, standard tables
produced by the Continuous Mortality Investigation Bureau in the UK since
1967-70 (e.g. CMI Bureau 1999) and the General Annuity Valuation Tables
in the US (Group Annuity Valuation Table Task Force, 1995).

Given the form of (8), we propose a parsimonious model for the trajectory
of the hazard rate over time. Following Sithole et al. (2000), we consider a
reduction factor approach based on hazard rates, so that

µy:t = µy:0RF (y, t)
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where µy:0 is the hazard rate for a person aged y in the base year (i.e. year
0) or period, and µy:t is the hazard rate for a person attaining age y in future
year t (i.e. as measured from the base year or period), and the reduction
factor RF (y, t) is the ratio of the hazard rates. Using an approach based
on generalized linear models, as proposed by Renshaw et al. (1996), Sithole
et al. (2000) derive a series of models appropriate to UK annuitant and
pensioner populations which simplify to the following structure:

RF (y, t) = e(α+βy)t.

The parameter α represents the rate of change in the hazard rate over time
on the logarithmic scale and we would expect estimates to be negative. The
parameter β represents an offset term that reflects a rate of change that could
differ with age y.

Hence, with y = x + t, we propose the following model for the time
evolution of the hazard rate:

µx+t:t = µx+t:0e
(α+βx+βt)t+σhYt , (9)

where (Yt : t ≥ 0) is a stochastic process on (Ω,F ,P), which is introduced to
model random variations in the forecast trend, and

µx+t:0 = a1 + a2R + eb1+b2R+b3(2R2−1), (10)

where

R =
(x+ t)− 70

50
, x ≥ 50. (11)

This model for µx+t:0, the hazard rate for the base year, corresponds to the
structure for the UK standard tables for annuitant and pensioner populations
for the period 1991-94, as proposed by the CMI Bureau (1999). For numerical
illustrations, we use the parametrization for the standard table for male
pensioners (analysis based on lives, rather than pension amounts), and the
corresponding values for α and β as estimated by Sithole et al (2000): see
Table 2 later.

Further, we assume that Y follows an Ornstein-Uhlenbeck process; in
other words, the process Y satisfies the following

{

dYt = −aYtdt+ dXt

Y0 = 0,
(12)

where (Xt : t ≥ 0) is a standard one-dimensional P-Brownian motion, inde-
pendent of the “financial” Wiener processes, Ŵ and Ẑ (see equations 5 and
6). This is similar to the model of Milevsky and Promislow (2001), and has
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the desirable property of mean reversion, with the parameter a measuring
the speed of mean reversion. The solution to (12),

Yt =

∫ t

0

e−a(t−s)dXs,

implies that Yt ∼ N (0, ξ2 (t)), with

ξ2 (t) =
1− e−2at

2a
.

Equation (8) does not lead to a closed form expression principally be-
cause the sum of lognormal random variables is not itself lognormal. Hence,
for computational purposes, we need a numerical approximation and adopt
a simulation procedure based on the Monte Carlo technique. Thus, we sub-
divide the time period [0, s] into n equal subintervals of length ∆t = s

n
, and

we define ti =
i
n
s = i∆t, i = 1, 2, ..., n. At each step, we generate the path

of the hazard rate as

µx+ti:ti = µx+ti:0e
(α+βx+βti)ti+σhξ(ti)zi ,

µx+ti:0 = a1 + a2Ri + eb1+b2R+b3(2R2
i−1)

Ri =
(x+ ti)− 70

50
,

where zi is a random sample from a standardized normal distribution. The
integral in equation (8) is then approximated using the trapezoidal rule.

The model represented by equation (9) allows for a future mortality trend
that is random. However, it is recognised in the literature that systematic
deviations from the forecasted mortality rates may take place so that pa-
rameter risk is present. When this is applied to the trend at the older ages,
the risk is usually referred to as “longevity risk”: see Marocco and Pitacco
(1998), Olivieri (2001), Olivieri and Pitacco (2002), for example, for further
discussion.

In order to incorporate longevity risk, we develop the model further by
following the approach of Olivieri and Pitacco (2002), inter alia. For repre-
senting the range of possible evolutions of mortality, we consider a family of
projected hazard rates, for a given age at entry x. Thus, we consider

[

µx+t:t:H(x);H (x) ∈ H (x)
]

,

where H (x) is a particular hypothesis concerning the trend of mortality for
individuals entering an insured group at age x and H (x) represents a given
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α̃ = −0.08 −0.05 −0.02
with prob.

