

Earthquake Modeling in the Insurance Value Chain: Using Catastrophe Models to Better Understand Risk

Heidi Wang, FCAS, Senior Actuarial Consultant AIR Worldwide

Agenda

- Assessing risk using historical losses versus catastrophe modeling
- AIR's approach to modeling catastrophe risks
- Understanding earthquake fundamentals
 - Plate tectonics and causes of seismicity
 - Key elements that define earthquakes
 - Causes of earthquake damages
- Building response to earthquakes
 - Building behaviors to earthquake shake
 - Damage mitigation measures
- Modeled and non-modeled losses
- Using catastrophe modeling in the insurance industry

Summary of High Impact Earthquake Events in 2010 and 2011

©2011 AIR WORLDWIDE

Historical Data is Insufficient for Catastrophic Risk Analysis

- Low credibility there is not enough of it relative to the exposed risk
- Normalization problems failure to portray today's conditions
 - Exposure growth as population migrates toward risky coastal areas
 - Replacement cost increases for structures
 - Expansion of policy coverage and endorsements (loss of use, etc.)
 - Effect of stronger building codes
- By contrast, cat model simulations offer
 - Volumes of data at low marginal cost (up to 100,000 years each run)
 - Reflection of today's reality (exposure profiles, policy conditions)
 - Scenario testing on property and geographic attributes

What Questions Are Catastrophe Models Designed to Answer?

- Where are future events likely to occur?
- How intense are they likely to be?
- For each potential event, what is the estimated range of damage and insured loss?
- Catastrophe models are designed to estimate the probability of loss, not to forecast future events

©2011 AIR WORLDWIDE

2011 Casualty Actuaries of Greater New York

Catastrophe Modeling Framework: Event Generation

Where are future events likely to occur? How intense are they likely to be? How frequently are they likely to occur?

What Causes an Earthquake?

An earthquake is a sudden, rapid shaking of the Earth caused by the breaking and shifting of rock beneath the Earth's surface

Research conducted by Professor H.F. Reid in the aftermath of the 1906 San Francisco earthquake led him to postulate the **Elastic Rebound Theory (1910)**,

which holds that the surface of the earth gradually distorts from the accumulating strain of relative ground motion until the strain is suddenly and violently released in the form of an earthquake.

Original Position

Rupture and Release of Energy

Deformation

Rocks Rebound to Original Shape

© 2001 Brooks/Cole - Thompson

Earthquakes Typically Occur Along Plate Boundaries Where Tectonic Plates Slide Past One Another

©2011 AIR WORLDWIDE

2011 Casualty Actuaries of Greater New York

Plate Boundaries Are Classified By Relative Direction of Motion

10

Japan Is a Mega-Thrust Convergence Zone

Seismic Hazard in the United States Is the Result of Several Tectonic Environments

2011 Casualty Actuaries of Greater New York

To Create a Simulated Earthquake Event, AIR Uses Several Physical Parameters

- Epicenter location
- Magnitude
- Focal depth
- Rupture length
- Rupture azimuth and dip angle
- Fault rupture mechanism

Measurement of an Earthquake: Intensity and Magnitude

Magnitude: Magnitude refers to quantification of strain energy released during an individual earthquake event

produces 32 times more energy than a magnitude 6.0 earthquake. The energy release best indicates the

destructive power of an

earthquake.

Seismic Site Amplification Shows Differences Between Soil and Rock Types

©2011 AIR WORLDWIDE

Earthquake Damage Is Caused By Different Perils

Shake

Tsunami

Fire Following

WORLDWIDE

2011 Casualty Actuaries of Greater New York

Under Strong Ground Shaking Saturated Sandy Soils Experience Liquefaction and May Create Sand Boils

Before Earthquake

Strong shaking of the saturated sandy materials re-structures the sand particles and causes an increase in the pore water pressure

As the pore pressure becomes larger than the weight of the overburden materials, the soil liquefies and in some cases creates sand boils

Severity of Liquefaction Damage in Urban Cities

Source: National Geophysical Data Center

Source: AIR Worldwide

Seafloor Disturbances Resulting From Seismic Activity May Displace Water Causing a Tsunami

