Internal model validation: a Solvency II perspective

Seth Patel
Seth.Patel@ey.com
Casualty Loss Reserve Seminar
16 September 2011

Overview: Solvency II regulatory framework

Pillar 1
Valuation principles
Solvency capital requirement (ORSA)
Internal model governance & use test
Model validation
Internal model approval

Pillar 2
Own Risk & Solvency Assessment (ORSA)
Overall governance arrangements
Supervisory review process (SRP)
Disclosure — solvency & financial condition report
Market discipline

Pillar 3

Solvency II requirements for validation

Solvency II Directive Article 124:
Insurance and Reinsurance undertakings shall have a regular cycle of model validation to demonstrate to their supervisory authorities that the resulting capital requirements are appropriate. This includes, but is not limited to:
► Monitoring the performance of the internal model
► Reviewing the ongoing appropriateness of its specification
► Testing the forecasted distributions using various quantitative and qualitative methods

Impact:
► Validation is a critical part of demonstrating that the internal model is suitable for setting capital for regulatory purposes, i.e., to get internal model approval for regulatory capital setting purposes.
► Validation is a critical element of the Use test—i.e. risk adjusted decisions are more credible based on a validated model.
► The validation process is ultimately owned by the board.
Elements of internal capital model validation

► Validation policy
► Data Policy
► Validation methodology/principles/tools
► Validation report
► Findings and Conclusions

Examples of internal model validation gaps compared to the Solvency II requirement

► Validation policy:
 ► Lack of governance, no escalation procedures, roles and responsibilities unclear
 ► Lack of governance between legal entities and group (i.e., Who runs the model? Who validates what?)
 ► Frequency of validation unspecified
 ► Lack of consistency between model methodology and validation across legal entities
 ► No principles of "materiality" established to identify "material items" or "non-material items"
 ► No principles of "proportionality" established

► Validation methodology/principles/tools:
 ► No methodology or principles or tools for validating the model results
 ► No methodology or principles for model calibration and parameterization
 ► Level of granularity of validation is unclear

► Independence:
 ► No independent review or appropriate governance for independent review in place
 ► "Independent" review is carried out occasionally if requested by regulators or by senior management but not on a regular basis

► Validation documentation/reports:
 ► No documentation or documentation standards for validation results

Validation policy – sample of key items

<table>
<thead>
<tr>
<th>Scope of validation — What?</th>
<th>Validation items</th>
</tr>
</thead>
<tbody>
<tr>
<td>- What is included - exclusion criteria?</td>
<td>- Validation of assumptions</td>
</tr>
<tr>
<td>- What is excluded - inclusion criteria?</td>
<td>- Validation of parameterization</td>
</tr>
<tr>
<td>- What is excluded - data quality</td>
<td>- Validation of risk management process</td>
</tr>
</tbody>
</table>

Principles of materiality and proportionality

► How do you establish principles of materiality (i.e., objective, subjective, combination)?

Granularity of validation — How deep?

► How far and how detailed should the validation be for a given risk type X item?

Limitations and future developments

► What are the limitations of your validation process?

Frequency of validation process — How often?

► How often will the validation process be carried out (i.e., are more material items checked more frequently)?

Thresholds

► What are the minimum acceptable thresholds for each item of your model?

- How do you evaluate qualitative validation?
Validation methodology: quantitative and qualitative validation tools

<table>
<thead>
<tr>
<th>Quantitative aspects of the validation</th>
<th>Qualitative aspects of the validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Validation of methodology</td>
<td>• Validation of data, data feeds and IT systems</td>
</tr>
<tr>
<td>• Validation of assumptions</td>
<td>• Validation of documentation</td>
</tr>
<tr>
<td>• Validation of parameter methodology</td>
<td>• Validation of market governance</td>
</tr>
<tr>
<td></td>
<td>• Validation of regulatory requirements</td>
</tr>
</tbody>
</table>

Quantitative tools:
- Back-testing (against experience)
- Sensitivity testing
- Stability testing
- Stress and scenario testing
- P&L attribution
- Change Analysis
- Reversion stress testing
- Comparison to standard formula
- Comparison to other capital models