Model 1.1 0.3 0.4 0.3
1.2 0.2 0.6 0.2
1.3 0.1 0.8 0.1
1.4 1/3 1/3 1/3

(symmetric distribution)

Model 2.1 0.4 0.3 0.3
2.2 0.6 0.2 0.2
2.3 0.8 0.1 0.1

(asymmetric distribution)

Model 3 α̃ ∼ U (−0.08,−0.02)

Table 1: Parameter risk: range of values for α̃ with corresponding probability
functions.

set of such hypotheses. In particular, if we focus on equation (9) where the
mortality trend is expressed by a set of parameters, then we could consider

[

µx+t:t:θ(x); θ (x) ∈ Θ(x)
]

, (13)

where θ (x) denotes a vector parameter and Θ (x) denotes the corresponding
multi-dimensional parameter space. As a preliminary illustration of this
methodology, we take θ (x) ≡ α in equation (9) and consider the possible set
of values for α : Θ (x) ≡ {−0.08,−0.05,−0.02} , which is shown in Table 1.
We deal with the range of values for α by assuming that the parameter is
a discrete random variable α̃ and has the alternative probability functions
shown in Table 1. Note that the estimate of α, α̂, from Sithole et al. (2000)
is −0.02.

3 Numerical results and sensitivity analysis

In this section, we use the results developed in section 2.2 (namely, equation 7
for the GAO price), and the numerical procedures introduced in sections 2.3
and 2.4 to carry out a full sensitivity analysis for the value of the guaranteed
annuity option contract.

Precisely, we concentrate on the extra premium that the insurer should
charge at inception for the coupon bond-like option embedded in the contract,
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Parameter set for numerical analysis

Design parameters:
g = 11.1%;1 x = 50; T + x = N = 65.
Financial model
S0 = 100; σS = 20% p.a.; ρ = 1; f0 = 4% p.a.; σ = 0.01; λ = 0.15
Mortality model (stochastic)

α = −0.02; β = 0.0001; σh = 10% p.a.; a = 0.5.
a1 = −0.0081

100
; a2 = −0.07

100
; b1 = −4.67509; b2 = 5.629188; b3 = −1.2.

1 According to Bolton et al. (1997), g = 11.1% was the common guaranteed

rate used in the UK by life insurance companies.

Table 2: Set of parameters used as benchmark for the comparative statics analysis.
Parameters are subdivided into 3 blocks. The first group contains the parameters
that characterize the individual policy; the second group contains the parameters
representing the financial market components; the last group contains the param-
eters related to the mortality model.

namely, referring to equation (7) for τ = 0:

T−τpx+τgSτ

Pτ (T )

w−(T+x)
∑

t=0

tpT+x

[

Pτ (T + t) e−γ(T,T+t)mr(T−τ)N (d′t)− Pτ (T )KtN (dt)
]

.

For this practical example, we incorporate a common design feature by
assuming that the annuity has a 5-year guarantee period, so that the first
five annual payments of the annuity scheme would be definitely payable,
providing that the policyholder survives to retirement age.

We subdivide the analysis into two sections. The first one relates to the
study of the behavior of the GAO when the parameters “imported” in the
pricing formulae from the financial market are changed one at a time, ceteris
paribus. The second set of results, instead, describes the behavior of the
GAO when the mortality model parameters are changed, again individually
ceteris paribus.

Unless otherwise stated, we use the benchmark set of parameters in Ta-
ble 2 (and based on the stochastic mortality model of section 2.4). For the
stochastic mortality model, we compute the survival probabilities by simu-
lating 10, 000 paths, with each path comprising 1 observation per month over
each year.
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3.1 GAO and the “financial” parameters

In this section, we illustrate the main comparative statics results for the
sensitivity of the GAO to the financial parameters. In particular, we look
at the sensitivity with respect to the market interest rate, the entry age of
the policyholder, the volatility of the equity portfolio backing the policy and
its correlation to interest rates, and the volatility coefficients of the forward
rate. Fuller sets of results are presented by Ballotta and Haberman (2002),
for the deterministic mortality case.