As Tsunamis Reach the Coast, Wave Height Increases Causing Severe Damage

©2011 AIR WORLDWIDE

Evidence of Tsunami Damage in the United States

The 1964 Alaska earthquake caused extensive damage in south-central Alaska and caused a massive tsunami that severely damaged several coastal towns

Tsunami damage along waterfront on Kodiak Island from 1964 M9.2 Alaska earthquake Tsunami damage along Seward's waterfront from 1964 M9.2 Alaska earthquake

©2011 AIR WORLDWIDE

Earthquakes Can Ignite Fires Due to Electrical Systems Failures, Sparking, and Ignition of Leaking Natural Gas

- Multiple simultaneous ignitions may overwhelm fire department resources
- Ground shaking may damage the water supply lines limiting the ability of the fire departments to extinguish the fire

Fire Following an Earthquake May Occur if the Pipes or Wiring are Disturbed and Ignitions Evolve into Fires

San Francisco, 1906

©2011 AIR WORLDWIDE

2011 Casualty Actuaries of Greater New York

AIR's U.S. Earthquake Data Sources Are Well Regarded and Reflect the Most Current Information Available

- AIR U.S. Earthquake Model data sources include
 - United States Geological Survey (USGS)
 - Working Group on California Earthquake Probabilities (WGCEP)
 - The National Geophysical Data Center (NGDC)
 - The Southern California Earthquake (SCEC)
 - Multidisciplinary Center for Earthquake Engineering Research (MCEER)
 - The California Department of Mines and Geology (CDMG)
 - The Seismological Society of America (SSA)
 - National Weather Service (NWS)
- AIR model has undergone a rigorous internal and external peer review process

Catastrophe Modeling Framework: Damage Estimation

• What level of damage is experienced at each location?

Key Contributors to Earthquake Vulnerability

- Height
- Construction type
- Age
- Load resisting mechanisms
- Special cases

Building Behavior in an Earthquake Is Characterized By a Building's Mass and Stiffness

The response of a building to shaking is fundamentally determined by

- QUANTITY AND DISTRIBUTION OF MASS

Tall Structures Often show a reduction of mass as height increases to stabilize the structure

- RESISTANT CAPABILITIES OR STIFFNESS

Flexible: the structure deforms considerably under stress

Stiff: the structure deforms slightly under stress

©2011 AIR WORLDWIDE

2011 Casualty Actuaries of Greater New York

Short and Tall Buildings Behave Differently to Ground Motion

Seismic Design Code Evolution in the United States

Proper Resisting Mechanisms Can Reduce Earthquake Risk

Earthquake Damage Mitigation Measures: Seismic Retrofitting of Buildings

©2011 AIR WORLDWIDE

2011 Casualty Actuaries of Greater New York

Structural Characteristics of a Building May Affect Seismic Response

Soft Story Effect

1971 M6.6 San Fernando Earthquake

©2011 AIR WORLDWIDE

Corner Buildings

Pounding Effect

1994 M6.7 Northridge Earthquake

2011 Casualty Actuaries of Greater New York

AIR's Model Uses an Event Tree Approach to Handle Business Interruption

- Event tree approach
- Function of building damage and occupancy class

Model Output and Application

Catastrophe Modeling Framework

The financial module transforms raw damage estimates – the output of the hazard and engineering modules – into estimates of losses to contracts established to cover catastrophic events

Have You Accounted for All the Risk?

- If the exposure data is good, your loss distribution provides a robust starting point for catastrophe risk management
- Additional things to consider
 - Modeled peril versus non-modeled peril
 - Modeled loss component versus nonmodeled loss component

Additional Sources of Loss from Earthquake to Consider

AIR Modeled Perils

Shake Fire Following Sprinkler Leakage Liquefaction

AIR Modeled Coverage

Building Appurtenant structures Contents Additional living expenses, BI

AIR Non-Modeled Perils

Landslides Tsunamis Loss from levee or dam failures Fire following earthquake due to arson

AIR Non-Modeled Loss Components

Loss adjustment expenses Windpool / FAIR Plan assessments Hazardous waste cleanup/debris removal Infrastructure losses

- Review of experience from past events can provide guidance for factors to be used to adjust modeled loss distribution
- Dependent on unique nature of event