Qualitative tools:
- Industry benchmarking
- Third-party review
- Written justification of methods chosen
- Written justification of strengths vs. weaknesses in model
- Explanation of alternative methods considered

Sample roadmap for a validation process

<table>
<thead>
<tr>
<th>Step</th>
<th>Tasks</th>
<th>Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial planning</td>
<td>Identify the scope of validation.</td>
</tr>
<tr>
<td>2</td>
<td>Data collection</td>
<td>Gather necessary data.</td>
</tr>
<tr>
<td>3</td>
<td>Data validation</td>
<td>Assess the accuracy and completeness of data.</td>
</tr>
<tr>
<td>4</td>
<td>Methodology validation</td>
<td>Validate the model logic.</td>
</tr>
<tr>
<td>5</td>
<td>Stress testing</td>
<td>Evaluate the robustness of the model.</td>
</tr>
<tr>
<td>6</td>
<td>Sensitivity testing</td>
<td>Assess the impact of varying assumptions.</td>
</tr>
<tr>
<td>7</td>
<td>Stability testing</td>
<td>Validate the model over time.</td>
</tr>
<tr>
<td>8</td>
<td>Comparison to other capital models</td>
<td>Validate against other methods.</td>
</tr>
<tr>
<td>9</td>
<td>Comparison to standard formula</td>
<td>Validate against regulatory requirements.</td>
</tr>
<tr>
<td>10</td>
<td>Comparison to other models</td>
<td>Validate against industry benchmarks.</td>
</tr>
<tr>
<td>11</td>
<td>Written justifications of methods chosen</td>
<td>Justify the selection of methods.</td>
</tr>
<tr>
<td>12</td>
<td>Written justifications of strengths vs. weaknesses</td>
<td>Highlight model strengths.</td>
</tr>
<tr>
<td>13</td>
<td>Written justification of alternative methods considered</td>
<td>Identify alternative approaches.</td>
</tr>
</tbody>
</table>

Quantitative validation tools

1. **Back-testing**
 - Use historical databases
 - Run more than one capital model (e.g., “EC light”)
 - Run more than one capital model on a consistent basis
 - Run more than one capital model on a diverse portfolio of risks

2. **Stress testing**
 - Target test of acceptable power and accuracy
 - Identify most significant key drivers, assumptions and parameters of the model
 - Analyze sensitivity of the results to changes in key parameters and assumptions

3. **Sensitivity testing**
 - Use statistical testing such as Goodness of Fit, Parameter Estimation, etc.
 - Compare actual vs. expected/modeled
 - Use actual vs. expected

4. **Change analysis**
 - Implement model change in own funds by creating “mini” P&L statements
 - Analyze changes of capital model results over time
 - Assess the impact of a single event – stress testing

5. **P&L attribution**
 - Compare modeled P&L to realized P&L
 - Identify modeled vs. unmodeled risks, double counting

Qualitative validation tools

- Industry benchmarking
- Third-party review
- Written justification of methods chosen
- Written justification of strengths vs. weaknesses in model
- Explanation of alternative methods considered

Validation Report

- Produce initial validation results and action plans
- Produce results, reports and action plans in a consistent manner
- Escalate breaches to the validation policy
- Make improvements in a non-stop improvement process
- Escalate breaches to validators and apply validation to any validation that is being applied to the model

Notes:
- Dimension #1: risk type
 - Operational
 - Reinsurance
 - Investment
 - Market/ALM
 - Nat CAT
 - Premium
- Dimension #2: what to validate? (finalized)
 - Key activities
 - Critical values (see table)
- Dimension #3: how to validate?
 - Methodology components:
 - Documentation
 - Input data
 - Model logic
 - Parameterization
 - Calibration
 - Validation of assumptions
 - Validation of methodology
 - Validation of use test
 - Industry benchmarking
 - Reversion stress testing
 - Comparison to standard formula
 - Comparison to other capital models

Outcome:
- Key activities
- Critical values (see table)

Assess the impact of a single event – stress testing
- Target level of acceptable simulation error

Stability testing
- Identify most significant key drivers, assumptions and parameters of the model
- Analyze sensitivity of the results to changes in key parameters and assumptions