The sensitivity of the GAO to the initial redemption yield, f0, used to cal-
culate the initial bond prices P0 (T ) and P0 (T + t) , t = 0, 1, ..., w− (T + x) ,
is shown in Figure 1. In particular, we observe a decreasing pattern due
to the fact that higher current interest rates make the guaranteed annuity
payments less attractive than the current rates available in the market.

Figure 2 shows the GAO profile versus the age of the policyholder at
inception of the contract. The observed increasing pattern is explained by
the different weights attaching to the expected future annuity payments in
the case of a policyholder aged 20 at inception compared to the case of a
policyholder entering the contract at later ages.

In Figure 3, we represent the behavior of the guaranteed annuity option as
a function of the equity portfolio volatility, σS, for different values of the cor-
relation coefficient ρ. As shown by the chart, the value of the GAO presents
a different pattern depending on whether ρ is positive or negative. When ρ
is negative, the policyholder might expect the equity market to move in the
opposite direction from the interest rate. In this case, the annuity guaranteed
by the pension plan becomes more and more attractive as the volatility of
the reference portfolio increases. In fact, if market rates of interest drop, the
policy locks in a competitive amount at a competitive rate. In the case of a
rise in the level of the market rates, instead, the GAO might simply expire
out-of-the-money. On the other hand, when ρ is positive and σS increases,
the value of the annuity offered in the open market is more attractive, which
reduces the value of the GAO. The same argument justifies the decreasing
profile of the GAO as function of the correlation coefficient only (for fixed
σS), and this may be deduced from vertical sections of the plots in Figure 3.

The changes in value of the GAO arising from changes in the parameters
governing the volatility structure of the forward rate, and hence of the bond
prices, are summarized in Figure 4, where the sensitivity to both the diffusion
coefficient, σ, and the speed or adjustment, λ, are considered (for fixed ρ).
The observed pattern finds an explanation in equations (A3) and (A4), which
show that the the short rate volatility, σr, is a function which is increasing
with σ and decreasing with λ. This means that if the interest rates are very
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Figure 1: Sensitivity of the GAO to changes in the initial redemption yield used
to calculate initial bonds prices.
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Figure 2: Values of the guaranteed annuity option for different entry ages and
time evolution of the contract.
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Figure 3: GAO vs volatility of the equity fund backing the policy, for different
values of the correlation coefficient between equity and interest rates.
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Figure 4: Sensitivity of the GAO value to the parameters governing the forward
rate volatility.
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Figure 5: Exponentially decaying volatility model: guaranteed annuity option
sensitivity to the diffusion term.

volatile, the expected present value of the annuity payments falls. So the
policyholder seems to prefer not to exercise the option, but to take the cash
payment instead and reinvest it at more favorable market conditions.

The sensitivity of the value of the GAO to changes in the diffusion coef-
ficient, σ, and the correlation coefficient, ρ, is shown in Figure 5. As noted
above, as σ increases, the present value of the annuity payments falls. When
ρ is close to −1, this effect is offset by the attractiveness of the guarantee.
Thus, as the volatility σ increases, the chance that interest rates will perform
very well or very badly increases. The policyholder may benefit from falls in
interest rates since the guaranteed payment appears more competitive; but
the policyholder faces a limited downside risk in the event of a rise in interest
rates because of the option scheme embedded in the contract. However, as
the correlation between the equity market and interest rates becomes less
and less negative, the decreasing effect induced by the drop in the expected
present value of the annuity payments prevails.
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Price of the GAO
σ = 0.01, λ = 0.15 σ = 0.001, λ = 0.001 σf = 0.001, λ→ 0

Life Table (the benchmark case)
PMA92-C20 42.0175 45.8667 45.8083
PMA80-C10 26.5497 29.7971 29.7541
PA90 13.7925 16.3651 16.3342

Table 3: Price of the guaranteed annuity option. Parameter set: S0 =
100;σS = 0.2; ρ = 1; g = 11.1%; f0 = 0.04; x = 50;N = 65.

3.2 GAO and the “mortality” parameters

The value of the GAO when we use a deterministic mortality model is shown
in Table 3, for the three standard UK pensioner-based life tables that have
been investigated. These figures highlight the sensitivity of the results to the
choice of the mortality assumptions and show, for the most recent mortality
table, that the initial cost of the GAO is about 40−45% of the original initial
premium, S0, paid by the policyholder at outset (for the parameters values
shown). The limiting case of λ → 0 corresponds to a constant volatility
model, which is discussed more fully by Ballotta and Haberman (2002).