©2011 AIR WORLDWIDE

Catastrophe Models Provide a Wide Range of Outputs

Event	Year	Contract Loss	Event Info
270007942	2353	1,995,714,211	Class 3 Hurr TX GOM
270003822	1143	1,994,490,277	Class 3 Hurr FL GOM GA
110044047	6410	1,993,822,104	MW 7.4 EQ Los Angeles
270021674	6488	1,992,783,613	Class 3 Hurr GOM AL FL GA MS
270018191	5445	1,992,529,830	Class 3 Hurr MA RI ME NY CT
270021539	6447	1,992,239,441	Class 3 Hurr FL BF
110010511	1539	1,991,950,215	MW 6.6 EQ Los Angeles
270014761	4407	1,991,795,632	Class 2 Hurr TX GOM LA
270029332	8763	1,990,905,697	Class 3 Hurr GOM FL AL GA MS
110014872	2164	1,990,461,843	MW 6.5 EQ San Francisco
270006759	1983	1,989,857,449	Class 2 Hurr LA GOM MS AL
270023332	6984	1,989,268,193	Class 3 Hurr SC TN NC KY GA
270008182	2423	1,989,078,459	Class 2 Hurr NC SC VA

Insurers Use Catastrophe Models Across Multiple Functional Areas

What is ERM and Why Does it Require Model Results?

- A framework for mapping (identifying), measuring, monitoring, and managing a wide variety of risks, both independently and in combination
 - Catastrophe risk is the greatest threat to solvency
 - Catastrophe risk also highly correlated to operational and asset disruptions

Portfolio Optimization Through Tail Value at Risk Management

• Tail value-at-risk (TVaR): average of all simulated event losses beyond specified probability, such as 1% or 0.4%

TVaR is a standard output of AIR software products

©2011 AIR WORLDWIDE

2011 Casualty Actuaries of Greater New York

Catastrophe Risk Transfer Decisions Have Several Elements

- Main goal: modify EP curve net of transfer so that enterprise-wide risk appetite and tolerance goals are achieved
 - But trade-offs in ERM among catastrophe and other risks (credit, liquidity) may ensue
 - Traditional reinsurance most common mechanism, but new ways of risk transfer such as issuance of Cat Bond is gaining popularity
- Price per unit (rate on line) determined by supply and demand for capital
 - But often depends on "technical prices" derived using model results
- Quantity of transfer often directly determined by model results
 - Occurrence (XOL) retention, top limit, and coinsurance
 - Aggregate (XOL) retention and limit
 - Per-risk and facultative retentions and limits on large single risks
 - Participation in state funds determined indirectly by models

Software Users Analyze Occurrence and Aggregate EP Curves to Understand Risk Transfer Needs

Direct Insurance Premiums Are Determined By Many Complex, Interdependent Base Rates and Differentials

- Base Rates
 - Set to provide sufficient overall revenue to insure entire portfolio
 - In regulated environments, include provisions for specific cost components
 - Normal losses (non-catastrophe)
 - Catastrophe retained losses
 - Catastrophe risk transfer (e.g. reinsurance) costs
 - Expenses, taxes and profit
- Rating Factors
 - Set to equitably distribute premiums among risks of different loss potential
 - Geographic location (territory, building code zone)
 - Property attributes (construction, occupancy, mitigation features)
 - Coverage modifiers (deductibles, coinsurance)
 - Marketing preferences (multi-policy discount)

Typical Rating Algorithm and Base Premium Formula -Modeled Losses Enter in Several Places

- Allocation of base premiums (via rating factors) should be based on relative loss potential including catastrophe losses from models
- Relative loss potential should be measured using both expected losses and a measure of risk (volatility)

The Role of Models in the Underwriting Workflow

Risk Selection

- Quickly assess whether new policies meet underwriting guidelines
- Manage catastrophe risk on the 'front-end' before a policy goes on the books, not just at the portfolio level
- Loss Analysis: Produce potential loss result and EP curve for your location which will guide you through the underwriting process, help you set coverage terms and pricing

Summary

- Catastrophe modeling provides a better estimate of potential insurable losses than traditional techniques based solely on historical claims
- AIR's modeling processes for earthquakes incorporate the latest science, engineering, and actuarial knowledge to estimate the probability of catastrophe losses
- To best understand risk, actuaries must fully understand model assumptions and limitations
- Catastrophe modeling is widely used in the insurance industry

For More Information, Please Contact:

Heidi Wang: hwang@air-worldwide.com