Sensitivity testing
- Use statistical testing such as Goodness of Fit, Parameter Estimation, etc.
- Compare actual vs. expected/modeled
- Use actual vs. expected

Back-testing
- Implement model change in own funds by creating “mini” P&L statements
- Analyze changes of capital model results over time
- Assess the impact of a single event – stress testing

Comparison to other capital models
- Compare internal model results to standard formulas: solvency capital requirements (SCR) and minimum capital requirements (MCR)
- Evaluate likelihood of such scenarios

Comparison to standard formula
- Compare internal model results to standard formulas: solvency capital requirements (SCR) and minimum capital requirements (MCR)
- Evaluate likelihood of such scenarios

Comparison to other models
- Compare internal model results to other comparable methodologies
- Evaluate likelihood of such scenarios

Validation of methodology
- Identify breaches to the validation policy
- Make improvements in a non-stop improvement process
- Escalate breaches to validators and apply validation to any validation that is being applied to the model
Sample roadmap: putting it all together

What?
Risk types: 1, 2, ..., N-1

How?
Risk type N:
Aggregation
Gaussian Copula
Free capital
Insurance risk (premium & Solvency)

 валдидов 99.5%, one year of basic own funds

Validation is a process

- Continuous improvement: each subsequent validation cycle should be more comprehensive and granular than the prior cycle
- Use test: the validation process is critical to foster strategic decision-making, e.g., risk-adjusted returns, capital allocation and so forth

Internal model validation: a Solvency II perspective

Conclusion

- Internal model validation is an essential part of good risk management
- The validation process is just as useful as the validation result
- Minimizes operational risks
- Internal model validation enhances the use test — risk-adjusted performance decisions can be made using a more transparent and credible model.
- Internal model validation is a critical element for internal model approval for regulatory capital-setting purposes (outside of the US).
- Internal model validation is likely to become a key part of NAIC ORSA.
- Internal model validation is central to rating agency evaluations of internal models.
Ernst & Young

Ernst & Young is a global leader in assurance, tax, transaction and advisory services. Worldwide, our 141,000 people are united by our shared values and an unwavering commitment to quality. We make a difference by helping our people, our clients and our wider communities achieve their potential.

Ernst & Young refers to the global organization of member firms of Ernst & Young Global Limited, each of which is a separate legal entity. Ernst & Young Global Limited, a UK company limited by guarantee, does not provide services to clients. For more information about our organization, please visit www.ey.com.

Ernst & Young LLP is a client-serving member firm of Ernst & Young Global Limited operating in the US.

Ernst & Young is a leader in serving the global financial services marketplace

Nearly 35,000 Ernst & Young financial services professionals around the world provide integrated assurance, tax, transaction and advisory services to our asset management, banking, capital markets and insurance clients. In the Americas, Ernst & Young is the only public accounting organization with a separate business unit dedicated to the financial services marketplace. Created in 2000, the Americas Financial Services Office today includes more than 4,000 professionals at member firms in over 50 locations throughout the US, the Caribbean and Latin America.

Ernst & Young professionals in our financial services practices worldwide align with key global industry groups, including Ernst & Young's Global Asset Management Center, Global Banking & Capital Markets Center, Global Insurance Center and Global Private Equity Center, which act as hubs for sharing industry-focused knowledge on current and emerging trends and regulations in order to help our clients address key issues. Our practitioners span many disciplines and provide a well-rounded understanding of business issues and challenges, as well as integrated services to our clients.

With a global presence and industry-focused advice, Ernst & Young's financial services professionals provide high-quality assurance, tax, transaction and advisory services, including operations, process improvement, risk and technology, to financial services companies worldwide.

It's how Ernst & Young makes a difference.

© 2011 Ernst & Young LLP. All Rights Reserved.

This publication contains information in summary form and is therefore intended for general guidance only. It is not intended to be a substitute for detailed research or the exercise of professional judgment. Neither Ernst & Young LLP nor any other member of the global Ernst & Young organization can accept any responsibility for loss occasioned to any person acting or refraining from action as a result of any material in this publication. On any specific matter, reference should be made to the appropriate advisor.