We now consider the impact on GAO values of changes in mortality
trends, when survival probabilities are computed using the model described
in section 2.4 and summarized by equations (9) − (12). Figure 6 shows the
impact on GAO values of the parameters related to the “deterministic” part
of the model, i.e. the logarithmic rate of change in the hazard rate over time,
α, and its offset term β. As α becomes more negative, so the downward trend
in mortality rates becomes stronger. The final effect is then an improvement
in survival probabilities and, as consequence, the GAO value contract rises
in value. On the other hand, the value of the GAO decreases as β increases.
This is consistent with the nature of this parameter, which is to mitigate the
rate of decline in the mortality trend.

Figure 7 shows the behaviour of the GAO value as a function of the pa-
rameters related to the stochastic component of the model for the hazard
rate. We observe that the value of the contract is an increasing function of
the speed of convergence to the long-run mean, a. In particular, for small val-
ues of the diffusion parameter σh, the GAO is almost insensitive to changes
in the parameter a. This means that the convergence of the random noise to
its long-run mean is faster, the less “amplified” is the noise in the mortality
process. We also observe that the GAO values decrease as σh increases; in
other words, as uncertainty increases in the mortality trends, survival proba-
bilities deteriorate and the contract value reduces consequently. However, as
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Figure 6: Effects on the guaranteed annuity option produced by the rate of change
in mortality trends
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Figure 7: Sensitivity of the GAO to the parameters governing the stochastic
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Model GAO E (α̃) V ar (α̃)

Symmetric distribution case
1.1 35.55 −0.05 0.00054
1.2 36.1314 −0.05 0.00036
1.3 36.9628 −0.05 0.00018
1.4 35.1092 −0.05 0.0006
Asymmetric distribution case
2.1 36.4207 −0.053 0.000621
2.2 40.9213 −0.062 0.000576
2.3 46.5424 −0.071 0.000369
Uniform distribution case
α̃ ∼ U (−0.08,−0.02) 36.4237 −0.05 0.0003
3
The benchmark
α̃ = −0.05 37.8578
α̃ = −0.06 43.1731
α̃ = −0.07 48.5634

Table 4: Sensitivity of the values of the GAO to the parameter error in the
logarithmic rate of decline of hazard rates over time (α)

the mean-reversion effect becomes stronger, the effect of σh becomes almost
negligible.

3.3 Longevity risk

In this section, we consider the enhanced model given by equation (13),
where we relax the assumption that the logarithmic rate of decline in mor-
tality rates, α, is constant. α is the key mortality parameter as far as trends
are concerned and has been difficult to forecast in practice, as many commen-
tators have noted (CMI Bureau, 1998, Sithole et al., 2000, Olivieri, 2001).
We reflect on this feature by assuming that this parameter is random. We
use the specific distributions of Table 1 in order to illustrate the effect on
the value of the GAO of allowing for this feature. In this discussion, we
make the underlying assumption that α̃ is independent of the other sources
of randomness present in the model.

Table 4 thus shows the effect on the value of the GAO of allowing for pa-
rameter error in α. We firstly consider four symmetric distributions for α̃ and
the uniform distribution case, each with mean −0.05. Relative to the case
with constant α case, the results indicate that the presence of parameter error

20



leads to a reduction in the GAO value and that increased uncertainty (mea-
sured by V ar (α̃)) leads to larger reductions. Given the one-sided option-like
nature of CT , the presence of symmetric uncertainty in α̃ would be expected
to lead to this result, which is comparable to the sensitivities with respect
to σh (shown in Figure 7). The three asymmetric cases indicate the effect
of underestimating the size of α on the value of the GAO - the comparison
with the deterministic benchmark values at the foot of Table 4 shows again
that the presence of uncertainty leads to a marginal reduction in the value
of the GAO (see section 3.2).

3.4 UK historical analysis

In this section, we use the valuation formulae obtained above to understand
how much of the GAO solvency problem experienced in the UK has been
attributable to reductions in interest rates and how much to the reductions
in mortality rates. The analysis carried out is an extension of a similar study
performed by Ballotta and Haberman (2002) and is based on Ballotta and
Haberman (2003). We start with a hypothetical contract issued in 1970 to
a policyholder then aged 20, and follow the evolution of the value of this
contract over time up to the present day. Thus, we use the annual average
of retail banks’ base rates (Bank of England, February 2002) for the initial
term structure of interest rates. For convenience, the pre-retirement survival
probability is computed using a fixed (life insurance based) mortality table,
namely the AM92 mortality table. Post-retirement survival probabilities are
computed using the stochastic mortality model (thereby allowing for post-
mortality improvements) implemented in section 2.4. Results are presented
in Figure 8. In Figure 9, we present the evolution over time of the implied
guaranteed rate, i.e. the rate of interest such that the expected present value
of the guaranteed annuity equals the principal amount, or

gSTax+T = ST . (14)

Figure 9 shows that, between 1970 and 1972, the implied guaranteed rate
of the hypothetical contract, for the chosen set of parameters, was 7.93%
while the market interest rates were oscillating between 5% and 7%. Hence,
the guaranteed annuity option was “in the money”. After 1973, the market
interest rate increased up to a maximum level of 15.50% in 1980; while the
implied guaranteed rate of 7.93% was not competitive at all, and thus the
guaranteed annuity option contract was far “out of the money”. However, in
1993, market rates of interest dramatically decreased from 12% to 6%, which
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Figure 8: “Historical evolution” of a guaranteed annuity option contract issued in
1970 to a policyholder aged 20 for different specifications of the mortality model.
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Figure 9: “Historical evolution” of the implied guaranteed rate for different spec-
ifications of the mortality model (equation 14).
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brought the GAO contract back “in the money”. In the following years,
market interest rates have fallen further to the current minimum value level
of 3.75%, and the consequence has been a continuous rise in the value of the
GAO. These results are confirmed by the trends in Figure 8.

Figures 8 and 9 show the historical evolution of the GAO value for the
case in which mortality is modeled as described in section 2.4. Also shown,
for comparison purposes, are the trends generated by the model in which
the survival probabilities are computed using UK standard mortality tables
(as described in section 2.3). Two such alternative models are analyzed.
Firstly, we consider the case in which post-retirement survival probabilities
are calculated using the PA90 mortality table only, as was the practice during
the 1970s. The results are compared to those obtained for the case in which
mortality improvements are incorporated by “switching” to more up-to-date
mortality tables as these become available. Hence, when the valuation is
performed during the period 1991-1999, the PMA80-C10 life table is used,
while from the year 2000 onward, the PMA92-C20 life table is used2.

The model based on the PA90 life table only provides a useful bench-
mark for distinguishing the effect of changing interest rates on the GAO
values from the effect generated by improvements in mortality trends. This
is because no mortality improvements (beyond 1990) are captured since a
single fixed mortality table is used for valuation throughout the entire life-
time of the contract. Thus, neglecting improvements in mortality rates leads
to an underpricing of the guaranteed annuity option of about 60% in year
2002 with respect to the values obtained using the model based on the three
mortality tables. The corresponding level of underpricing is about 40% with
respect to the stochastic mortality model used.

4 Concluding comments

In this paper we have introduced a theoretical model, based on the one-factor
Heath-Jarrow-Morton term structure framework, for the valuation of guar-
anteed annuity conversion options attached to single premium unit-linked
deferred annuity contracts. The approach depends on the correspondence
between the contingent claim under consideration and an option contract
written on a coupon paying bond. The behaviour of the GAO value with
respect to changes in market conditions and mortality risk has been analyzed

2We note that each of these standard life tables is a “single entry” table with extrap-
olation up to a single future time point. Hence, they differ in character funadamentally
from the stochastic model represented by equation (9) which allows for explicit projection
of the hazard rate over each future potential survival period.
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with numerical examples and the sensitivity analysis presented.
Although pension contracts with guaranteed annuity conversion options

may no longer be being issued (eg. in the UK), there remains a significant
practical problem of estimating appropriate reserves for those contracts sold
in the past and where the option has not yet been exercised (Bolton et al.,
1997). Thus, we believe that the above results (see equation 7) will be of
considerable assistance to insurance companies for estimating such reserves,
and for reporting and regulatory purposes.

Equation (7) provides some guidance as to the theoretical hedging strat-
egy which should be employed. In fact, according to the valuation formula,
the guaranteed annuity option can be seen as a portfolio consisting of a long
position in the (T + t)-zero coupon bond which has to be funded by a short
position in the T -zero coupon bond. However, we recognize that there are
practical considerations to take into account, for example, the question of
the availability of (T + t)-zero coupon bonds for such long maturities as the
ones implied by the contract.

We have seen that the inclusion of stochastic mortality, through fluctua-
tions around a trend, or longevity risk, leads to a reduction in the expected
value of the GAO. However, we would advise some caution in the applica-
tion of this result. Our valuation formula for Vx, equation (7), relates to an
expected present value obtained using risk neutral valuation methods. How-
ever, an insurer might also be interested, for example for reserving purposes,
in the full distribution of the random present value and, in particular, in
upper tail values. These percentiles are likely to depend more directly on the
stochastic mortality parameters introduced in the above models.

A Valuation formula for a guaranteed annu-

ity option

The purpose of this Appendix is to show the derivation of the valuation
formula (7) presented in section 2.1. Given the complexity of the terminal
payoff of the guaranteed annuity option, we subdivide the calculations in
three parts. In the first part, we give a quick overview of the market setup in
the HJM framework; on the basis of this setup we price zero coupon bonds,
and finally we use these preliminary set of results to complete the valuation
process for the guaranteed annuity option.

A.1 The financial model

The market framework is described in section 2.1 and 2.2.
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Consider the stock risk-adjusted probability measure P̃ defined in (3) by

ηT = e−
∫ T

0 rudu
ST

S0

= e−
σ2
S
2

T+σSẐT

= e−ρ2 σ2
S
2

T−(1−ρ2)
σ2
S
2

T+σSρŴT+σS

√
1−ρ2Ŵ ′

t .

Since the Girsanov theorem implies that

W̃t : = Ŵt − ρσSt,

W̃ ′
t : = Ŵ ′

t − σS

√

1− ρ2t

are P̃-standard Brownian motions, the P̃-dynamic of the forward rate is then

df (t, T ) =

(

σe−λ(T−t)

(

σ

∫ T

t

e−λ(u−t)du+ ρσS

))

dt+ σe−λ(T−t)dW̃t.

Under these assumptions, it follows that the short rate process is

rt = f (0, t) +

∫ t

0

µ̃f (v, t) dv + σ

∫ t

0

e−λ(t−v)dW̃v,

where

µ̃f (v, t) = σe−λ(t−v)

(

σ

∫ t

v

e−λ(x−v)dx+ ρσS

)

= σe−λ(t−v)
[σ

λ

(

1− e−λ(t−v)
)

+ ρσS

]

.

Therefore

rt = f (0, t)+
(

1− e−λt
)

[

σ2

2λ2

(

1− e−λt
)

+
ρσσS

λ

]

+σ

∫ t

0

e−λ(t−v)dW̃v. (A1)

As the last equation shows, the exponentially decaying structure of the for-
ward rate volatility leads to a mean-reverting form of the short rate that
closely resembles an extended version of the Vasicek (1977) model. Although
equation (A1) is similar to the expressions derived by Vasicek (1977), it dif-
fers in the fact that it is obtained taking the initial term structure as exoge-
nous, while for the Vasicek model the initial term structure is endogenous.
According to (A1), under P̃

(rt − f (0, t)) ∼ N
(

mr (t) , σ
2
r (t)

)

(A2)

where

mr (t) =
(

1− e−λt
)

[

σ2

2λ2

(

1− e−λt
)

+
ρσσS

λ

]
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and

σ2
r (t) = σ2

(

1− e−2λt

2λ

)

. (A3)

Therefore, we can show that

Pt (T ) =
P0 (T )

P0 (t)
e−

1
2
γ2(t,T )σ2

r(t)−γ(t,T )(rt−f(0,t)), (A4)

where

γ (t, T ) =

(

1− e−λ(T−t)

λ

)

.

A.2 Bond pricing

Let

Fτ (T + t, T ) :=
Pτ (T + t)

Pτ (T )

be the forward price at time τ ≤ T for delivery at time T of a zero coupon
bond expiring at time (T + t), written as Fτ for short. From the HJM model,
it follows that under P̂ the forward price satisfies the following stochastic
differential equation:

dFτ = −σP (τ, T )Cτ (T, T + t)Fτdτ + Cτ (T, T + t)FτdŴτ ,

where

σP (τ, T ) = −
∫ T

τ

σe−λ(s−τ)ds =
σ

λ

(

e−λ(T−τ) − 1
)

is the volatility of a T zero coupon bond price process, and

Cτ (T, T + t) = σP (τ, T + t)− σP (τ, T )

=
σ

λ
e−λ(T−τ)

(

e−λt − 1
)

;

so that
Cτ (T, T + t) = −σe−λ(T−τ)γ (T, T + t) . (A5)

Hence, under P̃

dFτ = −σP (τ, T )Cτ (T, T + t)Fτdτ + Cτ (T, T + t)Fτ

(

dW̃τ + ρσSdτ
)

= Cτ (T, T + t) (−σP (τ, T ) + ρσS)Fτdτ + Cτ (T, T + t)FτdW̃τ

= Aτ (T, T + t)Fτdτ + Cτ (T, T + t)FτdW̃τ ,

with
Aτ (T, T + t) = Cτ (T, T + t) (−σP (τ, T ) + ρσS) ,
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or

Aτ (T, T + t) = γ (T, T + t) e−λ(T−τ)

[

σ2

λ

(

e−λ(T−τ) − 1
)

− ρσσS

]

. (A6)

Note that the forward price Fτ (T + t, T ) admits the following represen-
tation under P̃:

Fτ (T + t, T ) = F0e

∫ τ

0

(

Av(T,T+t)−
Cv(T,T+t)2

2

)

dv+
∫ τ

0 Cv(T,T+t)dW̃v

.

In particular, consider FT (T + t, T ) = PT (T + t), then

FT (T + t, T ) = F0e

∫ T
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(
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2
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2
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2

)
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τ
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(A7)
Equations (A5) and (A6) imply that:

∫ T

τ
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and
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The integrals I1 and I2 can be evaluated thus:

I1 =
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τ
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dv
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Therefore
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Hence, from (A7) it follows that

Xτ (T ) = −γ (T, T + t)mr (T − τ)−1

2
γ2 (T, T + t)σ2

r (T − τ)−σγ (T, T + t)

∫ T

τ
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This implies that:

Xτ (T ) ∼ N
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−γ (T, T + t)mr (T − τ)− 1

2
γ2 (T, T + t)σ2

r (T − τ) , γ2 (T, T + t)σ2
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)

.

A.3 Pricing the guaranteed annuity option

In section 2.1, we showed that the valuation formula for the guaranteed
annuity option is

Vx (x+ τ, τ, T − τ)

= T−τpx+τSτ +T−τ px+τgSτ

w−(T+x)
∑

t=0

tpT+xẼ
[

(PT (T + t)−Kt)
+
∣

∣Fτ

]

.

Therefore, in order to determine a closed analytical formula for the option
contract, we need to solve the following expectation:

Ẽ
[

(PT (T + t)−Kt)
+
∣

∣Fτ

]

,
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where Ẽ denotes the expectation under the stock risk-adjusted probability
measure P̃ and

Kt = P ∗
T (T + t)

is the artificial strike price calculated as the bond price such that

w−(T+x)
∑

t=0

tpT+xPT (T + t) = K.

The expectation under consideration can be solved using the results obtained
in the previous sections. In fact, it can be rewritten as:
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+]

= Fτe
− 1

2
γ2(T,T+t)σ2

r(T−τ)−γ(T,T+t)mr(T−τ)

∫ dt

−∞

1√
2π

e−
1
2(y2−2γ(T,T+t)σr(T−τ)y)dy

−Kt

∫ dt

−∞

1√
2π

e−
y2

2 dy

= Fτe
−γ(T,T+t)mr(T−τ)

∫ dt

−∞

1√
2π

e−
1
2
(y−γ(T,T+t)σr(T−τ))2dy

−KtN (dt)

= Fτe
−γ(T,T+t)mr(T−τ)N (d′t)−KtN (dt)

=
Pτ (T + t)

Pτ (T )
e−γ(T,T+t)mr(T−τ)N (d′t)−KtN (dt)

where

d′t = dt + γ (T, T + t)σr (T − τ)

=
ln Pτ (T+t)

KtPτ (T )
+ 1

2
σ2
r (T − τ) γ2 (T, T + t)− γ (T, T + t)mr (T − τ)

γ (T, T + t)σr (T )
,

which leads to equation (7).
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